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Abstract. Many modern applications of description logics (DLs) re-
quire answering queries over large data quantities, structured accord-
ing to relatively simple ontologies. For such applications, we conjectured
that reusing ideas of deductive databases might improve scalability of
DL systems. Hence, in our previous work, we developed an algorithm
for reducing a DL knowledge base to a disjunctive datalog program. To
test our conjecture, we implemented our algorithm in a new DL rea-
soner KAON2, which we describe in this paper. Furthermore, we created
a comprehensive test suite and used it to conduct a performance eval-
uation. Our results show that, on knowledge bases with large ABoxes
but with simple TBoxes, our technique indeed shows good performance;
in contrast, on knowledge bases with large and complex TBoxes, exist-
ing techniques still perform better. This allowed us to gain important
insights into strengths and weaknesses of both approaches.

1 Introduction

Description logics (DLs) are a family of knowledge representation formalisms
with applications in numerous areas of computer science. They have long been
used in information integration [1, Chapter 16], and they provide a logical foun-
dation for OWL—a standardized language for ontology modeling in the Semantic
Web [10]. A DL knowledge base is typically partitioned into a terminological (or
schema) part, called a TBox, and an assertional (or data) part, called an ABox.
Whereas some applications rely on reasoning over large TBoxes, many DL ap-
plications involve answering queries over knowledge bases with small and simple
TBoxes, but with large ABoxes. For example, the documents in the Semantic
Web are likely to be annotated using simple ontologies; however, the number of
annotations is likely to be large. Similarly, the data sources in an information
integration system can often be described using simple schemata; however, the
data contained in the sources is usually very large.

Reasoning with large data sets was extensively studied in the field of deduc-
tive databases, resulting in several techniques that have proven themselves in
practice. Motivated by the prospect of applying these techniques to query an-
swering in description logics, in our previous work we described a novel reasoning
algorithm [12] that reduces a SHIQ knowledge base KB to a disjunctive dat-
alog program DD(KB) while preserving the set of relevant consequences. This



algorithm is quite different from tableau algorithms [1, Chapter 2] and their opti-
mizations [9], used in state-of-the-art DL reasoners such as RACER [8], FaCT++
[22], or Pellet [17].

We conjectured that our algorithm will scale well to knowledge bases with
large ABoxes and simple TBoxes. In particular, we expected great benefits from
techniques such as magic sets [4] or join-order optimizations. Furthermore, we
identified a Horn fragment of SHIQ [13], for which our algorithm exhibits poly-
nomial data complexity (that is, the complexity measured in the size of the
ABox, assuming the TBox is fixed in size).

To test our conjecture, we implemented the reduction algorithm in a new DL
reasoner KAON2.1 To obtain an efficient system, we developed several optimiza-
tions of the initial algorithm and of known implementation techniques. In this
paper we outline the design of the system and overview the employed techniques.
Due to lack of space, we are unable to present all optimizations in full detail; for
more information, please refer to [15].

Providing an objective account of the performance of our approach proved
to be difficult because there are no widely recognized benchmarks for query
answering. To fill this gap, we created a benchmark suite consisting of several
ontologies with TBoxes of varying size and complexity, and with large ABoxes.
In this paper, we discuss the guidelines we followed in selecting the test data.
Our benchmarks are freely available on the Web,2 and we hope that they can
provide a starting point for a standard DL test suite.

Finally, we conducted extensive performance tests with KAON2, RACER,
and Pellet. To obtain a complete picture of the performance of our algorithms,
apart from ABox reasoning tests, we also performed several TBox reasoning
tests. The results were twofold, and were roughly in line with our expectations.
Namely, on ontologies with a small TBox but a large ABox, our algorithm out-
performed its tableau counterparts; however, on ontologies with a complex TBox
but a small ABox, existing algorithms exhibited superior performance. We dis-
cuss these results, and provide insight into strengths and weaknesses of either
algorithm. This may provide useful guidance to developers of future DL systems.

Summing up, our reasoning algorithm provides good performance for knowl-
edge bases which do not rely too heavily on modal reasoning, but are more akin
to logic programs. However, the boundary between the two extreme use-cases
is not clear-cut. As a consequence, we now have a more comprehensive set of
reasoning techniques for expressive DLs, allowing the users to choose the one
that best suits the needs of their application.

2 Preliminaries

We now present the syntax and the semantics of the DL SHIQ [11]—the for-
malism underlying KAON2. Given a set of role names NR, a SHIQ role is either
some R ∈ NR or an inverse role R− for R ∈ NR. A SHIQ RBox KBR is a

1 http://kaon2.semanticweb.org/
2 http://kaon2.semanticweb.org/download/test ontologies.zip



Table 1. Semantics of SHIQ by Mapping to FOL

Translating Concepts to FOL
πy(A, X) = A(X) πy(C ⊓ D, X) = πy(C, X) ∧ πy(D, X)

πy(¬C, X) = ¬πy(C, X) πy(∀R.C, X) = ∀y : R(X, y) → πx(C, y)
πy(≥ n S.C, X) = ∃y1, . . . , yn :

V
S(X, yi) ∧

V
πx(C, yi) ∧

V
yi 6≈ yj

Translating Axioms to FOL
π(C ⊑ D) = ∀x : πy(C, x) → πy(D, x) π(C(a)) = πy(C, a)
π(R ⊑ S) = ∀x, y : R(x, y) → S(x, y) π(R(a, b)) = R(a, b)

π(a ◦ b) = a ◦ b for ◦ ∈ {≈, 6≈}
π(Trans(R)) = ∀x, y, z : R(x, y) ∧ R(y, z) → R(x, z)

Translating KB to FOL
π(R) = ∀x, y : R(x, y) ↔ R−(y, x)

π(KB) =
V

R∈NR
π(R) ∧

V
α∈KBT ∪KBR∪KBA

π(α)

X is a meta variable and is substituted by the actual variable. πx is obtained from
πy by simultaneously substituting x(i) for all y(i), respectively, and πy for πx.

finite set of role inclusion axioms R ⊑ S and transitivity axioms Trans(R), for
R and S SHIQ roles. For R ∈ NR, we set Inv(R) = R− and Inv(R−) = R, and
assume that R ⊑ S ∈ KBR (Trans(R) ∈ KBR) implies Inv(R) ⊑ Inv(S) ∈ KBR

(Trans(Inv(R)) ∈ KBR). A role R is said to be simple if Trans(S) /∈ KBR for
each S ⊑∗ R, where ⊑∗ is the reflexive-transitive closure of ⊑.

Given a set of concept names NC , the set of SHIQ concepts is the minimal
set such that each A ∈ NC is a SHIQ concept and, for C and D SHIQ concepts,
R a role, S a simple role, and n a positive integer, ¬C, C ⊓ D, ∀R.C, and
≥ n S.C are also SHIQ concepts. We use ⊤, ⊥, C1 ⊔C2, ∃R.C, and ≤ n S.C as
abbreviations for A⊔¬A, A⊓¬A, ¬(¬C1⊓¬C2), ¬∀R.¬C, and ¬(≥ (n + 1)S.C),
respectively. A TBox KBT is a finite set of concept inclusion axioms of the form
C ⊑ D. An ABox KBA is a finite set of axioms C(a), R(a, b), and (in)equalities
a ≈ b and a 6≈ b. A knowledge base KB is a triple (KBR,KBT ,KBA). The
semantics of KB is given by translating it into first-order logic by the operator
π from Table 1.

A query Q over KB is a conjunction of literals A(s) and R(s, t), where s
and t are variables or constants, R is a role, and A is an atomic concept. In our
work, we assume that all variables in a query should be mapped to individuals
explicitly introduced in the ABox. Then, a mapping θ of the free variables of Q
to constants is an answer of Q over KB if π(KB) |= Qθ.

3 KAON2 Architecture

KAON2 is a DL reasoner developed at the University of Manchester and the
University of Karlsruhe. The system can handle SHIQ knowledge bases ex-
tended with DL-safe rules—first-order clauses syntactically restricted in a way
that makes the clauses applicable only to individuals mentioned in the ABox,
thus ensuring decidability. KAON2 implements the following reasoning tasks: de-
ciding knowledge base and concept satisfiability, computing the subsumption hi-
erarchy, and answering conjunctive queries without distinguished variables (i.e.,
all variables of a query can be bound only to explicit ABox individuals, and not



Fig. 1. KAON2 Architecture

to individuals introduced by existential quantification). It has been implemented
in Java 1.5.

Figure 1 describes the technical architecture of KAON2. The Ontology API

provides ontology manipulation services, such as adding and retrieving axioms.
The API fully supports OWL and the Semantic Web Rule Language (SWRL) at
the syntactic level. Several similar APIs already exist, such as the OWL API [3]
or Jena.3 However, to obtain an efficient system, we needed complete control over
the internals of the API, and could thus not reuse an existing implementation.
Ontologies can be saved in files, using either OWL RDF4 or OWL XML5 syntax.
Alternatively, ABox assertions can be stored in a relational database (RDBMS):
by mapping ontology entities to database tables, KAON2 will query the database
on the fly during reasoning.

The Reasoning API allows one to invoke various reasoning tasks, and to
retrieve their results.

All APIs can be be invoked either locally, using KAON2 as a dynamic library,
or remotely, for example, through the DL Implementors Group (DIG) interface.

The central component of KAON2 is the Reasoning Engine, which is based
on the algorithm for reducing a SHIQ knowledge base KB to a disjunctive dat-
alog program DD(KB) [12]. To understand the intuition behind this algorithm,
considering the knowledge base KB = {C ⊑ ∃R.E1, E1 ⊑ E2, ∃R.E2 ⊑ D}.
For an individual x in C, the first axiom implies existence of an R-successor y
in E1. By the second axiom, y is also in E2. Hence, x has an R-successor y in
E2, so, by the third axiom, x is in D. The program DD(KB) contains the rules
E2(x) ← E1(x) and D(x) ← R(x, y), E2(x), corresponding to the second and
the third axiom, respectively. However, the first axiom of KB is not represented
in DD(KB); instead, DD(KB) contains the rule D(x) ← C(x). The latter rule
can be seen as a “macro”: it combines into one step the effects of all mentioned
inference steps, without expanding the R-successors explicitly.

Computing all relevant “macro” rules is performed by saturating the TBox of
KB using basic superposition (BS) [2, 16] (a clausal refutation calculus), which

3 http://jena.sourceforge.net/
4 http://www.w3.org/TR/owl-semantics/
5 http://www.w3.org/TR/owl-xmlsyntax/



is implemented in the Theorem Prover subcomponent of the Reasoning Engine.
Although there are several efficient theorem provers for first-order logic (e.g.,
Vampire [19], E [20], or Otter [14]), we decided to implement our own theorem
prover, due to the following reasons. First, we are unaware of an existing imple-
mentation of basic superposition. Second, existing systems usually do not come
with a comprehensive API, which makes their integration into other systems
difficult. Third, our theorem prover is not used primarily to check TBox incon-
sistency (an inconsistent TBox is usually a modeling error); rather, it is used
to compute all “macro” rules that logically follow from a TBox. Hence, whereas
most theorem provers are geared towards unsatisfiable problems, ours is geared
towards satisfiable problems. This allows us to make several simplifying assump-
tions. For example, unlike most existing theorem provers, ours spends very little
time in deciding which clause to work on next (in most cases, all clauses must
be considered anyway). Fourth, we were not interested in building a general
theorem prover; rather, we wanted a prover that implements our algorithm effi-
ciently. This allowed the implementation to be further simplified. In particular,
our algorithm must handle only unary and binary literals containing shallow
terms, for which unification can be implemented in constant time. Furthermore,
clauses can be efficiently indexed using a variant of feature vector indexing [21].

The Ontology Clausification subcomponent of the Reasoning Engine is re-
sponsible for translating the TBox of a SHIQ knowledge base KB into a set of
first-order clauses. As our experiments confirm, it is very important to reduce the
number of clauses produced in the translation. To this purpose, we use several
simple optimizations of the clausification algorithm. In particular, if several ax-
ioms contain the same nested subconcept, we replace all their occurrences with
a new atomic concept. For example, in axioms C ⊑ ∃R.∃S.D and E ⊑ ∀T.∃S.D
the concept ∃S.D occurs twice, so we replace all its occurrences with a new con-
cept Q. We thus obtain the set of equisatisfiable axioms C ⊑ ∃R.Q, E ⊑ ∀T.Q,
and Q ⊑ ∃S.D, which produces fewer clauses than the original one. Another op-
timization involves functional roles: if R is functional, the existential quantifier
in each occurrence of a formula ∃y : [R(x, y) ∧ C(y)] (stemming from a concept
∃R.C) can be skolemized using the same function symbol.

The Disjunctive Datalog Engine subcomponent of the Reasoning Engine is
used for answering queries in the disjunctive datalog program obtained by the
reduction. Although several disjunctive datalog engines exist (e.g., DLV [5]), we
decided to implement our own engine, due to the following reasons. First, existing
engines do not come with a comprehensive API, which makes their integration
into other systems difficult. Second, our reduction produces only positive data-
log programs—that is, programs without negation-as-failure. We also do not rely
on the minimal model semantics of disjunctive datalog. Thus, we can eliminate
the minimality test from our implementation and avoid unnecessary overhead.
Third, model building is an important aspect of reasoning in disjunctive dat-
alog. To compute the models, disjunctive datalog engines usually ground the
disjunctive program. Although this process has been optimized using intelligent

grounding [6], grounding can be very expensive on large data sets. In contrast,



the models of our programs are of no interest. To avoid grounding, we answer
queries using hyperresolution with answer literals. Fourth, disjunctive datalog
engines typically do not provide for the first-order equality predicate, which we
use to correctly support number restrictions.

Due to space constraints, we cannot present the implementation techniques
used in KAON2 in more detail; for more information, please see [15].

4 Benchmarks for ABox and TBox Reasoning

Comparing the performance of DL reasoning systems objectively is difficult be-
cause there are no widely accepted benchmarks. Certain ontologies have estab-
lished themselves as standards for testing TBox reasoning; however, to the best
of our knowledge, there are no such standard tests for ABox reasoning. Hence,
we constructed our own data set, which we present in this section. The data set
is freely available from the KAON2 Web site,6 and we hope it can be used as a
foundation for an extensive DL benchmark suite.

4.1 Selecting Test Data

We wanted to base our tests as much as possible on ontologies created and used in
real projects; our intuition was that such ontologies reflect the relevant use cases
more accurately than the synthetically generated ones. However, most ontologies
currently used in practice seem to fall into two categories: they either have a
complex TBox, but no ABox, or they have a large ABox, but a very simple TBox.
To obtain tests with interesting TBoxes, we used synthetic ontologies as well.
Furthermore, to obtain ABoxes of sufficient size, we applied replication—copying
an ABox several times with appropriate renaming of individuals in axioms.

One of our goals was to study the impact of various DL constructors on the
reasoning performance. In particular, we expected that the presence of equality
(stemming from number restrictions), existential quantifiers, and disjunctions
will have adverse effects on the performance of reasoning. Therefore, we selected
test ontologies that specifically use (a combination of) these constructors.

For some ontologies, the authors also supplied us with the queries used in
their projects, which we then reused in our tests. Namely, these queries were
usually sent to us because they caused performance problems in practice, so
there is reason to believe that they are “hard.” Moreover, we expect these queries
to better reflect the practical use cases of their respective ontologies.

4.2 Test Ontologies and Queries

VICODI 7 is an ontology about European history, manually created in the EU-
funded project VICODI. The TBox is relatively small and simple: it consists of

6 http://kaon2.semanticweb.org/download/test ontologies.zip
7 http://www.vicodi.org/



role and concept inclusion axioms, and of domain and range specifications; fur-
thermore, it does not contain disjunctions, existential quantification, or number
restrictions. However, the ABox is relatively large and it contains many intercon-
nected individuals. Because the TBox does not contain existential quantifiers,
equality, or disjunctions, it can be converted into a nondisjunctive equality-
free datalog program directly, without invoking the reduction algorithm. Hence,
query answering for VICODI can be realized using a deductive database only;
furthermore, it is possible to deterministically compute the canonical model of
the ontology.

With vicodi 0 we denote the ontology from the project, and with vicodi n
the one obtained by replicating n times the ABox of vicodi 0.

From the ontology author we received the following two queries, which are
characteristic of the queries used in the project. The first one is a simple concept
retrieval, and the second one is a more complex conjunctive query.

QV1
(x) ≡ Individual(x)

QV2
(x, y, z) ≡ Military-Person(x), hasRole(y, x), related(x, z)

SEMINTEC is an ontology about financial services, created in the SEM-
INTEC project8 at the University of Poznan. Like VICODI, this ontology is
relatively simple: it does not use existential quantifiers or disjunctions; it does,
however, contain functionality assertions and disjointness constraints. Therefore,
it requires equality reasoning, which is known to be hard for deductive databases.

With semintec 0 we denote the ontology from the project, and with sem-
intec n the one obtained by replicating n times the ABox of semintec 0.

From the ontology author, we obtained the following two queries, which are
characteristic of the queries used in the project.

QS1
(x) ≡ Person(x)

QS2
(x, y, z) ≡ Man(x), isCreditCardOf (y, x),Gold (y), livesIn(x, z),Region(z)

LUBM 9 is a benchmark developed at the Lehigh University for testing per-
formance of ontology management and reasoning systems [7]. The ontology de-
scribes organizational structure of universities and it is relatively simple: it does
not use disjunctions or number restrictions, but it does use existential quanti-
fiers, so our reduction algorithm must be used to eliminate function symbols.
Due to the absence of disjunctions and equality, the reduction algorithm pro-
duces an equality-free Horn program. In other words, query answering on LUBM
can be performed deterministically.

LUBM comes with a generator, which we used instead of ABox replication
to obtain the test data. With lubm n de denote the ontology obtained from the
generator by setting the number of universities to n. The test generator creates
many small files; to make these ontologies easier to handle, we merged them into
a single file.

8 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
9 http://swat.cse.lehigh.edu/projects/lubm/index.htm



The LUBM Web site provides 14 queries for use with the ontology, from which
we selected the following three. With QL1

we test the performance of concept
retrieval, with QL2

we test how the performance changes if QL1
is extended with

additional atoms, and with QL3
we make sure that our results are not skewed

by the particular choice of concepts.

QL1
(x) ≡ Chair (x)

QL2
(x, y) ≡ Chair (x),worksFor (x, y),Department(y),

subOrganizationOf (y, “http://www.University0.edu”)
QL3

(x, y, z) ≡ Student(x),Faculty(y),Course(z), advisor (x, y),
takesCourse(x, z), teacherOf (y, z)

Wine10 is an ontology containing a classification of wines. It uses nominals,
which our algorithms cannot handle, so we apply a sound but an incomplete
approximation: we replace each enumerated concept {i1, . . . , in} with a new
concept O and add assertions O(ik). This approximation of nominals is incom-
plete for query answering: for completeness one should further add a clause
¬O(x) ∨ x ≈ i1 ∨ . . . ∨ x ≈ in; however, doing this would destroy the termina-
tion property of our algorithms. The resulting ontology is relatively complex: it
contains functional roles, disjunctions, and existential quantifiers.

With wine 0, we denote the original ontology, and with wine n the one ob-
tained by replicating 2n times the ABox of wine 0.

Elimination of nominals changes the semantics of most concepts in the knowl-
edge base. Hence, we ran only the following query, which involved computing
several nontrivial answers:

QW1
(x) ≡ AmericanWine(x)

It is justified to question whether the Wine ontology is suitable for our tests.
However, as we already mentioned, we were unable to find an ontology with a
complex TBox and an interesting ABox. The approximated Wine ontology was
the only one that, at least partially, fulfilled our criteria.

DOLCE11 is a foundational ontology developed at the Laboratory for Applied
Ontology of the Italian National Research Council. It is very complex, and no
reasoner currently available can handle it. Therefore, the ontology has been
factored into several modules. We used the DOLCE OWL version 397, up to the
Common module (this includes the DOLCE-Lite, ExtDnS, Modal and Common
modules). Because the ontology does not have an ABox, we used it only for
TBox testing.

We have observed that the performance of KAON2 on DOLCE significantly
depends on the presence of transitivity axioms. Hence, we included in our bench-
marks a version of DOLCE obtained by removing all transitivity axioms.

10 http://www.schemaweb.info/schema/SchemaDetails.aspx?id=62
11 http://www.loa-cnr.it/DOLCE.html



Table 2. Statistics of Test Ontologies

KB C ⊑ D C ≡ D C ⊓ D ⊑ ⊥ functional domain range R ⊑ S C(a) R(a, b)
vicodi 0 16942 36711
vicodi 1 33884 73422
vicodi 2 193 0 0 0 10 10 10 50826 110133
vicodi 3 67768 146844
vicodi 4 84710 183555

semintec 0 17941 47248
semintec 1 35882 94496
semintec 2 55 0 113 16 16 16 6 53823 141744
semintec 3 71764 188992
semintec 4 89705 236240

lubm 1 18128 49336
lubm 2 36 6 0 0 25 18 9 40508 113463
lubm 3 58897 166682
lubm 4 83200 236514
wine 0 247 246
wine 1 741 738
wine 2 1235 1230
wine 3 1729 1722
wine 4 2223 2214
wine 5 126 61 1 6 6 9 9 2717 2706
wine 6 5187 5166
wine 7 10127 10086
wine 8 20007 19926
wine 9 39767 39606
wine 10 79287 78966
dolce 203 27 42 2 253 253 522 0 0
galen 3237 699 0 133 0 0 287 0 0

GALEN 12 is a medical terminology developed in the GALEN project [18].
It has a very large and complex TBox and no ABox, and has traditionally been
used as a benchmark for terminological reasoning.

Table 2 shows the number of axioms for each ontology.

5 Performance Evaluation

The main goal of our performance evaluation was to test the scalability of our
algorithm—that is, to see how performance of query answering depends on the
amount of data and on the complexity of different ontologies. This should give
us an idea about the kinds of ontologies that can be efficiently handled us-
ing our algorithm. Additionally, we wanted to compare our reasoning algorithm
with its tableau counterparts. This goal turned out to be somewhat difficult
to achieve. Namely, we are only able to compare implementations, and not the
algorithms themselves. DL algorithms are complex, and overheads in maintain-
ing data structures or memory management can easily dominate the run time;
furthermore, the implementation language itself can introduce limitations that
become evident when dealing with large data sets. Therefore, the results we
present in this section should be taken qualitatively, rather than quantitatively.

12 We obtained GALEN through private communication with Ian Horrocks.



5.1 Test Setting

We compared the performance of KAON2 with RACER and Pellet. To the best
of our knowledge, these are the only reasoners that provide sound and complete
algorithms for SHIQ with ABoxes.

RACER13 [8] was developed at the Concordia University and the Hamburg
University of Technology, and is written in Common Lisp. We used the ver-
sion 1.8.2, to which we connected using the JRacer library. RACER provides
an optimized reasoning mode (so-called nRQL mode 1), which provides signif-
icant performance improvements, but which is complete only for certain types
of knowledge bases. When we conducted the evaluation, RACER did not au-
tomatically recognize whether the optimized mode is applicable to a particular
knowledge base, so we used RACER in the mode which guarantees complete-
ness (so-called nRQL mode 3). Namely, determining whether optimizations are
applicable is a form of reasoning which, we believe, should be taken into account
in a fair comparison.

Pellet14 [17] was developed at the University of Maryland, and was the first
system to fully support OWL-DL, taking into account all the nuances of the
specification. It is implemented in Java, and is freely available with the source
code. We used the version 1.3 beta.

We asked the authors of each tool for an appropriate sequence of API calls for
running tests. For each reasoning task, we started a fresh instance of the reasoner
and loaded the test knowledge base. Then, we measured the time required to
execute the task. We made sure that all systems return the same answers.

Many optimizations of tableau algorithms involve caching computation re-
sults, so the performance of query answering should increase with each sub-
sequent query. Furthermore, both RACER and Pellet check ABox consistency
before answering the first query, which typically takes much longer than com-
puting query results. Hence, starting a new instance of the reasoner for each
query might seem unfair. However, we did not yet consider caching for KAON2;
furthermore, materialized views were extensively studied in deductive databases,
and were successfully applied to ontology reasoning [23]. Also, KAON2 does not
perform a separate ABox consistency test because ABox inconsistency is discov-
ered automatically during query evaluation; we consider this to be an advantage
of our approach.

Due to these reasons, we decided to measure only the performance of the
actual reasoning algorithm, and to leave a study of possible materialization and
caching strategies for future work. Since ABox consistency checking is a signifi-
cant source of overhead for tableau systems, we measured the time required to
execute it separately. Hence, in our tables, we distinguish the one-time setup

time (S) from the query processing time (Q) for Pellet and RACER. This some-
what compensates for the lack of caching: most caches are computed during
setup time, so one can expect that subsequent queries will be answered in time
similar to the one required for the first query after setup.

13 http://www.racer-systems.com/
14 http://www.mindswap.org/2003/pellet/index.shtml



The time for computing the datalog program in KAON2 was comparatively
small to the time required to evaluate the program. Therefore, in our test results,
we simply included the reduction time into the total query time.

All tests were performed on a laptop computer with a 2 GHz Intel processor,
1 GB of RAM, running Windows XP Service Pack 2. For Java-based tools, we
used Sun’s Java 1.5.0 Update 5. The virtual memory of the Java virtual machine
was limited to 800 MB, and each test was allowed to run for at most 5 minutes.

The results of all tests are shown in Figure 2. Tests which ran either out of
memory or out of time are denoted with a value of 10000.

5.2 Querying Large ABoxes

VICODI. The results show that Pellet and RACER spend the bulk of their time
in checking ABox consistency by computing a completion of the ABox. Because
the ontology is simple, no branch splits are performed, so the process yields a
single completion representing a model. Query answering is then very fast in
Pellet, as it just requires model lookup. Note that, other than for vicodi 0, the
time KAON2 takes to answer queries depends very little on the data size.

It may seem odd that KAON2 takes longer to answer QV1
on vicodi 0 than on

vicodi 1. Repeated tests produced results consistent with the ones reported here.
After further analysis, we discovered that this is caused by choosing a suboptimal
sideways information passing strategy in the magic sets transformation. We shall
try to address this problem in our future research.

SEMINTEC. The SEMINTEC ontology is roughly of the same size as the VI-
CODI ontology; however, the time that KAON2 takes to answer a query on
SEMINTEC is one order of magnitude larger than for the VICODI ontology.
This is mainly due to equality, which is difficult for deductive databases. Namely,
since any part of the knowledge base can imply two individuals to be equal, tech-
niques such as magic sets that localize reasoning to a portion of the ABox are less
effective. Also, notice that all three tools exhibit roughly the same dependency
on the size of the data set.

LUBM. As our results show, LUBM does not pose significant problems for
KAON2; namely, the translation produces an equality-free Horn program, which
KAON2 evaluates in polynomial time. Hence, the time required to answer a
query for KAON2 grows moderately with the size of the data set.

Although LUBM is roughly of the same size as VICODI, both Pellet and
RACER performed better on the latter; namely, Pellet was not able to answer
any of the LUBM queries within the given resource constraints, and RACER
performed significantly better on VICODI than on LUBM. We were surprised
by this result: the ontology is still Horn, so an ABox completion can be computed
in advance and used as a cache for query answering. By analyzing a run of Pellet
on lubm 1 in a debugger, we observed that the system performs disjunctive
reasoning (i.e., it performs branch splits). Further investigation showed that this
is due to absorption [9]—a well-known optimization technique used by all tableau



Note: (S) — one-time setup time (including ABox consistency check)
(Q) — time required to process the query

Fig. 2. Test Results



Fig. 2. Test Results (continued)

reasoners. Namely, an axiom of the form C ⊑ D, where C is a complex concept,
increases the amount of don’t-know nondeterminism in a tableau because it
yields a disjunction ¬C ⊔D in the label of each node. If possible, such an axiom
is transformed into an equivalent definition axiom A ⊑ C′ (where A is an atomic
concept), which can be handled in a deterministic way. The LUBM ontology
contains several axioms that are equivalent to A ⊑ B⊓∃R.C and B⊓∃R.C ⊑ A.
Now the latter axiom contains a complex concept on the left-hand side of ⊑, so it
is absorbed into an equivalent axiom B ⊑ A⊔∀R.¬C. Whereas this is a definition
axiom, it contains a disjunction on the right-hand side, and thus causes branch
splits. This could perhaps be improved by extending the tableau calculus with
an inference rule similar to hyperresolution. Namely, an axiom B ⊓ ∃R.C ⊑ A
is equivalent to the clause B(x) ∧R(x, y)∧C(y)→ A(x). In resolution, one can
select the literals on the left-hand side of the implication, which allows the clause
to “fire” only if all three literals can be resolved simultaneously. It remains to
see whether this is possible in a tableau setting without affecting the correctness
and the termination of the calculus.

Wine. The results show that the ontology complexity affects the performance:
the ontology wine 0 is significantly smaller than, say, lubm 1, but the times for
KAON2 are roughly the same in the two cases. In fact, KAON2 exhibits roughly
the same performance as RACER on this test. The degradation of performance
in KAON2 is mainly due to disjunctions. On the theoretical side, disjunctions
increase the data complexity of our algorithm from P to NP [13]. On the practical
side, the technique for answering queries in disjunctive programs used in KAON2
should be further optimized.

5.3 TBox Reasoning

Our TBox reasoning tests clearly show that the performance of KAON2 lags
behind the performance of the tableau reasoners. This should not come as a
surprise: in the past decade, many optimization techniques for TBox reasoning



were developed for tableau algorithms, and these techniques are not directly
applicable to the resolution setting. Still, KAON2 can classify DOLCE without
transitivity axioms, which is known to be a fairly complex ontology. Hence, we
believe that developing additional optimization techniques for resolution algo-
rithms might yield some interesting and practically useful results.

We analyzed the problems which KAON2 failed to solve. Roughly speak-
ing, all these problems contained many concepts of the form ∃R.C and ∀R.D
involving the same role R. The first type of concepts produces clauses with a
literal R(x, f(x)), whereas the second type of clauses produces clauses with a
literal ¬R(x, y). Obviously, these clauses can participate in a quadratic number
of resolution inferences in the beginning of a saturation, which eventually leads
to an exponential blowup. This explains why KAON2 is not able to classify the
original DOLCE ontology, but why it works well if the transitivity axioms are re-
moved: the approach for dealing with transitivity in KAON2 introduces axioms
that, when clausified, produce many clauses with such literals.

6 Conclusion

In this paper, we described KAON2—a DL reasoner based on a novel reason-
ing algorithm that allows for the application of optimization techniques from
deductive databases to DL reasoning. To verify our conjecture that such algo-
rithms will scale well in practice, we created a set of benchmarks and conducted
a thorough performance evaluation. The results were roughly in line with our
expectations: for ontologies with rather simple TBoxes, but large ABoxes, our
algorithm indeed provides good performance; however, for ontologies with large
and complex TBoxes, existing algorithms still provide superior performance.

For our future work, the main challenge is to extend the reduction algo-
rithm to handle nominals. Furthermore, we believe that optimizations based on
ABox statistics will provide further significant improvements. Finally, we shall
investigate further optimizations of TBox reasoning.
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