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Abstract

These are draft notes for an introductory (mini-)course on games in semantics which
I gave to graduate students in Manchester in the spring of 2001. Any feedback is highly
welcome, in particular regarding the exercises and/or ways of improving the exposition.

1 What is a game?

Games have become very successful in the semantics of both, logics and programming lan-
guages. There notion of ‘game’ as such is very wide-ranging even in the narrow context of
semantics, reaching from dialogue games for classical logic (see [Fel86] for an overview) to
ever more sophisticated versions of so-called ‘games’ for semantics, see for example [AJ94,
AJM, AJM94, AM95, AM97, AM99, Abr97, BDER97, BDER98, Bla92, Bla95, HO, HO93,
Hyl97, LS91, Lai97, McC96].

All the games used for semantics have a few properties in common. A game is understood
to consist of rules determining how various entities, the players, may interact. At any point
in time it can only be one player’s turn to take an action, or make a move.

All the games mentioned above have two players. In the case of games for logic we may
think of one of them as a ‘prover’ and the other as a ‘skeptic’. If the formula to be proven is,
say, a conjunction then the skeptic may insist on having either of the two conjuncts proven.
If, on the other hand, it is a disjunction then the prover may choose to just prove one of
the sub-formulae. A similar case can be made for universal versus existential quantification.
We will not, however, cover approaches using games commonly used in model theory such
as Ehrenfeucht games or evaluation games. In the context of a semantics for a programming
language the two players can be thought of as ‘the program’ and ‘the environment’. No
program runs without having been started, and it may require the environment to deliver,
for example, values for its arguments. We usually refer to the two players as Player and
Opponent—the choice of terms indicates who we see ourselves sympathize with.

We will give a detailed description of a category of games that can be understood as the
basis for the games used in the literature cited above. We will concentrate on its structure as
a model of (fragments of) linear logic, and the various notions of such models are developed in
the Appendix. Using standard machinery that will give us a cartesian closed category which
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allows interpretation of versions of the simply typed λ-calculus. On the way we stress the
flexibility regarding the presentation and give some hints regarding how one might arrive at a
more abstract notion of ‘game’. One side-route exhibits why the category with the ‘obvious’
dualization cannot be made ∗-autonomous, following some work by A. Blass [Bla92]. This is
meant to be a gentle introduction and as such proceeds at a pace that is probably too slow
for somebody who has had exposure to these sorts of games before. A number of exercises are
included that are designed to help explore the various ideas introduced. Not all exercises will
be suitable for all readers since some assume background knowledge in areas such as category
theory or domain theory.

1.1 Game trees

Games are usually thought of as being given by their so-called game trees. These are intuitively
understandable. Usually there is a unique starting position, in which it is somebody’s turn.
We say that that player starts the game. The branches of the tree from that initial position
show the choice of moves the starting player has, and the nodes they lead to signify the
position the game is in once the corresponding move has been made. In games for logic it is
not necessarily the case that the two players move strictly alternately, the way we are used
to it from board games such as chess and Go. For our purposes, however, we find it useful to
have a more structured environment where this condition is imposed.

In the example below, the starting player has only one available move. Once that move
has been carried out it will be the other player’s turn, and in the example there are three
choices for this second move. This naturally gives us a notion of position and move. A play
consists of a (non-empty) path starting at the root. Hence such plays are partial—the game
might be continued where the play ends.

Figure 1: A game

In the example we have coloured the nodes (or positions) black or white. This shows us
whose turn it is in that position. We adopt the convention that positions where it is Player’s
turn will be coloured black, and those where it is Opponent’s turn will be coloured white.
Because the two players move strictly alternately that means that a white Position is one
reached by a Player move, and we call those Player or P -positions. A black position is one
reached by an Opponent move, and we call those Opponent or O-positions. (It is worth
noticing that different authors have different conventions.) We use AP to denote the set of
P -positions in a given game A, and AO to refer to the set of O-positions in the same game.
We use ∗A to refer to the initial position in A

For all our games we demand that Opponent always starts. The reason for this will
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become apparent in Section 4. Hence it has to be the case that ∗A ∈ AP . Thus we think of
the game tree as in Figure 2.

O−Moves

P−Moves

O−Positions

P−Positions

Initial Position

Figure 2: A game

Note that game trees are traditionally drawn as growing downwards from the root, no
matter what biologists think of that. Because the colour coding gives us all the information
on the labels we thus attach to positions (nodes) and moves (edges) we do not have to make
them explicit when we draw a game tree. The conventions regarding Player and Opponent
are summarized in the following table:

colour white black
alternative ‘colour’ unfilled filled
kind of position Player position Opponent position
belongs to which set element of AP element of AO

what has happened last Player has just moved Opponent has just moved
what will happen next Opponent to move next Player to move next

We assume that every node in the game tree has a finite height, but we do allow infinite
trees in two ways: We do not assume that our trees are finite branching, nor do we assume
that all paths through the tree are finite. Hence our only finiteness requirement is a well-
foundedness condition.

1.2 Representations

When it comes to a mathematical formalization of game trees two choice can be made. A
popular one is to assume the existence of a set of moves MA. The game tree can then be
described as a prefix-closed subset of the set of words over the alphabet MA. A position
is then naturally labelled by a finite sequence of moves, namely the play that led to this
particular position. The initial position will be labelled by the empty sequence. All the plays
of even length will end in a position of the same colour (black or white, that is, Player or
Opponent), and the same is true for plays of odd length—they will end in positions of the
remaining colour. It has the nice property that there is a play leading from one given position
to another if and only if the former is a prefix of the latter. Similarly, there is a move from
one position to another if and only if the latter extends the former by precisely one move
(‘letter’ in our alphabet MA).
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Definition 1 Alternative 1. Let M be a set; we call the elements of M moves. A game is
a prefixed-closed set of strings over M .

This is a simple setting and quite sufficient for many purposes. It is how people often
describe games such as chess or Go: A move is coded as a description of what occurs without
any reference to the current position on the board, and the game tree can be created from
rules describing whether a given move is legal at any given time. It is quite easy to describe
rules in this way even for games whose game tree is huge: they concentrate on the change
that occurs when going from one (legal) position to another. Additionally this easily allows
restrictions to the notion of ‘strategy’ (see Exercise 1.(6)). One may want to be slightly more
discriminating and decree that some moves are only for Player and others only for Opponent
to play. This gives rise to our first alternative definition.

Definition 1 Alternative 2. Let MP and MO be two sets. A game is a prefix-closed set
of strings m1 · · ·mn over MP + MO such that

• m1 ∈ MO;

• for 1 ≤ i < n mi ∈ MP implies mi+1 ∈ MO;

• for 1 ≤ i < n mi ∈ MO implies mi+1 ∈ MP .

We call the elements of MP moves for Player and those of MO moves for Opponent.

For games given in this way, a play is given by an element of the game, that is a valid
sequence of moves.

Starting with just a game tree, however, it is not obvious how to come up with a natural
set of moves so that the game tree can be described through them. Obviously, different
choices for labels have to be made for arcs starting from the same node, but other than that,
repetition is certainly optional. In fact, for a given game tree there may be many ways of
representing it in this way; examples can be found in Figure 3.

mn

d a2
5

a1
4 a2

4

a3
3

a2
2

a1a
m o

n

bb c

n o

bc b

a3
2a1

2

a2
3a1

3

a4
4

a1
5

a4
5a3

5

a3
4

Figure 3: A game in terms of moves

Obviously for every game that is given via its set of moves we can easily transform this
description into one via positions—we can just use the sequence of moves leading there to
(uniquely) label any position.

While we have not yet said what a morphism of games should be it is worth pointing
out here that different choices of labels (for the same game tree) will in general lead to non-
isomorphic games in the category. There is also the question of whether a move can be legal
for both, Player and Opponent. A more natural representation of a game tree might then be
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obtained by labelling the positions and coding when it is legal to move from one position to
another. By necessity this labelling has to be unique, that is a given label cannot be used for
more than one position. If we wish to label moves as well, this will typically be done by the
two positions they connect. Clearly the set of positions then is partitioned naturally in a set
of Player positions and a set of Opponent positions.

Definition 1 Alternative 3. Let AP and AO be sets of so-called positions and let ∗A ∈ AP .
A game is an acyclic (AP , AO)-bipartite graph such that every node has a finite path to ∗A.

Note that such a graph is indeed a tree with root ∗A, and therefore it is legitimate to
think of its edges as being directed. We will tacitly assume that they are directed away from
the root. In this setting, a play is given by a sequence of positions, starting with the initial
position ∗A, such that there is an edge between any position and its successor in the sequence,
should one such exist. We will use a −→ a′ to indicate that there is a move from position a to
position a′, and a −→∗ a′ to denote that there is a play to position a that can be continued to
reach position a′. This representation makes it easier to find abstract versions of categories
of games. (This might be the topic of a follow-up course.)

We will use these two representations interchangeably—for the simple games we are about
to introduce, it does not matter which one we choose. We often will give a construction in
terms of just one and it can be a useful exercise to work out the details for the other. It
should be pointed out, however, that once the notions of game and strategy become more
sophisticated, the two representations diverge.

1.3 Strategies

The main concept that brings games to life is that of a strategy. In fact in game theory games
(at least simple ones) are often reduced to the sets of strategies for Player and Opponent and
some codification of the outcome when playing those against each other.

Informally a strategy for Player, or P -strategy, consists of a collection of instructions
telling Player what to do in every position when it is his turn. Since we see the world from
Player’s point of view, when we say ‘strategy’ we mean a P -strategy. Quite obviously there
is a dual concept of Opponent strategy. We do include the possibility of refusing to move
although there are still options available. Hence the concept of strategy is a partial one. Such
a strategy for, say, chess would be huge, and for big games this is not something that is easily
handled in practice. For our purposes, however, it serves to encapsulate the idea of ‘proof’ or
‘program’. We write ρ : A if ρ is a P -strategy on A.

Not surprisingly there are various ways in which the notion of a strategy can be described.
If we assume that our game is given by its game tree then it makes sense to view a strategy
ρ as a subtree of the game tree, subject to the following condition: Whenever it is Player’s
turn, the strategy picks at most one of the possible moves. In other words, if an Opponent
position a is in ρ and a −→ a′ as well as a −→ a′′ then a′ and a′′ in ρ implies that a′ = a′′.
Such a subtree is given for our example game in Figure 4.

This gives us a notion of a reachable position when playing according to some strategy.
The set of reachable positions R(ρ) for a strategy ρ is the set of all positions contained in
the corresponding subtree and all (Opponent) positions which can be reached from such a
position with one (Opponent) move. We refer to the set of reachable P -positions as RP (ρ).

This one condition, while sufficient to tie down the notion of strategy, still allows several
subtrees to encode the same strategy. It is useful to have just one representative for each
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Figure 4: A strategy as a subtree

strategy, which means we have to impose a second condition. As it is, there is a minimal and
a maximal representative for a given strategy: One that includes all the reachable Opponent
positions to which the strategy has no reply, and one where all these are left out. It is natural
to view a subtree as a restriction of the original game; we would like it to contain all the
plays that are possible when Player plays according to this strategy. This reading means
that the maximal subtree representing a strategy is the appropriate one. As we shall see in
a moment, this has a useful consequence. Hence we add the second condition: Whenever a
Player position a is an element of ρ and a −→ a′ then a′ is in ρ.

Here is a formal definition that is based on the setting of Definition 1, Alternative 3.

Definition 2 Alternative 1. A strategy ρ for a game A is a connected subgraph contain-
ing ∗A such that if a, a′ ∈ R(ρ)

• if a ∈ AO, a −→ a′, a −→ a′′, a′′ ∈ R(ρ) then a′ = a′′;

• if a ∈ AP and a −→ a′ then a′ ∈ R(ρ).

The canonical representative for the strategy given in Figure 4 can be seen in Figure 5.
The obvious dualization leads to the notion of Opponent strategy. An example is given in
Figure 6.

Figure 5: A strategy as a canonical subtree Figure 6: An O-strategy

An immediate result is the following:
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Proposition 1.1 A Player and an Opponent strategy intersect in precisely one play. If this
play is finite then the final position in this play is the position where the game ends when
playing the one strategy against the other.

Figure 7: A play resulting from Figures 5 and 6

The intersection of the strategies from Figures 5 and 6 is given in Figure 7. This provides
us with a notion of a ’result’ of playing two strategies against each other, namely the actual
play or, in the case this is finite, the final position in same. (Note that this only works because
we decided to aim for the maximal representative of a strategy.) Again this is a notion that
is useful when trying to abstract away from concrete games.

Quite obviously the subtree representation of a strategy is not the only one one might
think of. An alternative is to use a partial map instead. Depending on which presentation is
used, the co-domain of this partial map may vary. In the case of a presentation via moves a
strategy will be given by a partial function from the set of O-positions (when it is Player’s
turn) to moves AO - MA. In the case of a presentation via positions, this turns into a
partial function from O-positions to P -positions AO - AP . In either case a condition has
to be imposed to ensure that this yields a valid set of instructions: It has to be the case that
the strategy’s suggested move is valid in the given position. Let ρ be such a strategy and
a an O-position in the domain of ρ. In the first presentation, ρ(a) has to be either a move
such that the concatenation of a and ρ(a) is a valid P -position, that is an element of AP . In
the second case, ρ(a) will automatically be a P -position, but it also has to be the case that
a −→ ρ(a) is a valid move.

While any partial function satisfying this kind of position can be read as a strategy it is
once again the case that this is not sufficient to ensure that there is one unique representative
for each strategy: Nothing prevents the strategy to give instructions for positions which can
never be reached due to earlier decisions made by the strategy. In the example of Figure 3, if
Player chooses to play the move a1

2 then the positions with prefix a1a
3
2 will never be reached

and hence it does not make sense to include instructions for what to do in position a1a
3
2a

3
3.

In the subtree representation, this was not a problem since the property of being a subtree
precludes this. We therefore impose a second condition, giving us the minimal partial function
that represents a given strategy by imposing the following condition. For any a in the domain
of ρ, the unique predecessor of a is in the image of ρ. In other words ρ does not contain
any redundant information. Equivalently, dom(ρ) ⊆ RO(ρ) (where RO is adapted to this
presentation). It is clear that im(ρ) = RP (ρ). Once again here is a formal definition.

Definition 2 Alternative 2. A strategy on a game A is a partial function AO ⇀ AP
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such that

• for all a ∈ dom(ρ), a −→ ρ(a);

• dom(ρ) ⊆ RO(ρ).

Exercise 1.2 (1) Write out the definition of ‘strategy’ for Definition 1, Alternative 2 for
both, the subtree and the partial function interpretation.

(2) Given any partial function AO - M , is there a way of interpreting it as a strategy? If
yes, how would you obtain the partial function corresponding to that strategy?

(3) There are more ways of representing a strategy. Show that any strategy ρ is uniquely
determined by its set of reachable P -positions RP (ρ). (Choose your favourite representation
for this.)

(4) Yet another way of representing a strategy ρ works as follows: Take all P -positions reach-
able by play according to ρ and add those reachable O-positions to which ρ has no reply. If
you choose the dual representation for O-strategies, what can you say about their interaction,
provided the game in question is finite?

(5) Assume that the game A is given by a prefix-closed subset of the set of strings over some
alphabet M . Let a and a′ be positions in a game A that are reachable for some strategy ρ

on A. Show that one of the following is true:

• a is a prefix of a′;

• a′ is a prefix of a;

• the largest joint prefix of a and a′ is of even length.

(6) The set of P -strategies on a game A is obviously pre-ordered since the strategies considered
are partial. What can you say about the structure of this set? You might want to calculate
the various operations for the two different presentations.

(7) What would a notion of total strategy be? How about non-determinism? Can these two
notions be combined?

(8) Assume that games are given as pre-fixed closed sets over sets of moves. One condition
we might want to impose on a strategy is that it should be dependent only on the previous
(Opponent-)move, no matter from which position it was made. Such strategies are called
‘history-free’. Formulate a suitable condition for history-freeness.

2 A category of games

2.1 Morphisms and linear function spaces

As is often the case with models for linear logic (and symmetric monoidal closed categories)
it is, in fact, easier to describe the (linear) function space first and derive the morphisms from
that (see Appendix A for a brief account of this connection).

As we have stressed before, the notion of strategy is the central one, and arguably a game
is just useful just in so far as it is a vehicle for describing strategies. A morphism A - B
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will be a strategy on the linear function space A ( B. We also expect such a strategy to
map strategies on A to strategies on B. Compare this to the old proof theoretic idea that
a proof of A ( B should transfer proofs of A to proofs of B, or the idea that a term of a
function type A → B should take terms of type A as its arguments. Hence A ( B has to be
such that the game A ‘occurs’ within it; and as the result of this kind of application should
be in B, the same is true for B.

Note, however, that a role reversal takes place here as far as the game A is concerned:
There are numerous ways of seeing this. We say, for example, that A occurs ‘contravariantly’
in A ( B which means that − ( B is a functor C - Cop rather than C - C. If we
think in terms of programs then Player (who we still identify with) takes over the role of the
environment in the game A: he will ‘start’ the program and provide any arguments which are
required—this is the role played by Opponent. Or, if we view strategies in terms of proofs
then one way of proving an implication is to prove that the premise is false—hence Player
has an interest in ‘disproving’ (rather than proving) A.

The basic idea is that in the linear function space A ( B can be viewed as playing A and
B ‘in parallel’ (but still sequentially, that is one move (from either game) at a time), but where
Player takes on the role of Opponent in A. Note that strictly speaking, switching roles in a
game A does not give another game since part of the definition of a game is that Opponent
always starts. Sometimes the result referred to as a ‘cogame’, and written as A⊥. This can
be misleading (see Section 4) and we will not make much use of it. Because of sequentiality
it might be more accurate to say that we interleave the playing of A and B. This is subject
to some conditions. First of all note that if Player takes on the role of Opponent in A (and
thus is to start A), while Opponent is to start the game A ( B, then Opponent will have to
start play by choosing an opening move in B. This creates some awkwardness regarding the
initial position. One could leave out the initial position and start with a game forest (rather
than a game tree) but that creates similar problems elsewhere. We give a formal definition
of this game based on Definition 1, Alternative 3.

Definition 3 Positions of the linear function space A ( B of two games A and B are
sequences t1 · · · tn over AP \ {∗A} + AO + BP \ {∗B} + BO such that

• the restriction to positions from A, t1 . . . tn|A, gives a valid play of A when prefixed by
the initial positions ∗A;

• the restriction to positions from B, t1 . . . tn|B, gives a valid play of B when prefixed by
the initial positions ∗B;

• for 1 ≤ i ≤ n even, ti ∈ AO + BP ;

• for 1 ≤ i ≤ n odd, ti ∈ AP + BO.

The set of P -position (A ( B)P is given by strings of even length and the set of O-positions
(A ( B)O is given by strings of odd length. The initial position is the empty string. Edges
exist precisely between positions t1 · · · tn −→ t1 · · · tntn+1.

An example for a linear function space is given in Figure 10. We adopt the convention
that edges pointing towards the right originate from moves of the game B, whereas edges
pointing towards the left arise from the game A. This makes it more obvious that such a
game can be viewed as interleaving the two games A and B. The labels attached to the
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positions in A ( B are not the sequences we obtain from Definition 3. Rather than putting
the full sequence at each node we only give the last element—the remainder is determined by
the labels along the path from the initial position.

a3

a2

a1

a0

Figure 8: The game A

b3

b2

b1

b0

b′1

Figure 9: The game B

a2

b2

a1

b2

a1
a3

b1 b′1

a1

b3

a3
b3 a2

a3 a3

∗A(B

a2

Figure 10: The game A ( B

Exercise 2.1 (1) Draw a (small) game tree, say A, and then draw the game tree for A ( A.

(2) Write out a definition of A ( B for A and B being games according to Definition 1,
Alternative 2.1

The conditions for the linear function space may look weak at first sight but they impose
a certain discipline upon the players (mostly Opponent).

Proposition 2.2 For the linear function space A ( B of two games it is the case that

• Opponent must start with a move in B;

• Opponent can never ‘switch’ between the games.

Exercise 2.3 Prove Proposition 2.2.

Note that every position in A ( B can be projected onto a pair of positions, one in A and
one in B, as follows: In the sequence presenting the position, say t, in A ( B take the last
occurring positions from A and B respectively. If no such occurs for A then choose the initial
position. This gives us a function from the positions of A ( B to the cartesian product of
the set of positions of A and the set of positions of B which we refer to as qA,B. Intuitively,
if we view the game A ( B consisting of playing A ( B in parallel, these projections give
the positions in the games A and B reached so far; they totally ignore how play interleaved
between the two component games.

Exercise 2.4 (1) Show that if t is a P -position in A ( B then it projects under qA,B onto
a pair in AP × BP or onto one in AO × BO. What do O-positions in A ( B project onto?
What about the remaining combination? What connection is there between this discipline and
the one imposed on Opponent when playing a linear function space game?

(2) If we view a strategy ρ as being represented by its set of reachable P -positions RP (ρ) then
such a strategy on A ( B can be mapped to a pair of relations, one AP +- BP and one
AO +- BO. Show that no information is lost by this process, that is the strategy can be
recovered from the relations.
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Figure 11: The game A ( B, projected onto pairs of positions from A and B

Figure 11 shows the image of A ( B from Figure 10 under qA,B in the cartesian product
of positions of A and positions of B where

• we have left out the combination AO × BP since it does not occur in this image;

• we have retained the edges of the game tree for purposes of orientation.

Note how some positions from A ( B become identified under this mapping.
As we have said before, a morphism A - B will be given by a strategy on A ( B.

Hence to define a category we still have to say how to compose these strategies, and what
the identity morphism should be. This undertaking is non-trivial, although the algorithm
for the composite can be explained informally. We will do this first, using an example. Let
ρ : A ( B and σ : B ( C be two morphism, namely ρ : A - B and σ : B - C. An
example is given in Figures 12 and 13.

Figure 12: ρ : A ( B Figure 13: σ : B ( C

Exercise 2.5 From B ( C in Figure 13 (and B in Figure 9) find the game C.

1This definition appears to be more natural than that in terms of positions given above and could be seen
as an argument that Alternative 2 is more natural.
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So how do we compose these strategies? To make it easier to follow the argument all the
games in question are pictured in Figure 14.

b1

b′1

c3a2

B ( C A ( C

c′1

c′2

c′3

c4

b2

c4

b2

b3

c1 c′1

a1 c′2

c′3

c4a1

c4

a1

a3 c2

a3
a3 c4a3

∗B(C

b2

A ( B

a1

b2

a1

b1 b′1

a1

b3

a3
b3 a2

a3

∗A(B ∗A(C

c1

b3
b3

b2 b2
b1

c2

c3

c2

c4

c2

a2

a2

a3

a3
c′3

a2

a3

a2

a3

b′1
c′2

b3 b3b3

b1

b′1

c′2 a1

Figure 14: The games A ( B, B ( C and A ( C

In order to find (σ ◦ ρ)’s answer to Opponent’s ‘right’ opening move to c′1 in C (and
therefore in A ( C) we look at σ’s reply to that move (in B ( C) and find that it takes us
to position c′1c

′
2. Hence this should be the reply of σ ◦ ρ to that opening move.

For the ‘left’ opening move to c1 in C we consider σ’s reply to that move, which is the
right of the two opening moves in B, leading us to c′1b

′
1. We now look up ρ’s reply to b′1

viewed as a position in A ( B and find that there is none. Hence σ ◦ ρ is undefined for c1.
Next we want to find (σ ◦ ρ)’s response to the two O-positions in A ( C which can be

reached so far, c′1c
′
2c3 and c′1c

′
2c

′
3.

We discuss the latter alternative first. We once again mimic the corresponding moves in
B ( C and find that σ’s reply to c′1c

′
2c

′
3 (now viewed in B ( C) is the left opening move

leading to c′1c
′
2c

′
3b1 in B ( C. Looking at ρ’s reply to b1 (now viewed as a position in A ( B)

we find b1a1. Hence we use this last move as (σ ◦ ρ)’s reply to c′1c
′
2c3, leading us to c′1c

′
2c3a1.

Opponent can now move to c′1c
′
2c3a1a2, and to obtain (σ ◦ρ)’s reply to that move we copy

the last move to the position we had reached in A ( B in play so far to get b1a1a2. ρ’s reply
to that is b1a1a2b2, and once again we copy that last move over to play in B ( C so far to
give us c′1c

′
2c3b1b2. We look up σ’s reply to that which takes us to c′1c

′
2c3b1b2b3, and copy the

last move to the position reached in A ( B so far, which gets us to b1a1a2b2b3. Now we once
again look up ρ’s answer to that and get b1a1a2b2b3a3. Hence (after much work!) we have
once again reached one of the two ‘outer’ games A and C and can record that (σ ◦ ρ)’s reply
to c′1c

′
2c3a1a2 is c′1c

′
2c3a1a2a3.

It remains to determine (σ ◦ ρ)’s reply to c′1c
′
2c

′
3. Again we look up σ’s reply to this

position, now viewed in B ( C. The interaction between ρ and σ leads us to c′1c
′
2c

′
3a1.

From there Opponent may continue to c′1c
′
2c

′
3a1a2. We look up ρ’s reply to the position

b1a1a2 and find b1a1a2b2, so control passes once again to σ which answers c′1c
′
2c

′
3b1b2 with

c′1c
′
2c

′
3b1b2c4. Hence (σ ◦ ρ)’s reply to c′1c

′
2c

′
3a1a2 is c′1c

′
2c

′
3a1a2c4. The result is the strategy in

Figure 15.2

2Unfortunately we cannot produce dashed circles while at the same time having indexed labels. Hence this
presentation differs slightly from the one we have had so far. Again we are using line thickness to emphasize
the positions of interest. The labels should be read to refer to precisely those positions.
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c3

A ( C

c1 c′1

c2

c′3

a1

a2

a3
c4

∗A(C

a1

Figure 15: The composite σ ◦ ρ : A ( A

Note that any play in B is uniquely determined by ρ and σ feeding their respective replies
to each other—this is a consequence of Opponent being unable to switch between games. This
means that control is carefully passed between the strategies ρ and σ in the sense that at any
point when it is Player’s turn in the game A ( C, precisely one of ρ and σ can be used at
each step to determine (σ ◦ ρ)’s reply. If we did not have the condition that ‘Opponent may
not switch between games’ then this would not work.

What we do in general is to use a ‘hidden’ copy of the game B to work out the reply
of σ ◦ ρ in the ‘outer’ games A and C as appropriate. Sometimes people refer to the action
on B as being calculated using a ‘scratch-pad’. That means we keep playing in the hidden
game until play finally ‘emerges’ once more in one of the outer games, A or C. If play fails
to emerge then the composite is not defined at the position in question. Figure 16 tries to
give some idea of what is going on. The dashed lines ‘copy’ the move to make it appear in
its correct colour in the game B and A (rather than in the co-games B⊥ and A⊥).

That this works is more remarkable than it might seem at first. It is easy enough to find
the answers σ ◦ ρ gives to an opening move in A ( C. But what about positions further
down the line? If they are reachable in play according to σ ◦ρ then any play in B that occurs
‘on the way there’ is uniquely determined, and so this information is provided by the given
position. In other words, in order to find (σ ◦ ρ)’s answer to a given reachable O-position in
A ( C, consider the play (in A and C) leading to it. Then there is precisely one play in the
‘hidden’ game B that goes along with this which is defined via the interaction of ρ and σ.

Making this precise (using whichever representation of games and strategies) is surprisingly
tedious. We will work out the definition according to the above idea for games which are given
via their sets of moves, Definition 1, Alternatives 1 and 2. The same method also works for
Alternative 3 but is more tedious to formalize. We will treat this case when we introduce a
useful shortcut for calculating the composite.

So for the time being let A, B, and C be given by a prefix-closed set of strings over their
sets of moves MA, MB and MC respectively. Then we can label the positions of a function
space game, say A ( B, with moves from the direct sum MA + MB in the obvious way. A
play in A ( B is given by a sequence of such positions, but we do not lose any information
if we merely state the sequence of moves that are ‘added on’ at each step. Hence we can
describe a play in A ( B by a sequence of moves from MA + MB .
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C

Opponent opens

σ answers in B

BA

ρ answers in B

A⊥ B⊥

The scratchpad for B
This is σ ◦ ρ’s

ρ answers in A

ρ σ

eventual reply

move.
to O’s opening

σ answers in B

Figure 16: Play using a scratch-pad for B

For such a play r1 · · · rl we define
r1 · · · rl|A

to be the sequence of moves of A which we obtain by striking all moves from B, and we
similarly define r1 · · · rl|B .

Given a play in A ( B, say r1 · · · rl and another play in B ( C, say s1 · · · sm such that

r1 · · · rl|B = s1 · · · sm|B

we can define a unique interleaving of the two plays, that is a sequence

t1 · · · tl+m

of moves from A, B and C such that

t1 · · · tl+m|A(B = r1 · · · rl and t1 · · · tl+m|B(C = s1 · · · sm.

Since t1 · · · tl+m|A = r1 · · · rl|A is a valid play in A, and t1 · · · tl+m|C = s1 · · · sm|C is a
valid play in C, t1 · · · tl+m|A(C is a valid play in A ( C.
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Hence we can define the composite of ρ and σ to be the subtree

σ ◦ ρ = {t1 · · · tn|A(C | t1 · · · tn is a sequence of moves from A, B and C with

t1 · · · tn|A(B ∈ ρ, t1 · · · tn|B(C ∈ σ}.

Exercise 2.6 (1) Assume that r0 · · · rl and s0 · · · sm are plays on A ( B and B ( C

respectively such that r0 · · · rl|B = s0 · · · sm|B. For the sake of simplicity assume that the sets
of moves are split up into Player and Opponent moves for each game. Show that precisely
one of the following is the case:

• the last moves in A, B and C are Player moves;

• the last moves in A, B and C are Opponent moves;

• the last moves in A and B are Player moves and the last move in C is an Opponent
move;

• the last move in A is a Player move and the last moves in B and C is an Opponent
move.

Conclude that the interleaving above is indeed unique.

(2) Show that if t1 · · · tn is a play in accord with σ ◦ ρ then there is precisely one sequence of
moves from A, B, and C whose restriction to moves from A ( C is t1 · · · tn. In other words,
the play in the ‘hidden’ game B is uniquely determined by the visible play.

(3) If you really want to make sure that composition can be defined in the same way in the
positional setting, you might want to do that.

This makes it rather complicated to calculate (σ ◦ ρ)’s reply to a given O-position in
A ( C: We first have to reconstruct the play in B that took us there (which is uniquely
determined by Exercise 2.6(2)), and then we can think about constructing the next move in
the sequence! Fortunately there is a useful shortcut. We will now switch back to viewing
games as being given via their sets of positions, which is more general.

Consider the projection qA,B for positions from A ( B defined above. We can split this
up (cf. Exercise 2.4 (2)) into maps

qP
A,B : (A ( B)P - (AP ×BP )+ (AO ×BO) and qO

A,B : (A ( B)O - AP ×BO.

These projections are not injective (even jointly), but they become so when restricted to the
positions reachable according to some strategy on A ( B.

Proposition 2.7 Let t, t′ be positions on A ( B which are reachable when playing according
to some strategy ρ. If qA,B(t) = qA,B(t′) then t = t′.

Proof. We use Exercise 1.2 (5). Clearly if t is a prefix of t′ (or vice versa) and qA,B(t) =
qA,B(t′) then they must be equal. Alternatively their largest joint prefix t′′ is of odd length,
and the corresponding position is a P -position in A ( B. Since qA,B(t) = qA,B(t′) they can
only differ if the same moves from A are played in the same order, and the same is true for
B. Therefore the only difference that can occur is a different interleaving of these sequences
of moves. That would mean that one of t and t′ would play in A while the other does so in B.
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This, however, can not occur following from a Player position since Opponent is not allowed
to switch between games. In other worse

qA,B(t′′) = qP
A,B(t′′) ∈ (AP × BP ) + (AO × BO).

If qA,B(t′′) = qP
A,B(t′′) ∈ AP × BP then the next move (which is Opponent’s) has to be in B

for both t and t′, but since qA,B(t) = qA,B(t′) they both have the same move here. Similarly
if qA,B(t′′) ∈ AO × BO, which requires the next move to be made in A. Thus t = t′′ = t′. 2

From Exercise 1.2 (3) we know that we may represent a strategy by its set of reachable P -
positions. Lemma 2.7 now tells us that we may replace these P -positions by their projections
without losing information. For the strategies ρ and σ these sets can be seen in Figures 17
and 18. We have emphasized the positions of interest by using a thicker line.

Figure 17: ρ, projected onto
pairs of P -positions

Figure 18: σ, projected onto pairs of P -
positions

Lemma 2.8 Let t be a P -position in A ( C that is reachable by play according to σ ◦ ρ.
Then there exists precisely one position b in B such that the following hold:

• there is a position r in A ( B with π1(qA,B(r)) = π1(qA,C(t)) and π2(qA,B(r)) = b;

• there is a position s in B ( C with π1(qB,C(S)) = b and π2(qB,C(s)) = π2(qA,C(t)).

Proof. Since we have not given a formal definition for the composite in the positional setting
we will only prove this for the case that games are given via their sets of moves. So a position
in A ( C is given by a sequence of moves from MA + MC . By definition of σ ◦ ρ we have a
sequence of moves t1 · · · tn from MA + MB + MC such that

• t1 · · · tn|A(C = t

• t1 · · · tn|A(B is a valid play on A ( B and

• t1 · · · tn|B(C is a valid play of B ( C.

Note that in this setting

π1(qA(C(t1 · · · tn)) = t1 · · · tn|A and π2(qA(C(t1 · · · tn)) = t1 · · · tn|C .
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Hence r = t1 · · · tn|A(B and s = t1 · · · tn|B(C . Clearly this satisfies the condition if we set
b = t1 · · · tn|B .

It remains to show the uniqueness of b. We know from Exercise 2.6 (2) that play in B is
determined uniquely. It remains to show that we cannot have plays that are continuations of
each other leading to different positions satisfying the conditions. So let t1 · · · tn be the least
sequence of moves from MA + MB + MC such that t1 · · · tn|A(C = t. Since t1 · · · tn|A(C is a
P -position, by Exercise 2.4 (1) it must be the case that

(t1 · · · tn|A ∈ AP and t1 · · · tn|C ∈ CP ) or (t1 · · · tn|A ∈ AO and t1 · · · tn|C ∈ CO).

Similarly for the projections onto the components of A ( B, that is A and B, and for the
projections on the components of B ( C. Taking all these together, only two cases remain,
namely

t1 · · · tn|A ∈ AP and t1 · · · tn|B ∈ BP and t1 · · · tn|C ∈ CP or

t1 · · · tn|A ∈ AO and t1 · · · tn|B ∈ BO and t1 · · · tn|C ∈ CO.

But if we were to extend this sequence by a move in B then in the first case the projection
onto B ( C would not be a valid position, whereas in the second case, the projection onto
A ( B would not be a valid position. Thus any continuation of t1 · · · tn will have to be a
move in A or C, and will not project onto the given position t. 2

Exercise 2.9 Let t1 · · · tn be a sequence of moves from A, B and C such that t1 · · · tn|A(B

is a play according to ρ and such that t1 · · · tn|B(C is a play according to σ. Show that if it
is Player’s turn in t1 · · · tn|A ( C then precisely one of ρ and σ can be used to determine
the next move. Conclude that at any point in determining σ ◦ ρ’s reply to some position in
A ( C, precisely one of ρ and σ has control over what happens next.

Corollary 2.10 A P -position t in A ( C is reachable by play according to σ ◦ ρ if and only
if the following conditions are satisfied:

• qA,C(t) is an element of the relational composite of qA,B[RP (ρ)] = {qA,B(r) | r ∈ RP (ρ)}
and qB,C [RP (σ)];

• all prefixes of t which are P -positions are reachable play according to σ ◦ ρ.

Proof. Lemma 2.8 establishes that a P -position that is reachable by play according to
σ ◦ ρ does satisfy the conditions. Hence it remains to show the converse. But the relational
composite means that we have plays in A ( B and B ( C whose restrictions to B coincide,
so by definition of σ ◦ ρ, they give rise to a play in accord with this composite strategy. 2

We take up the example again to demonstrate what happens. Then

qA,B(RP (ρ)) = {(a0, b0), (a1, b1), (a2, b2), (a3, b3)}

and
qB,C(RP (σ)) = {(b0, c0), (b

′
1, c1), (b0, c2), (b1, c3), (b1, c

′
3), (b3, c3), (b2, c4)}

as can be seen from Figure 19.
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qB,C(RP (σ))

(b0, c0)

(b′1, c1)

(b2, c4)(b3, c3)

qA,B(RP (ρ))

(a0, b0)

(a3, b3)

(a1, b1)

(a2, b2)

(b0, c2)

(b1, c
′
3)

(b1, c3)

Figure 19: ρ and σ as relations

qA,C(RP (σ ◦ ρ))

(a0, c0)

(a3, c3)
(a2, c4)

(a0, c2)

(a1, c3)

(a1, c
′
3)

Figure 20: σ ◦ ρ as a relation

The relational composite is

{(a0, c0), (a0, c2)(a1, c3), (a1, c
′
3), (a2, c4), (a3, c3)}

which is equal to qA,C(RP (σ ◦ ρ)) as can be seen from Figure 20.

Exercise 2.11 Show that composition is associative. Even though this is not the shortest
way of doing this it is worthwhile to examine how control is passed between the strategies ρ,
σ and τ in each case.

To establish that we have a category it remains to establish identity morphisms for all
games. If A is any game then A ( A has one canonical strategy which can intuitively be
described as follows. Opponent starts play in the ‘covariant’ copy of A, and Player can ‘copy’
this move by playing that same opening move in the other, the ‘contravariant’ copy of A.
Opponent has to reply in that copy, and Player can copy the answer back to the first game.
They can continue in this way until they run out of valid moves. We call this strategy the
copy-cat strategy on A ( A. It serves as the identity morphism A - A.

Remark. This copy-cat strategy has some amusing qualities. First of all note that Player
can never run out of moves to make—Opponent would have to do so first. Secondly, this
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allows pitching a Player strategy on A against an Opponent strategy on the same game, by
letting them make up an Opponent strategy on A ( A in the obvious way and playing the
copy-cat strategy against the result. In particular playing, say, chess against Kasparov and
Deep Blue we can pitch them against each other provided that

• one of them takes white, and the other black and

• the game where one of them has white is started first.

We just copy, say, Kasparov’s white move and make it our opening move against Deep Blue.
Unless both games end in a draw this guarantees that we will win at least one of them!

The relational presentation of idA is

qA,A(RP (idA)) = {(a, a) | a ∈ AP + AO}.

Not surprisingly this is the identity relation on AP +AO, and therefore the relational composite
with the relational presentation of any strategy on A is equal to that strategy. Therefore the
proposed identity on A behaves indeed as desired.

Definition 4 Let Gam be the category whose objects are games; morphisms A - B are
strategies on the linear function space A ( B.

In fact by using the relational presentation of strategies we have shown the following
theorem. Let Rel be the category of sets and relations.

Theorem 2.12 There is a faithful functor Gam - Rel.

Proof. On objects, take F (A) = AP +AO. On morphisms, map ρ : A - B to the relation
RP (ρ) : AP + AO - BP + BO. Faithfulness was established in Proposition 2.7. 2

This functor can be used as the basis of establishing an ‘abstract’ category of games [HS99].
This works by building up from the category of sets and relations Rel, creating ever more
sophisticated categories. At each step there is a functor ‘translating’ from games to these
resulting categories which carries across more and more of the properties of games. The first
step on this way is to observe for a morphism ρ : A - B the image F (ρ) only intersects two
of the sectors of (AP +AO)× (BP +BO), namely AP ×BP and AO ×BO. Hence we can view
F as a functor Gam - Rel ×Relop. The latter is a ∗-autonomous category (and, in fact,
a model of classical linear logic), but we will not describe its structure here. The second step
refines the presentation of strategies, using that developed in Exercise 1.2 (4) and noticing
that then F (ρ) intersects only three of these four quadrants (AP ×BO being added; compare
Exercise 2.4(1)).

The third step uses the following observation. Let ρ be a P -strategy on a game A and
σ a morphism A - B. Now consider what happens if we play ρ off against σ: Opponent
opens in B and we look up σ’s reply to that move. If this reply is in B we can use it as an
answer. Otherwise we can apply ρ to the reply and chase the play between ρ and σ until play
once more emerges in B. It should be clear that in this manner we obtain a P -strategy on B.
In other words: A morphism A - B transforms P -strategies on A into P -strategies on B.
Compare that with the idea that a proof of A ( B should transfer proofs of A to proofs of B.

19



Clearly the method we have just described is very similar to our intuitive description of
composition, and this is something we can make precise. Let I be the game that consists of
no moves at all, that is just the initial position. It is easy to see that A ∼= I ( A. Hence we
can view every strategy on A as a morphism I - A. The strategy on B we have described
above is nothing but the composite of this strategy I - A with ρ : A - B, taking into
account that I ( B ∼= B.

If, on the other hand, an O-strategy β on B is given then we can employ a similar method
to combine it with a strategy σ : A - B. Indeed we can consider σ’s reply to β’s opening
move in B and chase play between σ and β until we reach an opening move in A (or decide that
play will never leave B). We thus obtain an O-strategy on A. It is not as straightforward
to describe this as a composite of two strategies since O-strategies do not correspond to
morphisms.

Exercise 2.13 Consider the game S which consists of just one move. Now consider the
game B ( S where B is arbitrary. Show that Opponent strategies on B are in bijective
correspondence with Player strategies on B ( S. The composite of some σ : A - B with
a strategy on B ( S gives a strategy on A ( S.

Hence a morphism A - B gives rise to two maps.

P -strategies on A O-strategies on B

P -strategies on B
?

O-strategies on B

6

In [HS99] this idea is used to introduce a so-called ‘double-glueing’ construction which
gives rise to a category built over Rel so that the functor from Gam to this category is full
and faithful.

Exercise 2.14 We know that we can (faithfully) view a morphism A - B via two rela-
tions, one AP +- BP and one BO +- AO. Can you come up with a condition on such
relations that all strategies satisfy? Does that give you an idea for refining the category
Rel ×Relop so that it mimics Gam more faithfully?

Exercise 2.15 Consider mapping a game A to its (pre-ordered) set of player strategies. Make
this a functor from Gam to the category of posets. If you have done Exercise 1.2 (6) then
use a suitable category of domains as the target category. Find a suitable enrichment for the
resulting functor.

2.2 The multiplicative structure

While establishing the category required some effort, the symmetric monoidal closed structure
on this category falls into place quite readily. We start by describing the tensor product.

Definition 5 The tensor product of two games A and B is defined as follows. Positions are
strings t1 · · · tn over AP \ {∗A} + AO + BP \ {∗B} + BO such that
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• the restriction to positions from A, t1 . . . tn|A, gives a valid play of A when prefixed by
the initial positions ∗A;

• the restriction to positions from B, t1 . . . tn|B, gives a valid play of B when prefixed by
the initial positions ∗B;

• for 1 ≤ i ≤ n even, ti ∈ AP + BP ;

• for 1 ≤ i ≤ n odd, ti ∈ AO + BO.

The set of P -position (A⊗B)P is given by strings of even length while the set of O-positions
(A ⊗ B)O is given by strings of odd length. Edges exist precisely in the following situation
t1 · · · tn −→ t1 · · · tn+1.

Exercise 2.16 Choose two (small) games and draw their tensor product.

Intuitively, this game is quite easy to understand. The games A and B are played ‘in
parallel’ in in a way similar to the linear function space (without any role reversals this time),
that is, the playing of the two games is interleaved. Again it is the case that this definition
imposes a certain discipline upon the players, only this time, it is mostly player who is
restricted. Obviously we can define restrictions/projections of positions to the constituent
games as we did for the linear function space.

Proposition 2.17 For the tensor product A ⊗ B of two games it is the case that

• Opponent may start with a move in A or B;

• Player can never ‘switch’ between the games and must answer in whichever game Op-
ponent last moved.

Proof. The proof is analogous to that of Proposition 2.2. 2

Let I be the game that consists of no moves at all, so that its only position is the initial
position ∗I. Then A ⊗ I ∼= A ∼= I⊗ A.

Exercise 2.18 Write out definitions for these isomorphisms (as strategies).

Given ρ : A - A′ and σ : B - B′ we can define ρ ⊗ σ : A ⊗ B - A′ ⊗ B′ as fol-
lows. Given an O-position r in A ⊗ B that is reachable then if the last move was made in A

then play ρ’s reply to the restriction of r to A, if the last move was made in B then play σ’s
reply to the restriction of r to B.

Exercise 2.19 (1) Write out a formal definition of ρ ⊗ σ in the setting of your choice.

(2) Show that −⊗− is a functor Gam×Gam - Gam.

It should be intuitively clear that A ⊗ B ∼= B ⊗ A and that (A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C).

Proposition 2.20 The category Gam is symmetric monoidal.

Exercise 2.21 Prove Proposition 2.20.
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Moreover, tensor product and linear function space are related by an adjunction.

Proposition 2.22 The category Gam is symmetric monoidal closed.

Proof. Since morphisms A ⊗ B - C correspond to strategies on (A ⊗ B) ( C and
morphisms A - B ( C correspond to strategies on A ( (B ( C) it is sufficient to
establish that

(A ⊗ B) ( C ∼= A ( (B ( C),

provided the isomorphism is natural. A position in (A ⊗ B) ( C is given by a sequence of
positions from (A ⊗ B) (excluding the initial position ∗A⊗B) and positions from C such that

• the restriction to positions from A ⊗ B, prefixed with the initial position, gives a valid
play of A ⊗ B and

• the restriction to positions from C gives a valid play of C;

• positions with odd indices are elements of (A ⊗ B)P + CO;

• positions with even indices are elements of (A ⊗ B)O + CP .

This can be further simplified by using sequences over positions from A, B and C, coding
the same information. A position in (A⊗B) ( C is given by a sequence of positions from A

(excluding the initial position), B (excluding the empty position) and C such that

• the restriction to positions from A, prefixed with the initial position, gives a valid play
of A;

• the restriction to positions from B, prefixed with the initial position, gives a valid play
of B and

• the restriction to positions from C gives a valid play of C;

• positions with odd indices are elements of AP + BP + CO;

• positions with even indices are elements of AO + BO + CP .

It is easy to see that positions of A ( (B ( C) are given in precisely the same way. 2

Proposition 2.23 The functor Gam - Rel from Theorem 2.12 is monoidal.

Exercise 2.24 Prove Proposition 2.23.

Exercise 2.25 For games A and B define a directed graph as follows. Nodes are pairs of
positions (a, b) from A and B respectively, and there is an edge (a, b) −→ (a′, b′) if and only
if one of the following is the case

• a = a′ and b −→ b′ in B or

• a −→ a′ in A and b = b′.
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Convince yourself that this new graph is acyclic and has one node from which each other node
can be reached in at most finitely many steps. In this graph identify two subgraphs which
are reminiscent of A ( B and A ⊗ B in the following sense: Any directed graph connected
graph with a unique ‘source node’ can be made into a tree by choosing paths in the graphs
as nodes with connections between such graphs if and only if the second extends the first by
precisely one node. Applying this process to the subgraphs identified yields A ( B and A⊗B

respectively.
This idea suggests that it might be possible to define a category played on graphs rather

than on trees. In [HS99], a sketch of such a category is given.

Exercise 2.26 Speculative. The tree constructed in Exercise 2.25 is reminiscent of ‘un-
folding’ a labelled transition system lts into a tree. Can you define a notion of ‘game’ arising
from ltss? Can you make this a functor with, for example, simulations as morphisms? Does
this functor preserve any of the structure?

3 Additive structure

The product of two games A and B is easy to describe. Opponent chooses between A and
B by playing one of the opening moves of these games, and thereafter play continues in that
game.

Definition 6 The product A × B of two games A and B has

• P -positions AP \ {∗A} + BP \ {∗B} + {∗A×B};

• O-positions AO + BO.

There is a move c −→ c′ if an only if both c and c′ are from A (B) and there is such a move
in A (B) or if c = {∗A×B} and there is a move from the initial position in A or B to c′.

b′!

∗A×B

b2

b3

a1

a2

a3

Figure 21: The product A × B; compare Figures 8, 9

The projection π1 : A × B - A is similarly easy to describe. Opponent opens play in A

and Player copies that move across to A × B. Thereafter he plays a copy-cat strategy on A.

Definition 7 Describe A × B for Alternative 2 of Definition 1. Further find the relational
description of the projections. Remind yourself of how the categorical product on Rel works.
What do you conclude about the functor Gam - Rel?

We have to show that the universal property for products is satisfied. So let us assume
we have morphisms ρ : C - A and σ : C - B. Define 〈ρ, σ〉 : C - A × B as follows:
If Opponent opens A × B by playing in A then play ρ, if Opponent opens in B play σ.
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Exercise 3.1 Show that A × B is indeed the product of A and B in Gam.

Note that infinite products can be built in just the same way. This leaves us to ensure
that there is a terminal object or ‘empty product’ in Gam. The game I that consists of just
the initial position is also the terminal object. Indeed, A ( I is isomorphic to I again, since
there is no opening move in I which would get the game going. Hence there is precisely one
strategy on A ( I, namely the one that does nothing, and therefore there is precisely one
morphism A - I for every game A.

Proposition 3.2 The category Gam has all products.

Exercise 3.3 Products in Rel are given by disjoint sums; the projections by the dual of the
relations inl and inr. The functor Gam - Rel does not preserve products—why? Show
that it is at least monoidal with respect to the product structure. Can you come up with a
variation of a definition of a game such that the corresponding functor preserves products?
What happens to the monoidal structure in that case?

4 The problem of dualization

This category of games seems to come with a natural idea of what the dual of a game might
be—just changing the roles of Player and Opponent seems to do just the kind of thing that
is envisioned. Certainly it would be the case that taking the dual twice is the same as doing
nothing at all. Of course, in our setup, this candidate for a dual is not actually a game, but
something we called a ‘cogame’. There is a good reason for this, namely that the ‘obvious’
idea of getting this to work will not result in a category. This section is dedicated to showing
why this is the case.

We would like to allow games where Player starts as well as those where Opponent does.
In order to make these the objects of a category we have to think about the new definition
of a linear function space (so that we can define morphisms between these new ‘games’). We
call such ‘games’ generalized games.

Definition 8 Alternative 3. Let AP and AO be sets of so-called positions and let ∗A be
one such position. A generalized game is an acyclic (AP , AO)-bipartite graph such that every
node has a finite path to ∗A.

If the linear function space is to be a generalized game then it must be the case that at
any position in the generalized game A ( B it is precisely one player’s turn, including right
at the beginning. Hence we have to decide who should start which game. We use the idea
once again that we wish to play the two games ‘in parallel’ (interleaving) and that Player
should take the role of Opponent in the game A. In other words, as before, positions in
A ( B should be sequences of positions ensuring that Player has Opponent’s moves in A

and Player moves in B, and such that the projections onto the constituent games gives valid
plays in A and B respectively. The only point where problems arise are at the start of the
game. The reason for that is that we would like to keep the ‘switching conditions’ intact.
This is desirable because it is the reason that our composition for (ordinary) games actually
works—it induces a protocol that carefully transfers control between the two strategies to be
composed in such a way that precisely one of these determines the next move in A, B, or C.

The following table gives an overview whose turn it is in which game at the start of the
proposed A ( B for all four combinations.
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P starts in B O starts in B

P starts in A O’s turn in A O’s turn in A

P ’s turn in B O’s turn in B

O starts in A P ’s turn in A P ’s turn in A

P ’s turn in B O’s turn in B

We use (O,O) to indicate a case where it is O’s turn to start in both, A and B. Clearly it
must be O to start in the (P,O) case and P to start in the (O,P ) case. That leaves us with a
decision to make in the cases (P, P ) and (O,O). If we wish to stick with the idea that Player
is the only one who is allowed to switch between games then clearly we must have Opponent
start in both these cases. This will ensure that after Opponent has made an opening move
it will be Player’s turn in both games. But looking back at the first two cases, we find a
problem here: If it is Opponent’s turn in both games as is the case for (P,O) then he has to
start only one of them, and as a consequence Player will be required to answer in whichever
game Opponent played last—he cannot switch, but after his move, Opponent can. This can
be fixed quite easily: We just demand that Opponent start in both games A and B, so that
thereafter Player is in control of the switching. We summarize below who starts where in the
four cases.

P starts in B O starts in B

P starts in A O starts in A O starts in A and B

O starts in A P starts in A or B O starts in B

Clearly this is not quite the same thing as copying Definition 3 and merely replacing
‘game’ by ‘generalized game’, but it should be clear how that definition can be adjusted
in the appropriate way. The resulting generalized game A ( B does satisfy the switching
condition.

We would like to define a category of generalized games where morphisms are strategies
on this linear function space. We have laid the foundations for this by ensuring that the
‘switching condition’ holds on our proposed linear function space. So assume that we have
ρ : A ( B and σ : B ( C for generalized games A, B and C. There are eight cases to be
considered here, which we will abbreviate by triples indicating which player starts in which
of the constituent games. The underlying idea for the composite is precisely the same as
before—we use plays in all three games A, B and C to determine σ ◦ ρ. Rather than giving
a formal definition we will just convince ourselves that control is passed between ρ and σ as
before. Once the game has been started the transfer of control obviously can be handled just
as before (due to the switching condition holding), and we only have to make sure that at the
start, precisely one ρ and σ can take control, that is can suggest a valid move.

Here are the eight cases.

(P, P, P ): O starts in A and σ is waiting for the opening move in B, so ρ has control.

(P, P,O): O starts in both, A and C. σ expects an opening move in both, B and C, so ρ has
control.
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(P,O, P ): O starts in A, but ρ expects an opening move in both, A and B. P starts in
B ( C, so σ has control.

(P,O,O): O starts in both, A and C. ρ expects an opening move in both, A and B, so σ has
control.

(O,P, P ): P can choose whether to start in A or in C, but σ is waiting for O to start in B,
so ρ has control and P ’s opening move will be in A.

(O,P,O): O starts in C. σ expects O to start in both, B and C, whereas ρ is prepared to
start in one of A and B. If ρ’s first move is in A then so will be σ ◦ ρ’s; if ρ’s first
move is in B then where σ ◦ ρ’s first play takes place will depend on σ’s reply to
the combined opening moves for B and C played so far. In any case, ρ has control
at the start.

(O,O, P ): P may start in A or C, but ρ is waiting for an opening move in B. Hence σ has
control.

(O,O,O): This is the original case. O starts in C, and σ has control.

So this looks good. In order for this to be a category, we have to show that there is an
identity for each object and that composition is associative. The identity will have to live on
a game of pattern (P, P ) or (O,O), and since in either case Opponent starts in precisely one
copy A (but not the other), we can play a copy-cat strategy. This will behave as desired. It
remains to consider associativity of composition. And that is the point where it goes wrong.

Consider games A, B, C and D of pattern (P, P,O,O). Let ρ : A ( B, σ : B ( C and
τ : C ( D. Since the pattern determining how σ ◦ ρ starts is (P, P,O), this strategy starts
with ρ in control. The pattern for τ ◦ (σ ◦ ρ) is (P,O,O), so τ has control. In particular, if τ

opens with a move in C, so does τ ◦ (σ ◦ ρ). On the other hand, for τ ◦ σ we have the pattern
(P,O,O), so τ has control. For (τ ◦ σ) ◦ ρ, the pattern switches to (P, P,O), which means
that control lies with ρ. In particular, if ρ opens with a move in A, then so does (τ ◦ σ) ◦ ρ.
Clearly that means that (τ ◦ σ) ◦ ρ and τ ◦ (σ ◦ ρ) are different strategies, one opening with a
move in A, the other with a move in C.

Hence we cannot define a category of generalized games in this way. In other words,
we cannot make the category of games Gam ∗-autonomous by adding in the ‘obvious’ dual
objects for games and keep the linear function space much as it was.

It is difficult to say just where it goes wrong in terms of the definitions that have been
made. Clearly there is some hope that this might be fixable if Player is allowed to open both
games simultaneously, in which case Opponent would have to reply in both games in order
to maintain the idea of control.

Exercise 4.1 What happens if you try to take generalized games and map them to the cat-
egory of sets and relations? What happens to morphisms? Can you see more easily why
composition fails to be associative?

Exercise 4.2 (1) Examine the category Gam × Gamop as another attempt of adding a
dualization operation. If you are not sure how to define the ∗-autonomous structure on this
category consult [HS01]. Speculative. Is it possible to view this category with a formal dual
as a category of games?
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(2) Speculative. Is it possible to define a linear function space where both games are played
truly in parallel, that is moves are pairs of moves, one in each game? What kind of structure
is achieved in this way?

(3) Speculative. Is it possible to define a function space for generalized games in which
moves are moves from either game or pairs of moves? Is the result a category?

(4) Speculative. Define a category of generalized games where morphisms are strategies on
the linear function space only for pattern (P, P ) and (O,O), and where all other hom-sets are
empty. What is the structure of the resulting category?

5 Linear exponential structure

Finding a linear exponential structure for any category is usually quite a bit harder than
coming up with, say, a symmetric monoidal closed on. The existence of finite products, of
course, is a simple matter of ‘yes’ or ‘no’—either they exist or they do not.

In our search for a suitable such structure we let ourselves be guided by the idea that
!A ( B should give us some kind of ‘intuitionistic function space’.

We will contrast this idea with that of the linear function space A ( B. If we think of a
Player strategy τ on A ( B taking a Player strategy ρ on A as an argument then it is clear
that in any one play of A ( B, Player only is allowed to ‘run through’ no more than one
play of ρ. This is an extremely limited way of being allowed to examine the argument which
is more in the spirit of a linear world. (Note, however, that nothing forces τ to look at ρ at
all, if play on A ( B according to τ occurs exclusively in B.)

So for !A ( B to overcome this difficulty there must be numerous copies of A available,
so that any argument living on A can be examined from all angles. The simplest way of
providing this is to make !A something akin to an infinite tensor product: Then in !A ( B

Player is allowed to start as many new copies of A as he likes. However, it is not quite an
infinite tensor product that we are after here—we merely want Opponent to be able to start
multiple copies of A when playing !A. This gives us an order on these copies (‘the first copy
started’, ‘the second copy started’, and so on), and therefore we use an infinite ordered tensor
product.

Definition 9 The game !A has as positions sequences r1 · · · rn of positions (a, i) where a is
a position of A excluding the initial position and i ∈ N such that

• for every i ∈ N the restrictions to positions with second component i, r1 · · · rn|i, gives a
valid play of A when prefixed by the initial position ∗A;

• for every i ∈ N, if a position with second component i+1 occurs then there is an earlier
position with second component i in the sequence;

• for m ∈ N even, tm ∈ AP ;

• for m ∈ N odd, tm ∈ AO.

The set of P -position (!A)P is given by strings of even length and the set of O-positions (!A)O

is given by strings of odd length. The initial position is the empty string. Edges exist precisely
between positions r1 · · · rn −→ r1 · · · rnrn+1.
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An example for such a game is given in Figure 22. The labels marking the positions are
not the entire strings, but only the last element of the corresponding string. To obtain the
proper label for a position just take all consecutive labels from the root (excluding ∗ !B).

(b′1, 3)

(b′1, 1)

(b2, 1)

(b3, 1)
(b′1, 2)

(b2, 2)

(b1, 2)

(b3, 1)
(b3, 2)

(b1, 3)

(b1, 1)

∗!B

Figure 22: The linear exponential !B; Figure 9

Exercise 5.1 Write a definition of !A based on Alternative 2 for the definition of a game.

Proposition 5.2 For the linear exponential !A is is the case that

• only Opponent is allowed to switch between different copies of A, hence Player is required
to respond in whichever copy Opponent played last;

• Opponent may only start play in the ith copy of A if all copies with a smaller index
have been started already. Hence Opponent starts with an opening move in the first
copy of A.

We have to establish the existence of the various structure maps forming a linear expo-
nential comonad as defined in Definition 19. We will only argue this informally since proving
all the equations formally would make this section a lot longer. We start with the definition
making ! a functor. Let τ : A - B, that is τ : A ( B. The game !A (!B works as follows.
Opponent opens with an opening move in (the first copy of) B. Player is now allowed to
start the first copy of A or to continue playing in B as he chooses—he will take action in
accordance with τ . If he does the former then Opponent is obliged to answer in the first copy
of A, otherwise he may play in the first copy of B or open a second copy of B. Opponent
has control over opening copies of B while Player does so for A. Player plays the strategy !τ
on !A (!B as follows. For every copy of B that Opponent opens, Player starts a copy of τ .
Whenever τ requires him to open (a copy of) A he does so, keeping track of which copy of
A corresponds to which copy of B and treating them as one copy of A ( B. As Opponent
switches between copies of B, Player switches between the corresponding copies of τ , which
in turn lead to corresponding copies of A. In other words, Player secretly treats the game
!A (!B like !(A ( B) by keeping a list of indices that tell him which copies of A correspond
to which copies of B. On !(A ( B), he just plays τ on each copy of A ( B. Note that this
correspondence may differ from play to play.
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Exercise 5.3 Define games A and B and a strategy τ : A ( B such that

• there are plays of !τ in which the first and second copy of B correspond to the first and
second copy of A respectively;

• there are plays of !τ in which the first copy of B corresponds to the second copy of A,
and the second copy of B corresponds to the first copy of A.

Formally, the reply of !τ to some O-position t1 · · · tn of !A (!B is found as follows. If tn

is a position in !A, say in the ith copy of A, then find the corresponding copy of B as follows:
Find the opening move of the ith copy of A. The immediately preceding position occurs in,
say, the jth copy of B. Restrict t1 · · · tn to those positions which are either of the form (a, i)
or of the form (b, j). Ignoring i and j, this is a valid play of A ( B. Find τ ’s reply to this and
play accordingly. If tn is a position in !B, say in the jth copy of B, then proceed as follows.
If there is an O-position in this jth copy of B that is followed by a position in a copy of A,
say the ith copy, then restrict play to these two copies as before, determine τ ’s answer, and
make the appropriate move. Otherwise find τ ’s reply to the restriction to positions which are
in the jth copy of B. If the reply is in B, continue accordingly. Otherwise the reply is an
opening move of A which we play in a newly created copy of A.

Exercise 5.4 Show that once i and j have been determined as above, restricting a sequence
to positions from the ith copy of A and the jth copy of B gives a play of A ( B in accord
with τ . In other words, the correspondence between copies of A and copies of B can be derived
as described.

We next turn to the counit of the comonad we would like to build around the functor !.
Consider the game !A ( A. Opponent opens by making a move in A. Now Player can copy
this move by opening a first copy of A in !A. Opponent has to reply to that move in the same
game, and this answer can be copied back to A. In other words, Player employs a copy-cat
strategy between A and the first copy of A in !A, and no further copies of A are ever opened.
We define εA to be this strategy.

We have to show that ε is natural, that is that for all τ : A - B, τ ◦ εA = εB ◦ !τ . Now
it pays off that we have a faithful functor F to the category of sets and relations: To show
that this equation holds we merely have to show that F (τ) ◦ F (εA) = F (εB) ◦ F (!τ). Clearly
F (εA) = {((a1, 1) · · · (an, 1), an) | ∗Aa1 · · · an is a play in A}. Therefore

F (τ) ◦ F (εA) = {((a1, 1) · · · (an, 1), b) | (an, b) ∈ F (τ), ∗Aa1 · · · an is a play in A}.

When calculating the composite εB ◦ !τ , only one copy of B is ever started in the ‘hidden’
game !B. Hence at most one copy of A is started in the game !A, namely the first one, and
the second composite, εB ◦ !τ , evaluates as the same set.

This brings us to the comultiplication of our proposed comonad. For that we have to
define a morphism δA : !A - !!A for each game A. At first sight, !!A may look as if it
allowed more options than !A, but this is not really true: In the end, a countable number
of copies of A are available in each one. The reason for this is that Opponent opens !!A
by opening a first copy of !A, which is done by opening a first copy of A. While on paper
Opponent has the choice between opening a new copy of !A or a copy of A in an existing
copy of !A, it all comes down to opening new copies of A in the end. Hence Player can play a
copy-cat strategy !A - !!A, opening a new copy of A whenever Opponent does the same.

29



All Player has to do is to keep track of which copies of A in !A (these will be indexed by
some i ∈ N) corresponds to which copy of A in !!A (these will be indexed by some (j, k)).
This correspondence can at any time be derived from a given position. We take δA to be this
copy-cat strategy. Notice once again that the correspondence between the various copies of
A may vary in different plays.

Exercise 5.5 Write out a more detailed definition of δA and show that δ is natural as desired.
(Doing this very rigorously may be quite arduous!)

The comonad equations are not difficult to establish informally. For example the composite
!δA ◦ δA : !A - !!!A establishes a correspondence between copies of A in the two games; it is
the same as that established by δ!A ◦ δA : !A - !!!A. We next consider ε!A ◦ δA : !A - !A.
Opponent opens play in the first copy of A in !A and ε!A copies this move to the first copy
of A in the first copy of !A in !!A. δA copies this move across to the first copy of A in !A.
Ultimately this corresponds to the copy-cat strategy on !A. Note that because of the way ε !A

operates, only the first copy of !A in !!A is ever opened. Thus play is copied between !A, the
first copy of !A in !!A, and !A again. Hence the nth copy of A in the covariant copy of !A
will clearly correspond to the nth copy of A in the contravariant one. It is not much more
difficult to make an argument that !εA ◦ δA also is the identity on !A.

This brings us to the monoidal structure. First for the morphism mI : I - !I. Since
!I ∼= I, and I is the terminal object, there is only one such morphism which we take. More
interestingly, consider (!A⊗!B) (!(A⊗B). Opponent opens play by making an opening move
from A or from B. This move is copied across, and the answer is copied back. Again it is
a question of keeping up a correspondence between copies of A and B on either side of (.
Note that the copy of A corresponding to the A-component of the ith copy of A⊗B will not
necessarily have the same index as the copy of B corresponding to the B-component of the
same copy of A ⊗ B.

It is worthwhile to note that !A⊗!B and !(A⊗B) are in general not isomorphic. Figure 23
shows an example for this.

Exercise 5.6 Convince yourself that keeping up these correspondences as described leads to
a valid play of (!A⊗!B) (!(A ⊗ B). In particular it is necessary to show that any move can
be copied across to the ‘right’ copy of A or B. You might also want to convince yourself that
!A⊗!B and !(A ⊗ B) are in general not isomorphic.

Exercise 5.7 Can you show that one cannot define a natural transformation with components
nA,B : !(A ⊗ B) - !A⊗!B?

We will not try to prove here that (!, ε, δ,mI,m) is a monoidal comonad, but the reader
might well want to go through at least some of the equations involved.

It thus remains to introduce the comonoid structure on free coalgebras for the comonad.
This is very easy in the case of the counit, since !A ( I ∼= I means that all eA : !A - I

will be the only strategy on this game. The comultiplication, on the other hand, is more
interesting.

Consider !A ( (!A⊗!A). Again we use something akin to a copy-cat strategy, which
should be no surprise by now. All Player does is to match copies of A in !A⊗!A with copies of
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A B A ⊗ B !(A ⊗ B)

!A !B !A⊗!B

Figure 23: !A⊗!B versus !(A ⊗ B)

A in !A, much as before. Establishing symmetry and associativity of the resulting operation
should not pose any difficulties.

But the unit laws are no more difficult than that. Consider the game !A ( (!A ⊗ I)
and the strategy given on it by (id!A ⊗ eA) ◦ dA. Opponent opens play in the first copy of A

in !A ⊗ I ∼=!A. This is copied across to the first copy of A in the left copy of !A in !A⊗!A
by idA ⊗ eA. Now dA chooses this move to open the first copy of A in !A. Opponent can only
switch between copies of A in (!A ⊗ I), but not in !A. Whenever he opens a new copy of A

there, this results in a new copy of A being opened by Player in !A, with the same move. All
in all this amounts to the isomorphism ρA as desired.

It is instructive to check that there is no natural transformation going the opposite way,
that is with components !A⊗!A - !A. The reason for this is that Player is forced to make
a choice here which copies of A in !A to pair with which in !A⊗!A, and this time, there is
no canonical way of doing so. Consider games A and B where A is the one-move game S

from above, and B has precisely two opening moves for Opponent (and no replies). Note that
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!A ∼= A and !B ∼= B. Then defining a non-trival morphism !A⊗!A - !A is the same as
defining one A ⊗ A - A. This amounts to deciding in which copy of A (in A⊗A) to copy
this move. A similar choice has to be made for B, only now there are two options (all others
can be reduced to those). It is not difficult to come up with morphisms A - B that show
that neither of these choices results in a natural transformation.

Exercise 5.8 Carry out the calculations that show that the above outline is correct, that
is, there is no way of defining a copy-cat strategy !A - !A⊗!A which results in a natural
transformation.

We will not establish any more of the equations needed to prove Theorem 5.9, but the
reader is invited to select some of them and show that they are valid.

Theorem 5.9 Gam is a model of intuitionistic linear logic.

Exercise 5.10 Show that the functor F : Gam - Rel is linearly distributive with respect
to the linear exponential structure on Rel introduced in Exercise A.13.

As we have seen in Theorem A.31 this is sufficient to define a cartesian closed category.
We set A → B =!A ( B. Let Gam! be the category whose objects are games and where
morphisms A - B are given by Player strategies on A → B. The identity is the copy-
cat strategy on !A ( A that copies between the first copy of A in !A and A, and never
opens any further copies (in other words, εA from above). The composite of ρ : A - B

and σ : B - C in Gam! is given by σ◦!ρ ◦ δA. In a play according to this composite,
Opponent opens play in C. Control then falls to σ. If σ answers in C then so does the
composite. Otherwise a copy of B is opened, and control passes to !ρ. A copy of ρ is started
and interacts with σ until an answer is reached. Whenever σ opens a new copy of B, a new
copy of ρ is started, leading to new copies of A as required.

Exercise 5.11 You might want to give an explicit definition of composition in Gam !, or at
least try your hand at an example.

The following is an immediate corollary of Theorem 5.9 and Theorem A.31.

Theorem 5.12 The category Gam! is cartesian closed.

One criticism regarding this linear exponential is that it goes a step further than our
original motivation indicated. For every game A which has at least one move each for Player
and Opponent it is clearly the case that !A is infinite. Hence we rather overshoot the original
target of being able to examine a strategy on A viewed as the argument of a morphism
A - B: If A is finite then every such strategy only contains finitely many decisions, and
thus can be fully examined within finitely many copies of A. Recently there have been
attempts at defining a linear exponential that is less crude.

The idea is as follows: Consider the set of strategies on A as the set of P -positions of ! ′A.
O-positions are of the form (ρ, a) where ρ is a strategy on A and a ∈ RP (ρ) such that ρ(a) is
undefined. If ρ is such a strategy then it has moves to O-positions of the form (ρ, a). If (ρ, a)
is an O-position of !′A then it has moves precisely to those strategies ρ′ which are minimal
extensions of ρ such that ρ′(a) is defined. (In other words the only difference between ρ and
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ρ′ is that ρ′ has an answer to the position a. In general this will result in a directed acyclic
bipartite graph rather than a tree. Such a graph can be treeified; compare Exercise 2.25.
Clearly for a finite game A it will be the case that !′A is finite. The structure maps can now
be defined in a similar way to the ones for !.

Exercise 5.13 Show that another linear exponential comonad on Gam can be defined in this
way. (Showing naturality may be trickier than it seems!)

A What is a categorical model for Linear Logic?

The aim of this section is to give an outline of the categorical structure required for a model
of linear logic. That means that we only try to motivate the various conditions imposed on
such models; this is by no means intended to be a full account. For intuitionistic linear logic a
detailed description of the process of defining such a model can be found in Gavin Bierman’s
thesis [Bie94]. Such a semantics has to be subject to a valuation assigning objects to any
variables any of these formulae contain. In this section we will take that for granted and not
mention the valuation any longer—the reason for that is that any interpretation should be
sufficiently independent from the actual valuation that no reference is made to any properties
of the objects appearing in same.

A.1 Intuitionistic linear logic

When people talk about intuitionistic linear logic they mean the calculus with the connectives
⊗, (, u and !. Since there is no negation, the De Morgan duals of these can not be defined
within this system. Further the system only allows one-sided judgements to be made. For a
full discussion of the rules see Bierman’s thesis [Bie94].

MILL—the multiplicative fragment

The rules for this fragment are given in Table 1, with the exception of the exchange rule which
allows the exchange of any two neighbouring formulae in a sequent Γ.

Identity Multiplicative connectives Cut Constants

left right

Γ, A,B ` C

Γ, A ⊗ B ` C

Γ ` A ∆ ` B

Γ,∆ ` A ⊗ B

A ` A

Γ ` A A,∆ ` B

Γ,∆ ` B ` I

Γ ` A ∆, B ` C

Γ,∆, A ( B ` C

Γ, A ` B

Γ ` A ( B

Table 1: Rules for MILL.

Exercise A.1 Compare this system to N{→,u}, a natural deduction system for implication
and conjunction. What are the differences, what the similarities? Can you deduce some
categorical structure suitable for modelling the above from this?
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We use the left rule for ⊗ is to justify modelling a judgement Γ ` B as a morphism

A1 ⊗ · · · ⊗ Am
- B in the category C,

where Γ is the sequence A1, . . . , Am. We are abusing notation here in that we expect the
object denoting the formula A to be called A again. We will use [[Γ]] = A1 ⊗ · · · ⊗ Am.
Obviously this is subject to an evaluation given to interpret any variables in the sequence.

It should we obvious that we need constructions on the objects of the category that
mimic the formation of formulae, that is interpretations for the operations tensor and linear
implication. Again we are stingy with notation and use the same symbols to denote the
categorical operations.

The first thing to note is that these should not be constructions just on the objects, but
that they should also work for morphisms—that is they should be functors of some description.
With our chosen setting being categories this should come as no surprise, but we can, in fact
make an argument for this.

For example, the rule
Γ ` A ∆ ` B

Γ,∆ ` A ⊗ B

means that given morphisms

[[Γ]] - A and [[∆]] - B

we have to be able to define a morphism

[[Γ,∆]] = [[Γ]] ⊗ [[∆]] - A ⊗ B

and if ⊗ is a bi-functor on C, that is a functor C×C - C, then this is taken care of for
us automatically. Functoriality of this assignment means the following: The leaf rule A ` A

is interpreted by the identity on (the interpretation of) A. So preservation of identities by ⊗
means that the identity on A ⊗ B is used to interpret

A,B ` A ⊗ B,

which itself is a consequence of A ` A and B ` B. Since from there we can, in fact, prove
that A ⊗ B ` A ⊗ B this seems to make sense.3

This leaves us with the question of why ⊗ should also preserve composition. Composition
in the category is the interpretation of the Cut rule:

Γ ` A A,∆ ` B

Γ,∆ ` B
.

From arrows
f : [[Γ]] - A and g : A ⊗ [[∆]] - B

we have to define an arrow
[[Γ]] ⊗ [[∆]] - B,

and fortunately there’s something to fill the gap:

[[Γ]] ⊗ [[∆]]
f⊗id[[∆]]- A ⊗ [[∆]]

g- B.

3If we only allow axioms to introduce literals (say p, q) then tensor preserving the identity amounts to the
identity morphism on p ⊗ q interpreting p ⊗ q ` p ⊗ q, which can be proven from p ` p and q ` q.
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Exercise A.2 Find a justification for demanding that ⊗ preserve composition.

Because lists of formulae are associative by definition, we expect ⊗ to be associative.
Further, because of the exchange rule we expect it to be symmetric. And finally we need an
‘empty’ version of the tensor product in order to interpret judgements which have an empty
context. We refer to this object as I, and it is clear that it should behave like a units for ⊗.

Definition 10 We say that a category C is (symmetric) monoidal if there is a bi-functor
⊗ on C that is associative, (symmetric) and has a unit I. By that we mean that there exist
natural isomorphisms α, (σ,) ρ and λ such that the diagrams given below commute. These
isomorphisms ‘mediate’ between objects providing us with associativity, symmetry and unit
laws. Their naturality is expressed in the following set of diagrams.

A ⊗ (B ⊗ C)
αA,B,C- (A ⊗ B) ⊗ C

A′ ⊗ (B′ ⊗ C ′)

f⊗(g⊗h)

?

αA′,B′,C′

- (A′ ⊗ B′) ⊗ C ′

(f⊗g)⊗h

?

A ⊗ B
σA,B- B ⊗ A

A′ ⊗ B′

f⊗g

?

σA′,B′

- B′ ⊗ A′

g⊗f

?

I⊗ A
λA - A

I⊗ A′

idI⊗f

?

λA′

- A′

f

?

A ⊗ I
ρA - A

A′ ⊗ I

f⊗idI

?

ρA′

- A′

f

?

These natural isomorphisms interact with each other as given by the diagrams below.

A ⊗ (B ⊗ (C ⊗ D))
αA,B,C⊗D - (A ⊗ B) ⊗ (C ⊗ D)

A ⊗ ((B ⊗ C) ⊗ D)

idA⊗αB,C,D

?
αA,B⊗C,D- (A ⊗ (B ⊗ C)) ⊗ D

αA,B,C⊗idD

- ((A ⊗ B) ⊗ C) ⊗ D

αA⊗B,C,D

?

A ⊗ (B ⊗ C)
αA,B,C- (A ⊗ B) ⊗ C

σA⊗B,C

- C ⊗ (A ⊗ B)

A ⊗ (C ⊗ B)

idA⊗σB,C

?
αA,C,B- (A ⊗ C) ⊗ B

σA,C⊗idB

- (C ⊗ A) ⊗ B

αC,A,B

?

A ⊗ (I⊗ C)
αA,I,C- (A ⊗ (I⊗ C)

A ⊗ C

ρA⊗idA

?

id
A⊗

λ
C

-

A ⊗ B
σA,B- B ⊗ A

A ⊗ B

σB,A

?

idA
⊗
B

-

I⊗ A
σI,A- A ⊗ I

A

ρA

?

λ
A

-

35



Exercise A.3 Show that the category of sets and relations Rel is symmetric monoidal. Hint:
The tensor product is given by cartesian product. You might want to convince yourself that
this is not the product in this category.

Exercise A.4 Convince yourself that a category with finite products is symmetric monoidal.
Do the same for categories with finite coproducts.

So in order to be able to interpret ⊗ we require our category C to be symmetric monoidal.
The question of what a functor of symmetric monoidal categories should be can be answered
in several ways. Maybe the most straightforward would be to demand that the symmetric
monoidal structure is preserved (at least up to isomorphism), but that turns out to be too
strong for many examples. Instead, we choose the following notion. Note that we do not
distinguish between the tensor products in different categories in our notation, similarly for
the unit I. Also note that we are sloppy in our notation and write − ⊗ − for the functor
C×C - C although nothing in the notation suggests that we assume it to have two
(possibly different) arguments rather than just one.

Definition 11 Let C and D be symmetric monoidal categories.

(1) A functor F : C - D is said to be symmetric monoidal if there exist a morphism
mI : I - F (I) and a natural transformation m : F (−) ⊗ F (−) - F (−⊗−) respecting
the symmetric, associative, and unit structures.

(2) Let F and G be two symmetric monoidal functors C - D with natural transforma-
tions m and n respectively. We say that a natural transformation τ : F - G is symmetric
monoidal if the following diagrams commute.

I
mI - F (I)

G(I)

τI

?

n
I

-

F (A) ⊗ F (B)
mA,B- F (A ⊗ B)

G(A) ⊗ G(B)

τA⊗τB

?

nA,B

- G(A ⊗ B)

τA⊗B

?

Exercise A.5 (1) If you are unsure about what it meant by ’respecting the ... structures’
try drawing some diagrams.

(2) Show that if F is a symmetric monoidal endofunctor on a symmetric monoidal category
C then so is F ◦ F .

This brings us to the next connective, linear implication (. This connective is very tightly
linked to the morphisms of our category C for the following reason. Any judgement A ` B is
interpreted by a morphism A - B. This judgement allows us to deduce ` A ( B, which
is interpreted by a morphism I - A ( B. Hence there is a connection between morphism
A - B and those I - A ( B which is tightened by the following derivation. Assume
that we now have a derivation of ` A ( B.
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·
·
·

` A ( B

A ` A B ` B

A,A ( B ` B
Cut

A ` B

For our category that means that we must be able to go the other way, too. We expect
the following one-to-one correspondence:

A - B
===========
I - A ( B

or, more generally,
C ⊗ A - B
============
C - A ( B

Comparing this to the structure of a cartesian closed category we find a close resemblance:
Assuming we make the usual naturality assumptions this means that the functor − ⊗ A is
left-adjoint to A ( −. In a cartesain closed category the monoidal structure, that is the
tensor product, is given by product, which makes it a stronger construct, but that is the only
difference.

Definition 12 A symmetric monoidal closed category is a symmetric monoidal category in
which each functor −⊗ A has a right adjoint.

Note that the adjunction does impose more structure on the linear function space construct
than one might think at first.

Exercise A.6 (1) Show that in every symmetric monidal closed category I ( A ∼= A nat-
urally.

(2) Show that in every symmetric monoidal closed category (A ⊗ B) ( C is naturally iso-
morphic to A ( (B ( C).

Symmetric monoidal closed categories have all the categorical structure required to model
the multiplicative fragment of intuitionistic linear logic.

Definition 13 A model for MILL is any symmetric monoidal closed category.

Exercise A.7 Show that Rel is a symmetric monoidal closed category. Hint: the underlying
set for A ( B is again the cartesian product of A and B.

Exercise A.8 For every rule in Table 1 find the categorical counterpart, that is given the
morphisms interpreting the hypothesis, find the morphism interpreting the conclusion. Do the
same vice versa, that is for every equation imposed on a symmetric monoidal closed category,
find a proof justifying it. (For this it is useful to recall how adjunctions can be described using
equations only.)

One might assume that something additional is required for a functor between symmetric
monoidal closed (rather than merely symmetric monoidal) categories, but this is not the case.

Exercise A.9 Assume that C and D are symmetric monoidal closed categories. Show that
if F : C - D is a symmetric monoidal functor then there exist natural transformations
F (A ( −) - F (A) ( F (−) and F (− ( B) - F (−) ( F (B).
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MALL—the multiplicative additive fragment

We add one of the additve connectives to the multiplicative fragment MILL, namely the
conjunction u. For that we add the following rules to those given in Table 1, and call the
result MALL.

Additive connectives Constants

left right

Γ, A ` C

Γ, A u B ` C

Γ, B ` C

Γ, A u B ` C

Γ ` A Γ ` B

Γ ` A u B Γ ` 1

Table 2: The rules for u

The categorical interpretation for the new connective u certainly should be something
similar to a tensor product. But looking at the left introduction rules we find that we need
something stronger here. In particular given C ` A and C ` B we obtain C ` A u B—
so given morphisms C - A and C - B we have to be able to construct a morphism
C - A u B. This looks just like the requirement we demand for products, at least the
part about being able to construct such morphisms. So how about the second requirement,
the projections? From A ` C we have to be able to conclude that A u B ` C—that is, given
a morphism A - C we have to be able to construct one A u B - C. If we do have
a projection A u B - A then we can simply precompose that with the given morphism
to obtain the desired result. Similar for the symmetric version. Since the usual categorical
symbol for a product is × we often write that rather than u for the interpretation of that
connective in the category. The interpretation of 1 is similarly determined. Clearly there will
have to be a morphism A - 1 for every object A. We demand that there be precisely one
of those for each A, making 1 the terminal object or ‘empty product’.

Definition 14 A model for MALL is given by a symmetric monoidal closed category with
finite products.

Exercise A.10 Show that Rel is a model for MALL. Hint: the categorical product is given
by the disjoint union; projections are the ‘reversed’ injections.

Exercise A.11 Justify the equations defining a categorical product from the rules for MALL.

ILL—the intuitionistic fragment

In order to obtain the intuitionistic fragment of linear logic we have to add one other connec-
tive, the unary !. This is our way of marking formulae which we allow to be subject to the
weakening and contraction rules. This fragment is obtained by adding the rules in Table 3 to
MALL.

We wish to interpret ! in the categorical model C by a functor C - C which we also
refer to as !. This functor will have to come with additional structure so that we can define
morphisms corresponding to various rules. We postpone the argument for why ! should be
defined on morphisms too.
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The linear exponential !

Γ ` B

Γ, !A ` B

Γ, A ` B

Γ, !A ` B

Γ, !A, !A ` B

Γ, !A ` B

!Γ ` A

!Γ ` !A

Table 3: The rules for the linear exponential !

The judgement A ` B is interpreted by a morphism A - B, and from that we have to
be able to obtain a morphism !A - B. This can be done most easily if we demand that
there exist a morphism εA : !A - A for each object A, then the composite

!A - A - B

can be used to interpret !A ` B.
Further from !A ` B we get !A ` !B and thus for a morphism !A - B we want to be

able to define a morphism !A - !B, that is we want a map (−)∗ : C(!A,B) - C(!A, !B).
If we want to enforce that certain proofs create the same morphisms in our model then we
have to impose some conditions on these.

Consider the proof

A ` A

!A ` A

!A `!A

We might just as well have started with the axiom !A ` !A and therefore we demand that
(εA)∗ = id!A. Next consider the proof

·
·
·

!A ` B

!A ` !B

B ` B

!B ` B
Cut

!A ` B

This amounts to cutting against the identity (well, almost), and should really be the same
as the original proof of !A ` B. Hence we demand that the assignment εB ◦ (−)∗ be the
identity on C(!A,B).

Finally consider the two proofs

·
·
·

!A ` B

!A ` !B

!B ` C

!B ` !C
Cut

!A ` !C

·
·
·

!A ` B

!A ` !B !B ` C
Cut

!A ` C

!A ` !C
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Arguably we have performed ‘the same’ cut both times, and these proofs should be con-
sidered equal. Therefore we demand that for f : !A - B and g : !B - C we have that
g∗ ◦ f∗ = (g ◦ f∗)∗.

Hence we have that !, ε and (−)∗ form the dual of a Kleisli triple. An alternative way of
defining the same structure is the following.

Definition 15 A comonad on a category C consists of a functor ! and natural transforma-
tions ε : ! - idC and δ : ! - !! such that the following diagrams commute for all objects A.

!A
δA - !!A

!!A

δA

?

!εA

- !A

ε!A

?

id
!A

-

!A
δA - !!A

!!A

δA

?

!δA

- !!!A

δ!A

?

We often call ε the counit of the comonad and δ its comultiplication.

Exercise A.12 Show that the dual of a Kleisli triple (that is, assignments (!, ε, (−)∗) as above
satisfying the given equations) and a comonad are the same thing.

Exercise A.13 Show that the following is a comonad on the category of sets and relations.
On objects let !A be the set of multisets over A. For a morphism R : A +- B set x !R y if
and only if there exists c ⊆ R such that π1c = x and π2c = y. For the counit, take the reverse
of the ‘singleton’ relation. For the comultiplication take the ‘sum’ of the multisets in question.

This allows us to interpret the rules on the right hand side of Table 3. Before we turn to
the rules on the left hand side of the same table we resolve another matter.

Consider the following proofs.

A ` A

!A ` A

B ` B

!B ` B

!A, !B ` A ⊗ B

!A, !B ` !(A ⊗ B)

!A⊗!B ` !(A ⊗ B)

` I

` !I

So there must be morphisms mA,B : !A⊗!B - !(A ⊗ B) which we expect to be natural
in A and B, and there must be a morphism I - !I. In other words we expect that ! is
a monoidal functor. We further demand that ε and δ are monoidal natural transformations,
which is sometimes summarized by demanding that (!, ε, δ,m,mI) be a monoidal comonad.

Exercise A.14 Show that the multiset comonad from Exercise A.13 is monoidal.

Exercise A.15 Can you find proof-theoretic reasons for demanding that ε and δ be monoidal?
How about the naturality of m?
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We finally turn to the left rules for !. Given a morphism I - B which is the inter-
pretation of ` B, we have to be able to define a morphism !A - B which serves as the
interpretation of !A ` B. Again we use a composite for this and demand that for every ob-
ject A there be a morphism eA : !A - I. Similarly we demand the existence of a morphism
dA : !A - !A⊗!A to interpret the contraction rule. As is to be expected, the mere existence
of these morphisms is not sufficient for our purposes.

First of all we expect symmetry, transitivity and unit laws to hold. Clearly when contract-
ing three occurrences of, say, !A, it should not matter in which order this happens. Exchanging
two such occurrences and then contracting them should be the same as just contracting them.
And first introducing !A by weakening and then contracting it with an existing copy should
be the same as doing nothing at all.

Definition 16 A commutative comonoid in a symmetric monoidal category C is an object
A with two morphisms e : A - I and d : A - A ⊗ A such that the following diagrams
commute.

A
d - A ⊗ A

A

σA

?

d

-

A
d - A ⊗ A

I⊗ A

e⊗idA

?

λ
A

-

A
d - A ⊗ A

d⊗idA

- (A ⊗ A) ⊗ A

A ⊗ A

d

?

idA⊗d
- A ⊗ (A ⊗ A)

αA,A,A

?

A morphism of comonoids (A, e, d) and (A′, e′, d′) is a morphism f : A - A′ respecting the
comonoid structure, that is the following diagrams commute.

A
e - I

A′

f

?

e
′

-
A

d - A ⊗ A

A′

f

?

d′
- A′ ⊗ A′

f⊗f

?

Exercise A.16 (1) Show that the multiset over a set A is a symmetric comonoid in the
category Rel.

(2) Show that if C is a category with finite products then every object carries a comonoid
structure, and every morphism preserves it.

We want every triple (!A, eA, dA) to be a commutative comonoid. Clearly objects of the
form !A play a particular role—they are the interpretations of formulae on which we may
perform the structural rules such as weakening and contraction.
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Definition 17 The category C! of free coalgebras for a comonad (!, ε, δ) on a category C has
objects !A, where A is an object of C. Morphisms !A - !B are morphisms f : !A - !B
in C such that the following diagram commutes.

!A
δA - !!A

!B

f

?

δB

- !!B

!f

?

Exercise A.17 Show that every morphism in C! can be written as a composite of morphisms
of the form δA and !f .

There is a generalized form of ‘coalgebra’ for a comonad.

Definition 18 The category C! of Eilenberg-Moore coalgebras for a comonad (!, ε, δ) on a
category C has objects ξ : A - !A which are arrows in C. We also refer to these objects
as coalgebras (for the comonad). Morphisms between two such objects ξ : A - !A and
ζ : B - !B are given by morphisms f : A - B such that the following diagram com-
mutes.

A
ξ - !A

B

f

?

ζ
- !B

!f

?

Exercise A.18 (1) Show that C! embeds into C! by mapping an object !A to the object
given by δA : !A - !!A. Further show that this embedding is full.

(2) Show that the category of free coalgebras is isomorphic to the co-Kleisli category of a
monad. This category has objects A where A is an object in C and morphisms A - B are
given by morphisms !A - B in C. The identity on an object A is εA and the composite
of f : A - B and g : B - C is given by g◦!f ◦ δA : A - C. If you haven’t seen this
construction before you might want to prove that it is indeed a category.

Proposition A.19 Let (!, ε, δ,m,mI) be a monoidal comonad on a symmetric monoidal cat-
egory C. Then C! is symmetric monoidal. The tensor product of two objects ξ : A - !A
and ζ : B - !B is given by mA,B ◦ (ξ ⊗ ζ) : A ⊗ B - !(A ⊗ B). The unit for the tensor
product is given by mI : I - !I.

Exercise A.20 Prove Proposition A.19.

Exercise A.21 Show that there is an adjunction between C and C!. Hint: C - C! is the
identity on objects. C!

- C maps an object A of C! to !A; a morphism A - B in C!

given by f : !A - B in C is mapped to !f ◦ δA : !A - !B.
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Do the same for C and C!. Hint: C - C! maps an object A to δA : !A - !!A; C! - C

is the identity on objects. Show that this adjunction is monoidal, that is both functors are
monoidal and so are the natural transformations connecting them.

Proposition A.22 Let (!, ε, δ,m,mI) be a monoidal comonad on a symmetric monoidal cat-
egory C. If every free coalgebra is a commutative comonoid in C then so is every coalgebra,
that is every object of C!, (with respect to the tensor product from Proposition A.19). Further
if every morphism of free coalgebras is a morphism of comonoids then every morphism of
coalgebras is a morphism of comonoids with respect to the induced structure.

Exercise A.23 Prove Proposition A.22. Hint: Every coalgebra is a retract of a free one.
Derive a comonoid structure using the existing one for free coalgebras.

Hence demanding that every free coalgebra have a commutative comonoid structure is
just the same as demanding that that is the case for all coalgebras. Viewing the structure as
part of the bigger category allows us to state all that we require for our models.

Definition 19 We say that a symmetric monoidal category has a linear exponential comonad
if it has a monoidal comonad such that the category of Eilenberg-Moore coalgebras, with the
induced tensor product, is a category of commutative comonoids. In other words every object
of the Eilenberg-Moore category comes with a commutative comonoid structure, and every
morphism preserves that structure.

This is, in fact, equivalent to a weaker sounding structure. Note that in general the
category C! is not closed under the tensor product in C!. This makes talking about the
structure slightly more awkward.

Proposition A.24 A symmetric monoidal category C has a linear exponential comonad if
and only if it has a monoidal comonad (!, ε, δ,m,mI) such that

• all objects of C which are of the form !A are equipped with a commutative comonoid
structure (A, ea, da) which is natural in A;

• the natural transformations e and d are monoidal;

• every morphism of the form !f and every morphism of the form δA is a morphism of
comonoids.

Exercise A.25 Prove Proposition A.24. Hint: part of this was done with the proof of Propo-
sition A.22. If you have a problem with showing that e and d are monoidal (in the ‘only if ’
direction) then think about what it means for mI and mA,B to be morphisms in C! (between
which objects?).

For completeness’ sake we also introduce a notion of morphism between categories with a
linear exponential structure.
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Definition 20 Let C and D be symmetric monoidal categories with linear exponential comon-
ads. A functor F : C - D is linearly distributive if and only if F is monoidal (with struc-
ture mI,mC,C′) and is equipped with a distributive law κ : !F - F ! respecting the comonoid
structure, in the sense that

I � eF (C)
!F (C)

dF (C)- !F (C)⊗!F (C)

F (I)

mI

?
�

F (eC)
F (!C)

κC

?

F (dC)
- F (!C⊗!C)

m!C,!C ·(κC⊗κC)

?

Definition 21 We say that a category C is a model for intuitionistic linear logic if

• it is symmetric monoidal closed;

• it has finite products;

• it has a linear exponential comonad.

Exercise A.26 Show that Rel is a model for intuitionistic liner logic.

Morphisms of models for intuitionistic linear logic are given by linearly distributive func-
tors.

A.2 Cartesian closed categories

Models for intuitionistic linear logic are not just interesting for their own sake. They give
rise to a cartesian closed category. Cartesian closed categories are the standard model for the
{u,→} fragment of classical logic, and this is the right universe to give semantics for various
programming languages.

Proposition A.27 Let C be a symmetric monoidal category. If C has a linear exponential
comonad (!, ε, δ,m,mI) then C! has finite products which are given by the induced tensor
product.

Exercise A.28 Prove Proposition A.27. Hint: The projections are given by the arrows
ρA ◦ e′ : A ⊗ A′ - A and λA ◦ e : A ⊗ A′ - A′, where e and e′ are the counits for the
comonoid structure. Pairing of morphisms can be defined using the comultiplications.

Exercise A.29 Can you generalize the previous exercise? Where did you use the assumption
that C! is a category of coalgebras?

Proposition A.30 Let C be a model for intuitionistic linear logic. Then

!A⊗!B ∼=!(A × B).

In particular the co-Kleisli category C! for the linear exponential comonad is closed under the
tensor product from C!. Hence the co-Kleisli category C! has finite products.
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Proof. The isomorphisms are given by

!(A × B)
dA×B- !(A × B)⊗!(A × B)

!π1⊗!π2- !A⊗!B

and

!A⊗!B
δA⊗δB- !!A⊗!!B

m!A,!B- !(!A⊗!B)
!〈ρA◦(εA⊗eB),λB◦(eA⊗εB)〉- !(A × B).

We will show below that these maps are indeed mutually inverse. Therefore the tensor product
of free coalgebras is (isomorphic to) a free coalgebra. By Exercise A.18, the embedding of C !

into C! is full, and therefore a product in C! which is a free coalgebra is also a product in C!.
Therefore the co-Kleisli category has finite products. Consider the following diagram.

!(A × B)
dA×B- !(A × B)⊗!(A × B)

!π1⊗!π2- !A⊗!B

!(A × B) ⊗ I

eA×B

?
π1⊗idI- !A ⊗ I

id!A⊗eB

?
A × B

〈ρ
A ◦(ε

A⊗
e
B ),

λ
B ◦(e

A⊗
ε
B )〉 -

!(A × B)

ρ!(A×B)

?

!π1

-

id
!(A

×
B
)

-
!A

ρ!A

?

εA

- A

π1

?

It justifies the upper triangle in the following diagram which establishes one of the two equa-
tions we wish to show. For the sake of readability we leave out any associativity isomorphisms
involved and therefore any bracketing of tensored expressions. Further we write f 2 for f ⊗ f

at times.

!A⊗!B

!(A×B)⊗!(A×B)
δA×B⊗δA×B-

!π1⊗
!π2

-

!!(A×B)⊗!!(A×B)
!!π1⊗!!π2 - !!A⊗!!B

δ
A×δ

B

-

!(A×B)
δA⊗B -

dA
×

B

-

!!(A×B)
!dA×B - !(!(A×B)⊗!(A×B))

m!(A×B),!(A×B)

? !(!π1⊗!π2) - !(!A⊗!B)

m!A,!B

?

!(A×B)

!〈ρA◦(εA⊗eB),λB◦(eA⊗εB)〉

?

εA×B

-

id!(A×B)

-
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Now for the other direction.

!!A⊗!!B
m!A,!B - !(!A⊗!B)

!〈ρA◦(εA⊗eB),

λB◦(eA⊗εB)〉
- !(A×B)

!A⊗!B

δA
⊗δB

-

!!A⊗!!B⊗!!A⊗!!B

(id⊗σ!!A,!!B⊗id)
◦(d!A⊗d!B)

? m!A,!B

⊗m!A,!B

- !(!A⊗!B)⊗!(!A⊗!B)

d!A⊗!B

? !〈ρA◦(εA⊗eB),

λB◦(eA⊗εB)〉2
- !(A×B)⊗!(A×B)

dA×B

?

!A⊗!B⊗!A⊗!B

(id⊗σ!A,!B⊗id)
◦(dA⊗dB)

? id⊗δA

⊗δB⊗id
-

δA
⊗δA

⊗δB
⊗δB

-

!A⊗!!B⊗!!A⊗!B

!εA⊗id⊗id⊗!εB

? mA,!B

⊗m!A,B

- !(A⊗!B)⊗!(!A⊗B)

!(εA⊗id)⊗!(id⊗εB)

?

!A⊗I⊗I⊗!B

id⊗eB⊗eA⊗id

? id⊗mI

⊗mI⊗id
- !A⊗!I⊗!I⊗!B

id⊗!eB⊗!eA⊗id

? mA,I

⊗mI,B

- !(A⊗I)⊗!(I⊗B)

!(id⊗eB)⊗!(eA⊗id)

?

!A⊗!B

!ρA⊗!λB

?�

!π
1
⊗
!π

2

ρA⊗λB

-

The morphism along the bottom of the diagram composes to the identity on !A⊗!B by the
counit rule for comonoids. 2

Theorem A.31 Let C be a model for intuitionistic linear logic. Then its co-Kleisli category
is cartesian closed.

Proof. By the previous proposition the co-Kleisli category C! has finite products, and the
product of A and B is A×B. It remains to find a right adjoint for this functor. This is given
by A → B =!A ( B as is shown by the following series of equations.

C!(A × B,C) ∼= C(!(A × B), C)
∼= C(!A ⊗ !B,C)
∼= C(!A, !B ( C)
∼= C!(A, !B ( C)
∼= C!(A,B → C)

2

A.3 Classical linear logic

Classical linear logic can be understood to be obtained by adding negation to the intuitionistic
fragment—at least if one uses the De Morgan rules to define all the missing connectives (while
this does not do the logic justice it is how the model is built). We will not go into details
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here regarding the full system—see for example [Gir87, Gir95]. Variables in this system come
in dual pairs, and then dualization (or negation) can be defined for all formulae using De
Morgan-style rules. The system is typically two-sided, that is its judgements are of the form

Γ ` ∆,

where both, Γ and ∆ are lists of formulae. Such judgements are interpreted by arrows

A1 ⊗ · · · ⊗ Am
- B1 ⊕ · · · ⊕ Bn,

where Γ = A1, . . . , Am and ∆ = B1, . . . , Bn.
Formulae can be moved to the other side of ` by dualizing them. In particular, we can

freely move between A ` B and B⊥ ` A⊥. Hence on our category we will have to be able to
freely move from morphisms A - B and morphisms B⊥ - A⊥. This suggests having a
contravariant functor C - C as the interpretation of dualization, and one that is its own
inverse.

Definition 22 We say that a category C is self-dual if there is a functor (−)⊥ : C - Cop

such that (−)⊥⊥ is equivalent to the identity on C.

Exercise A.32 Argue that dualization (as the interpretation of negation) should preserve
composition and identities.

Clearly we would like the categorical interpretation of dualization to satisfy the De Morgan
equations connecting the various connectives. For ⊕, t and ? we may indeed use the De
Morgan equations to define interpretations, for example the semantics of A ⊕ B will be

(A⊥ ⊗ B⊥)
⊥
. But the connection we wish to achieve between ⊗ and ( has to be built into

the definition of what a model for (classical) linear logic should be.

Definition 23 A symmetric monoidal category C is ∗-autonomous if has an involutary
duality (−)⊥ and if for every object A, the functor −⊗ A : C - C is left adjoint to

(A ⊗−⊥)
⊥

: C - C.

Exercise A.33 Show that Rel is ∗-autonomous. Hint: the dual of a set is the set itself; for
morphisms the dual is defined by taking the reverse of the relation in question.

In fact, Rel is more than just ∗-autonomous, it is what is called compact closed. A ∗-
autonomous category is compact closed if for all objects A and B, (A ⊗ B)⊥ ∼= A⊥ ⊗ B⊥ or,
equivalently, A ( B ∼= A⊥ ⊗ B. Compact closed categories are degenerate models of linear
logic in the sense that the interpretation of ⊕, which is defined by the De Morgan laws applied
to ⊗, is the same as that for ⊗.

Exercise A.34 (1) Show that a symmetric monoidal closed category is ∗-autonomous if
and only if there is an object ⊥ such that the functor (− ( ⊥) ( ⊥ : C - Cop is a self-
involutary duality on C.

(2) Show that a self-dual category which has finite products also has finite coproducts.

Definition 24 We say that a category C is a model for (classical) linear logic if and only if
it is
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• ∗-autonomous;

• has finite products (and thus finite coproducts);

• has a linear exponential comonad (and thus a linear exponential monad).

In other words, all that is added to a model of intuitionistic linear logic is the self-
dualization, which has to behave well when it comes to connecting the tensor and the linear
function space. The rest of the structure comes for free.
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