
Some notes on monads

Andrea Schalk

A.Schalk@cs.man.ac.uk

Department of Computer Science

University of Manchester

March 12, 2002

About these notes. These notes try to motivate the notion of ‘monad’ in category theory
and go on to show some basic facts about them. They are directed at an audience which is
familiar with the basic notions of category up to at least adjunctions. To avoid cluttering
up the presentation unnecessarily we often use the same name for the ‘same’ morphism in
different categories. Similarly we tend not to distinguish between objects which are naturally
isomorphic.

1 Why monads?

When mathematicians first see the definition of an adjunction they will typically have seen
lots of examples for these. I certainly remember a sense of relief when finally being shown
that what seemed so similar every time I met something called a ‘universal property’ could
be made into instances of one unifying definition.

Monads are somewhat different. For one, when being exposed to the idea in category
theory, people often don’t find that this is an idea that has been lurking in the background of
their experience. The whole question of ‘why on Earth should I look at something like that?’
is often swept under the carpet.

Sometimes we encounter endofunctors on categories which we think are ‘free’ in some
sense, which means that they have some universal property. But it need not be clear a priori
just what that property might be. To solve this problem it seems natural to look for an
appropriate adjunction, that is:

Given a functor T : C - C, we would like to find a category D as well as functors
F : C - D and G : D - C such that

T = GF and F a G.

That does allow us to express T via a universal property, and thus we may make precise
in which sense there is a ‘free’ construction here. The problem becomes one of decomposing
T into two adjoint functors. Let us start with some examples.

Example 1.1 Let M : Set - Set be the functor that maps a set A to all the words that
can be formed over the alphabet A, and whose action on morphisms is described as follows.
For f : A - B in Set let Mf : MA - MB be given by

Mf(a1 · · · an) = f(a1) · · · f(an).
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This is an example which you will find in most text books when it comes to describing
monads, so you probably already know which free construction this is.

Example 1.2 There are two slight variations on Example 1.1. Instead of taking the set of
all words over the alphabet A you could take the set of finite multisets over A, or the set of
finite subsets of A. These are easily made into endofunctors on Set.

Example 1.3 Let Pos be the category of posets with order-preserving functions. For a poset
P consider the set of finite subsets of P with one of the following pre-orders. For a and b

subsets of P set

• a ≤ b if and only if ↓a ⊆↓b;

• a ≤ b if and only if ↑a ⊇↑b;

• a ≤ b if and only if ↓a ⊆↓b and ↑a ⊇↑b.

Making these into posets in the canonical way gives rise to three endofunctors on Pos where
the equivalence class of a is mapped to the equivalence class of f [a], the image of a under f .

Example 1.4 Let DCPO be the category of directed complete partial orders (where we
do not demand that such an object has a least element) with functions preserving directed
suprema, that is, Scott-continuous functions. Let (−)⊥ : DCPO - DCPO be the functor
that maps a dcpo D to the dcpo with a (new) bottom element adjoint. The action of (−)⊥
on morphisms is described as follows. For f : D - E we set

f⊥(a) =

{

f(a) if a is in (the embedding of) D (in D⊥)
⊥ if a = ⊥

Example 1.5 (a) Let Top be the category of T0-spaces with continuous functions. Let PX

be the set of all closed subsets of a T0-space X with the topology whose open sets are generated
by all the

♦O := {A ∈ PX | A ∩ O 6= ∅},

where O is open in X. For f : X - Y and A ∈ PX set Pf(A) = f [A], the closure of the
image of A under f .

(b) Let STop be the category of locally compact sober spaces with continuous functions. Let
PX be the set of all compact subsets of X with the topology whose open sets are generated
by the

�O := {C ∈ PX | C ⊆ O},

where O is open in X. For f : X - Y and C ∈ PX set Pf(C) = f [C], the image of C

under f .

Example 1.6 Let Rel be the category of sets and relations. Let MA be the set of finite
multisets over A. For f : A +- B, x ∈ MA and y ∈ MB set x Mf y if and only if there
exists a subset c of Mf ⊆ M(A×B) whose first projection is x and whose second projection
is y.
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2 Monads

In order for an endofunctor T to be decomposable into such an F a G, what do we have to
ensure?

One of the possible definitions for such an adjunction, apart from functors F and G as
above, demands the existence of natural transformations

η : idC
- GF and ε : FG - idD

such that for all A ∈ C and all D ∈ D

FA
FηA- FGFA

FA

εFA

?

id
F
A

-

GD
ηGD- GFGD

GD

GεD

?

id
G
D

-

The first of these natural transformations, η, is something we can straight-forwardly trans-
late into our situation, since we assume that, once we have the adjunction, T = GF will hold.
We therefore demand the existence of

η : idC
- T .

Clearly it does not make sense to talk about the other natural transformation, ε, that
comes with the adjunction, since we can’t talk about FG if we only know T = GF . However,
there is a derivable natural transformation

GεF : GFGF = TT - GF = T ,

and therefore we demand that there be a natural transformation

µ : T 2 - T .

Hence we are really talking about a triple (another name for a monad) (T, η, µ) where
η and µ are natural transformations as indicated. However this is not quite enough for the
definition we are aiming for.

Exercise 1 Find η and µ for (at least some of) the examples from Section 1.

We wish to derive equations for η and µ from the equations for η and ε given above. By
applying G to the first we obtain

TA = GFA
TηA = GFηA- T 2A = GFGFA

TA = GF

µA = GεFA

?

id
GFA

-
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If, on the other hand, we insert D = FA in the second then we obtain

TA = GFA
ηTA = ηGFA- T 2A = GFGFA

TA = GFA

µA = GεFA

?

id
GFA

-

In other words we demand that

idTA = µA ◦ TηA and idTA = µA ◦ ηTA.

Clearly this is the closest to the original equations that we can ask for in our setting.
But that is still not enough for our purposes just yet. We finally observe that the two

ways we have to go from T 3A to TA should coincide since

T 3A = GFGFGFA
TµA = GFGεFA- T 2A = GFGFA

T 2A = GFGFA

µTA = GεFGFA

?

µA = GεFA

- TA = GFA

µA = GεFA

?

which follows by naturality of ε in the original setting.

Definition 1 A monad on a category C consists of an endofunctor T on C together with
natural transformations

η : idC
- T and µ : T 2 - T

such that
µA ◦ TηA = idTA = µA ◦ ηTA and µA ◦ TµA = µA ◦ µTA.

We often speak of a monad (T, η, µ).

Exercise 2 Show that the equations hold for your choice of η and µ in the examples.

Example 2.1 A monad on a poset P (viewed as a category) is an order-preserving function
f : P - P such that for all p ∈ P

• p ≤ f(p), that is f is order-increasing and

• f(f(p)) ≤ f(p) which, together with the first inequality, means that f ◦ f = f .

In other words, f is a closure operator.

Example 2.2 Let EndC be the category of all endo-functors on some category C, with
natural transformations between those as the morphisms. Then EndC is a strict monoidal
closed category with composition as the monoidal operator (or tensor product). A monad on
C is nothing but a monoid with respect to this tensor.
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Exercise 3 Convince yourself that the claim made in Example 2.2 is true.

Proposition 2.3 If (F,G, η, ε) describes an adjunction where F : C - D then the triple
(GF, η,GεF ) defines a monad on C.

Proof. The proof was given above in the motivation for the concept of a monad. �

It turns out that this definition is sufficient to guarantee that the endofunctor under
consideration can be decomposed as desired. But before we get there we will first study an
alternative description of the same thing.

3 Kleisli triples

Our definition of monad was clearly driven by a particular way of defining an adjunction. If
we start with another such, namely the one defining an adjunction in terms of a universal
property, then we obtain a different notion.

Let us repeat that definition here. It demands the existence of a functor G : D - C,
whereas F merely has to take objects of C to objects of D. Further there has to exist, for
every object A of C, an arrow ηA : A - GFA such that for all

f : A - GD,

where D is an arbitrary object of D, there exists a unique

f+ : FA - D

such that f = Gf+ ◦ ηA. We can view (−)+ as mapping the homset C(A,GD) to the homset
D(FA,D).

We can describe this in a convenient short form.

C

A
ηA- GFA

GD

Gf+

↓

∀
f

-

D

FA

D

∃!f+

↓

As before we expect to find F and G such that T = GF . Since F now does not have to
be a functor we start out with T mapping objects of C to objects of C.

We further demand, for every A ∈ C, the existence of an arrow ηA : A - TA. Finally
we have to translate the (−)+ operator into our setting. Observing that if

f : A - GFB

then
Gf+ : GFA - GFB,

we demand, for all
f : A - TB,
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the existence of a
f∗ : TA - TB.

In other words, (−)∗ maps the homset C(A, TB) to the homset C(TA, TB). It remains to
describe the equations connecting the ingredients (T, η, (−)∗).

Mimicking the universal property we demand first of all that

f∗ ◦ ηA = f.

If we consider ηA : A - GFA then the universal property tells us that

GidFA ◦ ηA = ηA = Gη+

A ◦ ηA,

and by uniqueness it must be the case that

ηA
+ = idFA.

Thus motivated we demand for our triple that

ηA
∗ = idTA.

Finally we see what we get if we apply the universal property to the following situation.
Let

f : A - GFB and g : B - GFC.

Then

A
ηA - GFA

GFB
�

G
f
+f

-

GFC

G(g+ ◦ f+)

?

G
g +

-

By uniqueness of the fill-in we deduce that

(Gg+ ◦ f)+ = g+ ◦ f+

and so
G(Gg+ ◦ f)+ = Gg+ ◦ Gf+.

Hence we demand for our (−)∗ operator that

(g∗ ◦ f)∗ = g∗ ◦ f∗.

Definition 2 A Kleisli triple on a category C consists of

• an operator T mapping objects of C to objects of C,
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• for each A ∈ C, an arrow ηA and

• for all A,B ∈ C an operator (−)∗ : C(A, TB) - C(TA, TB)

subject to the following equations:

f∗ ◦ ηA = f ηA
∗= idTA (g∗ ◦ f)∗ = g∗ ◦ f∗.

We often talk about the Kleisli triple (T, η, (−)∗).

Proposition 3.1 If (F,G, η, (−)+) describes an adjunction with F mapping objects of C to
objects of D then (GF, η,G(−)+) defines a Kleisli triple on C.

Proof. Again the proof has been given as part of the motivation of the notion of a Kleisli
triple. �

There is an obvious question regarding the relation between the two ideas we have devel-
oped.

Proposition 3.2 The notions of monad and Kleisli triple are equivalent.

Proof. Let (T, η, (−)∗) be a Kleisli triple on a category C. We first turn T into an endofunctor
on C. For f : A - B in C let Tf : TA - TB be given by

Tf = (ηB ◦ f)∗.

This is functorial since for all objects A ∈ C we have that

T idA = (ηA ◦ idA)∗ = ηA
∗ = idTA

and for f : A - B and g : B - C that

Tg ◦ Tf = (ηC ◦ g)∗ ◦ (ηB ◦ f)∗

= ((ηC ◦ g)∗ ◦ ηB ◦ f)∗

= (ηC ◦ g ◦ f)∗

= T (g ◦ f)

We next have to prove that η is a natural transformation idC
- T , that is that for all

f : A - B in C we have
ηB ◦ f = Tf ◦ ηA.

We calculate
Tf ◦ ηA = (ηB ◦ f)∗ ◦ ηA = ηB ◦ f.

We define the final component of a monad, µ : T 2 - T as

µA = id
∗

TA : T 2A - TA.
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This is a natural transformation since for all f : A - B it is the case that

µB ◦ T 2f = id
∗

TB ◦ (ηTB ◦ Tf)∗

= (id∗TB ◦ ηTB ◦ Tf)∗

= (idTB ◦ Tf)∗

= (Tf)∗

= (ηB ◦ f)∗∗

= ((ηB ◦ f)∗ ◦ idTA)∗

= (ηB ◦ f)∗ ◦ id
∗

TA

= Tf ◦ µA.

It remains to show the three equations. We calculate

µA ◦ ηTA = id
∗

TA ◦ ηTA = idTA

and

µA ◦ TηA = id
∗

TA ◦ (ηTA ◦ ηA)∗ = (id∗TA ◦ ηTA ◦ ηA)∗ = (idTA ◦ ηA)∗ = ηA
∗ = idTA.

Finally we have

µA ◦ TµA = id
∗

TA ◦ (ηTA ◦ id
∗

TA)∗

= (id∗TA ◦ ηTA ◦ id
∗

TA)∗

= (idTA ◦ id
∗

TA)∗

= id
∗∗

TA

= (id∗TA ◦ idT 2A)∗

= id
∗

TA ◦ id
∗

T 2A

= µA ◦ µTA

Hence (T, η, µ) as just defined is a monad.
Now let (T, η, µ) be a monad on a category C. Clearly, T and η satisfy the requirements

made for the corresponding components of a Kleisli triple. That leaves the (−)∗ operator.
For f : A - TB in C we set f ∗ to be

TA
Tf- T 2B

µB- TB.

It remains to show the three equations. Let f : A - TB. Then

f∗ ◦ ηA = µB ◦ Tf ◦ ηA = µB ◦ ηTB ◦ f = idTB ◦ f = f.

Further we have that
η∗A = µA ◦ TηA = idTA

as required. Now let f be as before and let g : B - TC. Then

g∗ ◦ f∗ = µC ◦ Tg ◦ µB ◦ Tf

= µC ◦ µTC ◦ T 2g ◦ Tf

= µC ◦ TµC ◦ T 2g ◦ Tf

= µC ◦ T (µC ◦ Tg ◦ f)

= (g∗ ◦ f)∗.
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Hence (T, η, (−)∗) as just defined is a Kleisli triple.
If we start with a Kleisli triple (T, η, (−)∗), obtain the monad (T, η, µ) as just described

and then, for f : A - TB, we calculate

µB ◦ Tf = id
∗

TA ◦ (ηB ◦ f)∗ = (id∗TA ◦ ηB ◦ f)∗ = (idTA ◦ f)∗ = f∗,

so we can recover the original Kleisli triple from that monad.
If on the other hand we start with a monad (T, η, µ) and then obtain the Kleisli triple

according to the above instructions then we find that

id
∗

TA = µTA ◦ T idTA = µTA ◦ idT 2A = µTA

and therefore we can also recover the monad from the Kleisli triple. �

Exercise 4 Find the Kleisli-triple presentation for your example monads.

This allows us two approaches to the problem we are trying to solve.

The problem. Given a monad (T, η, µ) find an adjunction (F,G, η, ε) such that T = GF

and such that µ = GεF .
(Given a Kleisli triple (T, η, (−)∗) find an adjunction (F,G, η, (−)+) such that, on objects,

T = GF and such that (−)∗ = G((−)+).)

4 Kleisli’s solution

We present the first solution to our problem which is due to Kleisli.
It relies on the observation that if we have an adjunction F a G (where D is the category

through which T factors into F and G) which solves our problem then it must be the case
that

D(FA,FB) ∼= C(A,GFB) = C(A, TB).

Definition 3 The Kleisli category CT of a Kleisli triple (T, η, (−)∗) on a category C has

objects: the objects of C;

morphisms: a morphism A - B is given by a morphism A - TB;

identities: the identity on an object A is given by ηA;

composition: the composite of morphisms f : A - B and g : B - C in CT is given by

A
f- TB

g∗- TC.

To distinguish it from the composite in C we write it a

g • f.
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We should make sure that we have indeed defined a category. For f : A - B in CT

pre-composing with the identity on A gives

f∗ ◦ ηA = f.

Post-composing with the identity on B results in

η∗B ◦ f = idB ◦ f = f.

Let f be as before and let g : B - C and h : C - D in CT . Then the two composites
work out as

h • (g • f) = h∗ ◦ (g∗ ◦ f) = (h∗ ◦ g∗) ◦ f = (h∗ ◦ g)∗ ◦ f = (h • g) • f.

We define FT to map an object C of C to the same object in CT . We further define a func-
tor GT : CT

- C by mapping C ∈ CT to TC and by mapping a morphism f : A - B

in CT to f∗ : TA - TB in C. We check that this is functorial by noting that the identity
on A in CT , ηA, is mapped to ηA

∗ = idTA. If f : A - B and g : B - C in CT then

GT g ◦ GT f = g∗ ◦ f∗ = (g∗ ◦ f)∗ = GT (g • f)

and thus GT preserves composition and is indeed a functor.
It is trivial that now T = GT FT on objects. We wish to establish a universal property

for this construction. So let f : A - GT B in C, where A ∈ C and B ∈ CT . We need to
establish a unique f+ : FT A - B in CT such that

GT f+ ◦ ηA = f.

But our construction has been precisely so that f : A - GT B = TB is a morphism of the
desired type in D. So GT f+ = f∗ and we calculate

GT f+ ◦ ηA = f∗ ◦ ηA = f

as desired. It remains to establish uniqueness. But if g : FT A - B in CT , given by a
g : A - TB in C then GT g = g∗ and therefore

GT g ◦ ηA = g∗ ◦ ηA = g,

so if g could replace f+ then g = f as desired. Hence we have found an adjunction with the
desired properties.

We note in passing that the functor FT (which maps a morphism f : A - B in C to
ηB ◦ f : A - TB) is not very interesting, whereas GT does all the work.

Exercise 5 Calculate the Kleisli categories for your example monads. Can you find a differ-
ent presentation for any of them?
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5 Eilenberg and Moore’s solution

In practice, Kleisli’s solution often is not the one which tells us a lot about the construction
under consideration. Instead, another solution to the problem due to Eilenberg and Moore is
often favoured.

Definition 4 The category of (Eilenberg-Moore) algebras CT for a monad (T, η, µ)
on a category C has

objects: arrows ξ : TA - A in C, called T -algebras such that

A
ηA - TA

A

ξ

?

id
A

-

T 2A
µA - TA

TA

Tξ

?

ξ
- A

ξ

?

morphisms: a morphism from ξ : TA - A to ζ : TB - B (called a morphism of T -
algebras) is given by a morphism f : A - B in C such that the following
diagram commutes

TA
ξ - A

TB

Tf

?

ζ
- B

f

?

Identities and composition are inherited from C.

We briefly return to Example 2.1. The category of algebras for a closure operator on a
poset P is the set of all fixed points of the operator.

For the general situation we note that for every object A in C we obtain a T -algebra,
namely

µA : T 2A - TA.

These T -algebras are called free T -algebras. Further for every f : A - B in C, Tf is a
morphism of T -algebras from µA : T 2A - TA to µB : T 2B - TB since

T 2A
µA - TA

T 2B

T 2f

?

µB

- TB

Tf

?
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commutes by naturality of µ. We further note that for a T -algebra ξ : TA - A, ξ is a
morphism from the T -algebra µA : T 2A - TA to ξ : TA - A since

T 2A
µA - TA

TA

Tξ

?

ξ
- A

ξ

?

commutes by the definition of a T -algebra.
Again we wish to establish an adjunction decomposing T via this category. We define

a functor F T : C - CT by mapping A ∈ C to the free T -algebra µA : T 2A - TA, and
a morphism f : A - B in C to Tf which we have just observed to be a morphism of
T -algebras. F T is a functor since T is.

There is an obvious forgetful functor GT : CT - C which ‘forgets’ about the algebra
structure, that is it maps ξ : TA - A to A and maps a morphism of T -algebras f to itself
(viewed as a morphism of C). Clearly GT is a functor.

Obviously T = GT F T and therefore η is a natural transformation idC
- GT F T . This

time it is the case that F T does all the work and GT is a true forgetful functor, in contrast with
Kleisli’s solution. This fits our original motivation much better and usually is the preferred
solution.

It remains to define a natural transformation ε : F T GT - idCT and to show that the
two equations for adjunctions hold.

For an object ξ : TA - A of C
T

we set εξ = ξ which we know to be a morphism of
T -algebras from F T GT ξ = µA to ξ. Naturality is easy to establish since it coincides precisely
with the definition of a morphism of T -algebras.

We calculate, for A ∈ C,

GT εF T A = GT εµA
= GT µA = µA

and deduce that GT εF T = µ as required for a solution to our problem.
Example 1.1 ctd. Here ηA maps an element a ∈ A to the word consisting of just the letter a,
and µA maps a word over the alphabet MA to the word over the alphabet A which we obtain
by just stringing all the letters together, forgetting that they previously formed words over A.
An algebra for this monoid is given by a function ξ : MA - A such that the word consisting
of just the letter a is mapped to a, and such that for a word (a1

1 · · · a
1
n1

) · · · (am
1 · · · am

nm
) over

the alphabet MA we have that

ξ(a1
1 · · · a

1
n1

· · · am
1 · · · am

nm
) = ξ(µA(a1

1 · · · a
1
n1

) · · · (am
1 · · · am

nm
))

= ξ(Tξ(a1
1 · · · a

1
n1

) · · · (am
1 · · · am

nm
))

= ξ(ξ(a1
1 · · · a

1
n1

) · · · ξ(am
1 · · · am

nm
)).

This does not look all that informative, and we have to apply some ingenuity to get a
better grip on what’s going on here.

We note that all objects of the form MA carry some algebraic operations. There is
concatenation

· : MA × MA - MA
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which has the empty word ε as the unit (which we can view as a morphism from the one-
point set 1 to MA), and which is associative. In other words, every MA is a monoid and the
following diagrams commute

MA
〈idMA, ε〉- MA × MA

MA × MA

〈ε, idMA〉

?

·
- MA

·

?

id
M

A
-

MA × MA × MA
· × idMA- MA × MA

MA × MA

idMA × ·

? · - MA

·

?

We also note that if we have an algebra ξ : MA - A then we can define a generalized
‘concatenation’ operation on it via

A × A
ηA × ηA- MA × MA

A � ξ
MA

·

?

Exercise 6 Show that this derived operation is associative and has ξ ◦ ε as its unit.

So every M -algebra is a monoid in Set. How about morphisms?
We start with morphisms of the form Mf and µA which we have shown to be morphisms

of M -algebras above. For a pair of words over A, say (a1 · · · an, a′1 · · · a
′
m) we have that

(a1 · · · an, a′1 · · · a
′

m)
· - a1 · · · ana′1 · · · a

′

m

(f(a1) · · · f(an), f(a′1) · · · f(a′m))

Mf × Mf

? ·- f(a1) · · · f(an)f(a′1) · · · f(a′m)

Mf

?

Similarly we can show that for every set A, µA is a morphism of comonoids.
If f : A - B is a morphism of M -algebras from ξ : MA - A to ζ : MB - B then

it is also a morphism of monoids (for the derived monoid structure) since

A × A
ηA × ηA- MA × MA

? - MA
ξ - A

B × B

f × f

?

ηB × ηB

- MB × MB

Mf × Mf

?

?
- MB

Mf

?

ζ
- B

f

?

There is, in fact a general principle at work here which we will briefly outline below.
We claim that this algebraic operation is precisely what characterizes M -algebras. We

have just shown that every M -algebra is a monoid in Set (and that every morphism of M -
algebras is a monoid morphism), and we now proceed to show that every monoid in Set is
an M -algebra (and that every monoid morphism is a morphism of M -algebras).
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Definition 5 Let C be a category with products. A monoid in C is an object A together
with arrows

? : A × A - A (‘multiplication’) e : 1 - A (unit)

such that the following diagrams commute:

A
〈idA, e〉- A × A

A × A

〈e, idA〉

?

?
- A

?

?

id
A

-

A × A × A
? × idA- A × A

A × A

idA × ?

? ? - A

?

?

It should be clear that this definition allows us to define algebraic structures over any cate-
gory.1

Let S be a monoid in Set which has multiplication

? : S × S - S

and unit e : 1 - S. We define an M -algebra ξ : MS - S from this by setting

ξ(s1 · · · sn) = s1 ? · · · ? sn.

Clearly this does map the word consisting of a single letter to that letter. Further we have
that

(s1
1 · · · sn1

) · · · (sm
1 · · · sm

nm
)

Mξ- (s1
1 ? · · · ? sn1

) · · · (sm
1 ? · · · ? sm

nm
)

s1
1 · · · sn1

· · · sm
1 · · · sm

nm

µS

?

ξ
- s1

1 ? · · · ? sn1
? · · · ? sm

1 · · · sm
nm

ξ

?

Hence every monoid comes with an M -algebra structure. it is trivial to show that every
morphism of monoids is a morphism of M -algebras.

Proposition 5.1 The category of M -algebras is equivalent to the category of monoids in Set.

It is worth examining how we achieved this. We started by looking for some algebraic
structure on the free algebras. For that it was critical that the category of algebras for the
monad carries a product structure which is inherited from that on the original category. There
is a general result which states that if C has finite products then so does any C T .2 We then
went on to show that we could define a derived such structure for all algebras, and that it
was preserved by morphisms. Finally we showed that the category of these algebras in C can
be embedded in the category of algebras for the monad. This is a general approach, and it

1This does extend to algebraic structures with respect to a tensor product.
2This general result can be extended to cover monoidal structures provided that the monad is monoidal.
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can be shown that most of it has to work due to general principles. Also note that we can
now justify the notion of a ‘free algebra’—in this example, the free M -algebras are precisely
those monoids which are freely generated over some set.

This should serve as an example that by identifying the category of algebras for a monad
we get a deep insight into what the corresponding functor is doing, in particular we find out
which free construction it is.

Exercise 7 Can you identify the category of algebras for any of the other examples from
Section 1?

6 Comparing the solutions

So far we were only interested in finding some solution to our problem, but did not give much
thought to how many there might be, or how they might relate to each other.

There is an embedding
J : CT

- CT .

For A ∈ CT let JA be µA, the free T -algebra over A, and for a morphism f : A - B

in CT let Jf : JA = TA - JB = TB be f ∗ = µB ◦ Tf . This is a morphism of T -algebras
since both, µB and Tf are. The assignment is functorial (and the proof is ‘the same’ as the
one which shows that we can define a monad from a Kleisli triple). It is faithful since for
f, g : A - B in CT , given by f, g : A - TB in C it is the case that

µB ◦ Tf = Jf = Jg = µB ◦ Tg

implies that

f = µB ◦ ηTB ◦ f

= µB ◦ Tf ◦ ηA

= µB ◦ Tg ◦ ηA

= µB ◦ ηTB ◦ g

= g

We can, in fact, identify the subcategory of CT we obtain this way.

Definition 6 The category of free T -algebras is the full subcategory of CT whose objects
are all µA : TA - A, where A ∈ C.

Proposition 6.1 The image of CT under J is the category of free T -algebras.

Proof. It remains to show that J is full. Let f : µA
- µB in the category of free T -algebras.

Then

f = f ◦ µA ◦ TηA (µA ◦ TηA = idTA)

= µB ◦ Tf ◦ TηA (f morphism of T -algebras)

= µB ◦ T (f ◦ ηA)

= J(f ◦ ηA).
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Therefore f is in the image of J . �

Hence the category of free T -algebras is equivalent to the Kleisli category for the monad.
We can further define a category whose objects are the solutions to our problems. Let

(F,G, η, ε) and (F ′, G′, η, ε′) be such solutions with F : C - D and F ′ : C - D′. A
morphism from the first to the second is given by a functor L : D - D′ such that the
following diagram commutes

C
F - D

G - C

D′

L

?
G
′

-

F
′

-

and such that for all D ∈ D

F ′G′LD = F ′GD = LFGD
LεD- LD = F ′G′LD

ε′
LD- LD.

We can show that we have found particular solutions.

Proposition 6.2 The Kleisli adjunction is the initial object in the category of adjunctions,
and the Eilenberg-Moore adjunction is the final one.

Exercise 8 Prove Proposition 6.2.

Exercise 9 Show that J is a morphism in the category of adjunctions (the unique morphism
from the initial to the terminal object).

Hence we are in a situation where we have

CT

J - CT

C

FT

6

a GT

?
========== C

F T

6

a GT

?

where
GT = GT ◦ J and F T = J ◦ FT .
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