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1 Introduction

Glueing is a technique frequently applied in categorical logic and topos theory. We look at
it from the point of view of finding new models for linear logic, but we only consider the
multiplicatives and additives here. In these notes we introduce the simple notion of (double)
glueing along hom-functors. The full generality (including a treatment of the exponentials)
of the construction can be found in in [HS03], and short notes from a more abstract point of
view are available from the author.

Definition 1 A symmetric monoidal closed category C is ∗-autonomous if has an object ⊥

such that the canonical arrows A - (A ( ⊥) ( ⊥ (the transposes of the evaluation maps)
are isomorphisms.

Definition 2 A categorical model of intuitionistic MALL consists of a category which

• is symmetric monoidal closed;

• has finite products;

A model of classical linear logic is a model of intuitionistic logic with a strong duality.

Definition 3 A model for classical MALL consists of a category which

• is ∗-autonomous;

• has finite products and (so) finite coproducts;

Exercise 1 Recall that a ∗-autonomous category C has a self-duality (−)⊥ : Cop - C

with the property that (−)⊥⊥ is isomorphic to the identity on C. Show that a category
equipped with such a self-duality which has finite products also has finite coproducts, and
that such a category also has a second tensor product. (Hint: DeMorgan!)

To generate a ∗-autonomous category from a symmetric monoidal closed one C one can
take C × Cop (sketched in [HS03]). More sophisticated versions are the Chu (see [Chu79,
Bar91]) and dialectica (see [dP91, dP89]) constructions.
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2 Simple Glueing

Assume we have a model C for intuitionistic MALL. The aim here is to provide the objects
with extra structure which has to be preserved by morphisms. When we use a more sophis-
ticated version called double glueing it allows us to start with a compact closed category and
extend it to a ∗-autonomous one where the two tensors given by ⊗ and ((−)⊥ ⊗ (−)⊥)⊥ are
not the same.

We glue along the hom-functor C(I,−) to obtain our first glued category.

Definition 4 Given the category C define GC to be the category with

• objects: an object R of C together with a set U ⊆ C(I, R).

• arrows: an arrow from (R, U) to (S, V ) is an arrow f : R - S in C such that for all
u ∈ U , fu ∈ V .

In other words, we have morphisms of the following kind:

R

S

f

?

such that

I
u

- R ∈ U

im
p
lies

I
u

- R
f
- S ∈ V

Note that there is a forgetful functor GC - C, and this functor preserves all the
categorical structure. To get something that goes in the opposite direction we can equip each
object R of C with the empty subset of C(I, R)), or with the whole of C(I, R).

In order to tie our investigation into glueing along hom-functors into the general theory
we look more closely at the hom-functor under consideration.

Exercise 2 Show that if C is symmetric monoidal then for every object R in C the hom-
functor C(R,−) is symmetric monoidal, as is the contra-variant hom-functor C(−, R).

If we start with with a symmetric monoidal (closed) category, then we get another such
back. For the closed structure, recall that if w : I - R ( S is a morphism in C then
because of the adjunction, it corresponds to an arrow ŵ in

C(I, R ( S) ∼= C(I ⊗ R, S) ∼= C(R, S).

Proposition 2.1 If C is symmetric monoidal then so is GC. The structure is preserved by
the forgetful functor GC - C and it is given by

• (R, U) ⊗ (S, V ) = (R ⊗ S, U ⊗ V ), where

U ⊗ V = {I
∼=
- I ⊗ I

u⊗v
- | u ∈ U, v ∈ V },

• I = (I, {idI}).
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Moreover, if C is symmetric monoidal closed then so is GC, and the additional structure
is given by

(R, U) ( (S, V ) = (R ( S, W ), where

W = {I
w
- R ( S | ∀I

u
- R in U. I

u
- R

ŵ
- S ∈ V }

represents the hom-set GC(R, S) and ŵ is the obvious transpose of w.

Exercise 3 Convince yourself that we have defined a category, and that that category is
indeed symmetric monoidal (closed), provided that the underlying category has the corre-
sponding structure. What are the necessary natural isomorphisms?

Exercise 4 Describe the symmetric monoidal closed category GRel. What’s the best way
to think about the objects? The morphisms? What does the multiplicative structure look
like, redefined in those terms?

(Recall that the symmetric monoidal closed structure on Rel has a tensor given by carte-
sian product, with the obvious extension to morphisms, and that the linear function space of
two sets is once again their cartesian product.)

To interpret the additives we need C to have the corresponding structure.

Proposition 2.2 (i) If C has finite products then so does GC; the functor GC - C

preserves them. They are given by

(R, U) × (S, V ) = (R × S, U × V ) where

U × V = {〈u, v〉 : I - R × S | u ∈ U, v ∈ V }.

The terminal object is (1,C(I,1)).

(ii) If C has finite coproducts then so has GC, and GC - C preserves them. They are
given by

(R, U) + (S, V ) = (R + S, U ⊕ V ) where

U ⊕ V = {I
u
- R

inl
- R + S | u ∈ U} ∪ {I

v
- S

inr
- R + S | v ∈ V }

The unit for the coproduct is (0, ∅).

Exercise 5 Convince yourself that Proposition 2.2 is true, and describe the additive structure
of the category GRel. (Recall that in Rel both sums and products of objects are given by
disjoint unions, and that the projections/injections are the opposites of each other.)

There is nothing special about the co-variant hom-functor here—we could just as well
have used the contravariant one to glue along.

Exercise 6 Assume now that an object of the glued category is an object R of C together
with a subset X ⊆ C(R, J), where J is an arbitrary object of C. Can you turn this into a
category? (Hint: The implication that defines morphisms goes in the opposite direction now.)
Can you make it symmetric monoidal closed? What about sums and products? (Hint: If you
cannot do this exercise you may want to read ahead to double glueing.)
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Examples and applications

Logical relations. Glueing is the abstract mathematical counterpart of the technique of
logical relations. However, this usually requires glueing along a functor other than a hom-
functor and so giving details is beyond the scope of these notes.

Indecomposability. Glueing was first introduced by Freyd to give neat proofs of projec-
tivity and indecomposability results for toposes. One can readily adapt this argument. Let
C be the free symmetric monoidal closed category with coproducts on a collection of objects.
As C is free we have a structure preserving functor C - G given by taking generators A

to (A,C(I, A)). Now the composite C - G - C is the identity. A map I - R + S

in C thus maps to
(I, {idI}) - (R + S, U ⊕ V )

in G; idI maps to either U or V , and so I maps to one of R and S. Thus

C(I, R + S) ∼= C(I, R) + C(I, S),

and I is indecomposable. This argument scales up to the free model for intuitionistic linear
logic with coproducts.

Conservativity. Glueing along the composite of the hom-functor with another allows
neat ways of proving that one category is a conservative extension of another.

3 Double Glueing

The problem with simple glueing is that even if we start with a ∗-autonomous category C

there’s in general no way of making GC ∗-autonomous. How would the duality work with the
extra structure? We would somehow have to turn a subset of C(I, A) into one of C(I, A⊥),
and there’s no general way of doing that.

The answer is that we have to double the extra structure. Then we can use the existing
self-duality on C, and just swap the two parts of the extra structure. Here we only describe
double glueing along hom-functors, but the construction works in general. See [HS03] for
details.

Take C to be a category with an involution0 (−)⊥, so (−)⊥⊥ = idC.

Definition 5 The double glued category GdC has

• objects: (R, U, X), where

– R is an object of C and

– U ⊆ C(I, R) and

– X ⊆ C(R,⊥).

• morphisms: A morphism from A = (R, U, X) to B = (S, V, Y ) is an arrow f : R - S

in C such that

– for all u ∈ U we have fu ∈ V and

0In general, take a self-duality whose square is equivalent to the identity functor, but here we prefer
identities over isomorphisms for a clearer exhibition. There’s a coherence result [CHS06] that tells us this is
not a problem.
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– for all y ∈ Y we have yf ∈ X.

Now morphisms are of the form:

R

S

f

?

such that

I
u

- R ∈ Uim
p
lies

I
u

- R
f
- S ∈ V

and

R
f

- S
y
- ⊥ ∈ X

im
p
li
es

S
y

- ⊥ ∈ Y

So how can we now define an involution on GdC? The idea is that the duality acts on
R as in C, and that we swap the two bits of extra structure U and X. But why should that
work?

Well, we have that U is a subset of C(I, R), and we want to view this as a subset of

C(R⊥,⊥) = C(R⊥, I⊥) ∼= C(I, R)

which is no problem. But by the same argument, we can view X, which is a subset of C(R,⊥)
as a subset of C(I, R).

We do abuse notation by suppressing the isomorphisms that appear above, and simply
write

(R, U, X)⊥ = (R⊥, X, U).

We make similar identifications without further comment below.
Note that there is a forgetful functor from GdC to GC which forgets the second part of

the extra structure, and that functor preserves all the categorical structure. There’s another
forgetful functor from GdC to the glued category that is defined in Exercise 6.

We employ the following notation for a generalized notion of composition. If J is an
arbitrary object in C then for h : R ⊗ S - J and v : I - S, we define 〈v|h〉S : R - J

to be
R ∼= R ⊗ I

idR⊗v
- R ⊗ S

h
- J ;

we can think of this as cutting on S. Provided with some u : I - R we can similarly define
〈u|h〉R : S - J , this time1 cutting on R.

Exercise 7 In order to prove the following proposition, some properties for this generalized
composition have to be established. It might be useful to keep track of those separately so
that they can be reused as appropriate.

Proposition 3.1 If C is ∗-autonomous then so is GdC, and the forgetful functor to C

preserves the ∗-autonomous structure, which is as follows.

• The involution (R, U, X)⊥ = (R⊥, X, U).

• The tensor unit I = (I, {idI},C(I, ⊥)).

1Clearly this notation is not good enough to say which copy of R we cut on if h happens to be a morphism
R ⊗ R - J , but this will not cause us any problems.
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• the tensor product of A = (R, U, X) and B = (S, V, Y ) is

A ⊗ B = (R ⊗ S, U ⊗ V,GdC(A, B⊥)) where

U ⊗ V = {I ∼= I ⊗ I
u⊗v

- R ⊗ S | u ∈ U, v ∈ V } and

GdC(A, B⊥) = {R ⊗ S
z
- ⊥ | ∀I

u
- R ∈ U. 〈u|z〉R : S - ⊥ ∈ Y

∀I
v
- S ∈ V. 〈v|z〉S : R - ⊥ ∈ X}.

Up to natural identification the last component is the set of maps in GdC from (R, U, X)
to (S, V, Y )⊥, hence the notation.

Exercise 8 Convince yourself that the above proposition is true. Calculate the linear func-
tion space of two objects.

Exercise 9 Describe the category arising from applying double glueing to Rel. Do this
by extending your answer to Exercise 4. In your version, is the self-duality anything more
complicated than swapping the two pieces of extra structure on the objects? What does
generalized composition amount to in this setting?

Proposition 3.2 If C has finite products then so has GdC, and the functor GdC - C

preserves them. They are given by

A × B = (R × S, U × V, X ⊕ Y ) where

U × V = {〈u, v〉 : I - R × S | u ∈ U, v ∈ V } and

X ⊕ Y = {R × S
π1
- R

x
- ⊥ | x ∈ X} ∪ {R × S

π2
- S

y
- ⊥ | y ∈ Y }.

The terminal object is (1,C(I,1), ∅).
If C has finite coproducts then so has GdC, and GdC - C preserves them. They are

given by

A + B = (R + S, U ⊕ V, X + Y ) where

X + Y = {[x, y] : R + S - ⊥ | x ∈ X, y ∈ Y } and

U ⊕ V = {I
u
- R

inl
- R + S | u ∈ U} ∪ {I

v
- S

inr
- R + S | v ∈ V }

The unit for the coproduct is (0, ∅,C(0, ⊥)).

Exercise 10 Calculate sums and products in the category GdRel, extending your work in
Exercise 9.

Examples and Applications. Double glueing allows us to define a notion of logical
relation for ∗-autonomous categories, for example Loader’s category of linear logical predi-
cates [Loa94a, Loa94b] is a double glued category.

Double glueing allows the definition of fully complete models of fragments of linear logic
([Tan97] gives a number of examples for the multiplicative fragment, and [BHS] extends this
technique to the additives). There is a formulation of ‘process realizability’ [Abr] which is
based on double glueing, and there are plenty of other examples.
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More sophistication. The double glueing construction allows us to cut down on mor-
phisms by insisting that they preserve some extra structure that is put on objects. For some
situations, the resulting category isn’t quite as we’d like it to be.

For example, one might try to describe Girard’s coherence spaces [Gir87, Gir95] as a double
glued category. A coherence space is given by a set R and a subset U of the finite powerset
of R, PR, the ‘coherent sets’, or ‘cliques’. The collection U has to satisfy the properties that

• every singleton is in U (‘every singleton is coherent’) and

• if u′ ⊆ u ∈ U then u′ ∈ U (‘every subset of a coherent set is coherent’) and

• if u ⊆ R and for all r, r′ ∈ u we have {r, r′} ∈ U then u ∈ U .

We can think of coherence spaces (R, U) as objects in the glued category2 GRel: A
morphism I - R can be thought of as a subset of R, namely the set of those elements of
R who are related to the single element of I by the morphism in question. Hence a subset U

of PR can be viewed as a subset of Rel(I, R). However, to describe the correct morphisms
for coherence spaces we have to think of this as a certain double glued category.

Given a set of coherent sets U we define another subset of PR by setting

U◦ = 3{x ⊆f R | ∀u ∈ U, |u ∩ x| ≤ 1}.

The sets in U◦ are the anti-cliques—they consist of elements which are pairwise incoherent.
Recalling that ⊥ also is a singleton set we note that we can view U ◦ as a subset of Rel(R,⊥).

Exercise 11 Prove that U ⊆ PR is the set of coherent subsets of some set R if and only if
U = U◦◦.

We find it convenient to make this part of the structure of a coherence space, in other
words, we use (R, U, U◦), which is an object of GdRel. At first sight, U◦ adds nothing to
the available information, but that isn’t quite true because we need it in order to specify the
morphisms we wish to consider for coherence spaces.

A morphism (R, U, U◦) - (V, V, V ◦) is given by a relation

f : R +- V

such that

u ∈ U f [y] = {r ∈ R | ∃s ∈ y. (r, s) ∈ f} ∈ U ◦

im
p
lies im

p
li
es

[u]f = {s ∈ V | ∃r ∈ u. (r, s) ∈ f} ∈ V y ∈ V ◦.

In other words, morphisms are precisely the morphisms of GdRel. Hence we may think
of coherence spaces as a certain subcategory4 of GdRel. However, the categorical structure

2This should be clear already to those who have done Exercise 4.
3Most people use U

⊥ for our U
◦, but the symbol ⊥ is quite overloaded enough already!

4Or, for those who know the usual definition of coherence spaces, there is a full and faithful functor that
embeds these into G

d
Rel.
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of the double glued category is not that for coherence spaces. Given (R, U, U ◦) and (V, V, V ◦)
their tensor product in GdRel, (R ⊗ V, U ⊗ V, Z), has a second component

U ⊗ V ⊆ P(R ⊗ V )

which is not closed with respect to forming subsets, so this does not describe a coherence space.
In other words, the subcategory of coherence spaces is not closed under tensor (although it
is closed under negation), and similar issues arise with the additive structure.

There is a way of defining a subcategory of the double glued category that does have the
correct categorical structure: We take the definition in GdRel and then apply the closure
operation (−)◦◦ to the second component, and apply (−)◦ to that to obtain the desired third
component.5 That does give rise to a category that is equivalent to the usual category of
coherence spaces.

In general one can use the notion of an orthogonality (in our example that role is taken by
(−)◦◦) to create subcategories of a double glued category (when glueing along hom-functors)
using the same idea. Details are again given in [HS03].
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