
DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 1

OWL Biomedical Ontology Tutorial
(Protégé/OWL Version 3.0)

ALR
February 2005

1. Introduction
1.1 Goals and plan of tutorial

This tutorial is intended to take you through the basics of building an ontology in a biomedical
area using the Protégé-OWL tools in the style suggested by the GALEN experience.
This tutorial assumes that you have already done at least the first part of the Protégé-OWL “Pizza
Tutorial” [1]
 http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf or one of its variants.
One of the hardest parts of building any ontology is getting started and choosing appropriate high
level concepts. The tutorial starts with a ready built high level ontology. You can ignore the
details, but the outline is consistent with what we recommend. The ontology provides medical
concepts down to Organs, OrganPart and Disorder. It provides a few biological concepts
including the notions of Cell, CellularStructure, CellularProcess, and MembraneTransport.
The single organ Lung is supplied along with the MicroOrganism categories Bacterium, Virus,
and Pneumococcus.

Overall the goal of the first phase of the exercise is to construct representations for the notions of
“Pneumococal Pneumonia” and “Enzyme for membrane transport”.
The approach of the tutorial is first to work through the recommended solution of each issue and
then to demonstrate the problems which occur if any of several alternatives are used. For some
things, a simple version is given first and then a more sophisticated version later in the tutorial.

1.2 What is OWL?
1.2.1 What is it?

The language which has been known in various revisions as OIL, DAML+OIL, and now OWL is
standard knowledge representation language of the Semantic Web community developed by
W3C (the organisation that manages the web standards1). OWL is based description logics as a
the next layer on top of node-and-arc style representations and a layer on top of RDFS. OWL,
particularly in the Protégé-OWL editor, looks somewhat like a frame language. However, it has
a formal logical semantics. There are classifiers available to check whether concepts and
knowledge bases are consistent and to infer classification automatically. The concrete syntax
underneath is in RDF/XML and not very useful directly. (In fact it is hideously ugly and to be
avoided.) There is an abstract syntax and Protégé OWL provides several variant syntaxes. We
strongly recommend that one of these be used in writing.
(For more detail see http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf)

1.2.2 What is in it?
The following should be familiar from the Protégé-OWL tutorial, but as a review, the basic
constructs in OWL are:
• Classes – known in other systems as “concepts”, “categories”, or “types”, e.g. “Person”,

“Diabetes”, “Fracture of neck of left femur”, etc. Classes come in two kinds
• Primitive classes – classes for concepts which have no complete definition although they

may be described and placed in a hierarchy
• Defined classes – which are defined from other classes using the various operators in the

language.

1 see http://www.w3c.org/

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 2

• Properties – known in other systems as “slots”, “relations”, “attributes”, or “roles”
• Restrictions – known in other systems as “filled slots”, “statements”, “relationships”,

“relation instances”, or “criteria”, or (confusingly) “properties – links between classes by
means of properties. A quantified Class-property-class triple.

• Axioms – which provide additional information about classes
1.2.3 What can I do with it?

OWL allows the expression of an ‘ontology’ or logical model of a set of concepts (entities) and
the relations amongst them in such a way that they can be tested for consistency and classified
automatically. The logic used is a subset of first order logic that has been selected to be
computationally tractable. (Proof in full first order logic is undecidable.)

1.2.4 If this isn’t clear

Don’t worry. The purpose of this tutorial is to demonstrate what we mean.

1.3 Notation and Conventions for this tutorial
In this tutorial the following conventions are used
• Phrases in English for concepts to be represented or English text versions of definitions are

presented between double quotes “Enzyme for membrane transport”
• Things that appear on the screen are given in a bold sans-serif font like this: TutorialTop-01
• Classes (aka ‘concepts’) and property names (aka ‘slot names’, ‘semantic links’, ‘roles’) are

written in ‘camel back notation’, e.g. CellularStructure, hasLocus, etc.2
• Class names always begin with an uppercase letter. Property names always begin with a

lower case letter. It is a standard convention in English that Classes are always named with
singular nouns3.

• Technical terms are enclosed in single ‘scare quotes’ like this.
• Where there is a need to refer to a class or other ontological notion in the abstract rather than

on the screen it is printed like this, e.g. CellularStructure
So given these conventions, the ‘formal representation’ of “pneumococcal pneumonia” is
PneumoccocalPneumonia. which appears on the screen as PneumococcalPneumonia.
Note that OWL is case sensitive. “Pneumococcalpneumonia”, pneumococcalPneumonia, and
PneumococcalPneumonia are all different. OWL identifiers must begin with a letter, contain only
letters, numerals, and the underscore character (‘_’). They may not contain spaces.
Protégé OWL uses some unfamiliar symbols from logic and the “German notation” for
description logics. Not all of these symbols are found in the standard Microsoft fonts. A list of
the symbols and their interpretation is given below. If they do not print out correctly – even
though we have tried to embed them in this document – then install the Zed font which can be
downloaded from http://www.cs.kent.ac.uk/people/staff/rej/Zedfont/latest/. (or see the .pdf
version of this document.)
We also give a list of paraphrases of OWL constructs and the link with the official OWL in the
appendix.

2 Note also that there is an ongoing discussion about whether “camel back” notation as used here or words
separated by underlines is preferable. The custom is moving towards using underlines, e.g.
“Pneumococcal_pneumonia” instead of “PneumococcalPneumonia”. However, earlier versions of this tutorial
used camel back because it avoided confusion when using the older OIL syntax. For now shall stick with that
although OWL users tend to prefer the use of underlines. It makes no difference, provided one or the other is used
consistently.
3 In the tutorial I have preferred consistency with the actual class name over normal English usage. This
occasionally leads to odd expressions such as “Bacteriums” when the formal name needs to be pluralised in text.

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 3

Symbol Meaning OWL
∃ “some” someValuesFrom

∃ hasCause X “hasCause SOME X” hasCause someValuesFrom(X)
∀ “only” allValuesFrom

∀ hasCause X “hasCause ONLY X” hasCause allValuesFrom(X)
È “and” intersectionOf
Ë “or” unionOf
≡ “are necessary & sufficient

conditions for”
equivalentClass

Ç “necessarily implies” subclassOf

 Note the shift in position between the ∃ and ∀ symbols and the “SOME” and “ONLY” that they
represent. The qualifiers refer to the values (fillers).

1.4 Mechanics
The initial file is found in TutorialTop-01.owl.
Steps to set up tutorial:

Initial Startup
• Start the Racer from the start menu. Where this is will depend on your machine. If in doubt

look in C:\Program Files\Racer or C:\Program files\ Protege. Starting Racer will cause a
black command screens to appear. You can minimise this window.

• Start Protege which should bring up a dialogue as indicated in the Protégé-OWL tutorial.
When the dialogue appears, click Build, select OWL files (.owl or .rdf), and navigate to
TutorialTop-01. (You may have to download the tutorials files in which case they will be in
athttp://www.cs.man.ac.uk/~rector/teaching/modules/cds/clinical-tutorial/

• Select Save as from the File menu and save the file immediately as MyTutorial-01-01—or
any other name you choose ending in 01-01. (Save early! Save often! Always save to a new
version number. Protégé-OWL is not yet completely stable. Undo is difficult and bugs
occasionally corrupt ontologies beyond retrieval. Save or be sorry!)

• Find Lung and Disorder (To find a concept, you can type it in the subpane at the bottom of
the hierarchy window.)

The screen should now look approximately as shown below and you are ready to start. (You can
adjust the exact size and position of the panes to suit in the usual way.)

(At this point you may want to browse around the hierarchy.)

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 4

2. Create the entity representing “Pneumonia”
2.1 Simple solution

Of the options given, it seems natural to consider representing “Pneumonia” as a Disorder. The
simple solution is just to tell OWL that Pneumonia is a kind of disorder and then to say describe
it.

First create it:
• Select Disorder and create a new subclass (either from the right mouse button menu or from

the icon at the top of the Asserted Hierarchy)
• In the Class Name area, enter Pneumonia.
• Pneumonia will be added to the Classes hierarchy under Disorder.
• The rdfs:comment pane is blank. Enter something like “First attempt at defining Pneumonia

simply” to remind you what you are doing and help anybody who comes along understand
what they are seeing.

So far, this means that “All pneumonias are also disorders” or “Pneumonia is a kind of Disorder”

Then describe it:
What can we say about Pneumonia? Most obviously that it occurs in the lungs. To do this:
• In the Asserted Conditions pane, highlight NECESSARY and click the circled R icon
• When the Create Restriction pop-up appears choose hasLocus as the property in the upper

left hand pane. (hasLocus is the ‘property which links Disorders with anatomy.) Leave the
qualifier set to someValuesFrom. Type Lung in the value area – or click the circled “c” icon
in the icon tray and navigate to Lung in the pop-up.

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 5

What it means:
The restriction that appears will can be paraphrased as follows:

∃ hasLocus Lung “hasLocus SOME Lung”
Reminder: the prefix “∃” really indicates an infix operator “SOME”. It is the Lung that exists,
not the Pneumonia. (This is an oddity inherited from DL notation.)

Making Pneumonia a subclass of Disorder and adding the restriction as shown means:
“All pneumonias are located in some lung” (1.)
“All pneumonias are also disorders” (2.)

There are several other ways of saying “All pneumonias are also disorders”:
“Pneumonia is a kind of disorder” (3.)
“If something is a pneumonia then it is a disorder” (4.)
“Being a pneumonia implies being a disorder” (5.)

“Pneumonia is a subclass of Disorder” (6.)
“Disorder subsumes Pneumonia” (7.)
Pneumonia → Disorder (8.)

Being a kind of, or subclass of, something has a specific and very strong meaning in OWL:
“Everything that is a member of the subclass, without exception, is a member of the
superclass” or
“Being a member of the subclass implies being a member of the superclass”.

This strong logical meaning of “subclass” has two consequences:
• There can be no exceptions
• It is possible to prove things logically, including in many cases, whether one thing is a

subclass of another – this is the key power of OWL.

2.2 Kinds of pneumonia – Make “Viral pneumonia” and “Bacterial
pneumonia”, “Pneumococcal pneumonia”, and “Mixed Pneumonia”

2.2.1 Bacterial, Viral, and Pneumococcal Pneumonia – ‘SubclassOf’ and ‘SameClassAs’ –
‘Primitives’ and ‘Definitions’
(This is a good point to save your work by selecting Save and then create a new file to continue
with the next phase by doing a Save as to a new file Mytutorial-02-01. Save early; save often;
Save to a new version.)

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 6

One way of classifying pneumonias is by their cause. Pneumonia can be caused either ‘viral’ or
‘bacterial’, i.e caused either by a virus or a bacterium or sometimes both.
The simplest way to represent “bacterial pneumonia”, is simply to define a subclass of
Pneumonia.

First create it:
• Select Pneumonia.
• Click the add-subclasses icon, OR use the right mouse button and select Add subclass
• Name the new subclass Bacterial Pneumonia

Then describe it:
• Add a restriction to say that it is caused by bacteria

− Select NECESSARY in the Asserted Conditions pane.
− Select hasCause, the name of the causal property, in the left hand pane of the pop-up
− Type Bacterium – (note that the tab or ctrl-space will bring up a completer)
− Click OK

The Asserted Conditions pane should now look like:

The paraphrase for the new information is:

Pneumonia “isKindOf Pneumonia”
∃ hasCause Bacterium “hasCause SOME Bacterium”

What it means:
“All bacterial pneumonias are pneumonias”
“All bacterial pneumonia is caused by some bacteria” (9.)

Represented in simple logic notation as:
BacterialPneumonia → Pneumonia (10.)
BacterialPneumonia → causedBy some Bacterium (11.)

Or in German notation
BacterialPneumonia Ç Pneumonia (12.)
BacterialPneumonia Ç causedBy some Bacterium (13.)

2.2.2 Make it a definition:
Both statements above are undoubtedly true, but this is not enough to let the system recognise and
classify other things, e.g. “pneumococcal pneumonia”, as kinds of “bacterial pneumonia”.
To allow the system to recognise classes as being kinds of “bacterial pneumonia” we need to
change the class from being a Primitive to being Defined.
To say that a class is Defined is to say that it has at least one set of “necessary and sufficient”
conditions, i.e. a set of conditions that taken together are sufficient to recognise the class.

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 7

• Drag and drop Pneumonia and ∃ hasCause Bacterium from the NECESSARY to the
NECESSARY & SUFFICIENT subpanes

OR
• Select the class BacterialPneumonia and from the right mouse button menu select Convert

to defined class.
The screen should now look like:

Note that in variant of standard description logic notation used in Protégé-OWL, the
symbol “Ç” means “necessarily implies”, and “≡”for means “if and only if” or
“necessary and sufficient”.

What it now means:

“Any pneumonia caused by a bacterium is a bacterial pneumonia” (14.)
or more in other words

“Something is a bacterial pneumonia if and only if it is a pneumonia and caused by a
bacterium” (15.)

represented in logic notation as
BacterialPneumonia ↔ Pneumonia & causedBy some Bacterium (16.)

By putting the conditions in the NECESSARY & SUFFICIENT subpane, it indicates that the
implication goes both ways as in (16). If they are the NECESSARY subpane, then the implication
goes only one way as in (10)- (13).

Why the difference between Defined and Primitive classes matters
(NECESSARY & SUFFICENT vs NECESSARY):
In order to demonstrate how important this distinction between ‘defined’ and ‘primitive’ classes
is, perform the following experiment in which we will first make a class for “pneumococal
pneumonia” and then see how the classifier treats the two classes depending on whether the class
for “bacterial pneumonia” is defined or primitive.

Make PneumococcalPneumona as you made BacterialPneumonia
First create it:
• Create a subclass of Pneumonia called PneumococcalPneumonia

Then describe it:
• Add a restriction to say that it is caused by bacteria

− Under Asserted Conditions select NECESSARY & SUFFICIENT and then click the
circled R icon

− Select hasCause, the name of the causal property
− Select Pneumococcus

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 8

Classify it to see the results:
• The Asserted Hierarchy window should now be expanded to look as shown below. This is

the hierarchy before the Classifier has performed automatic classification. Note that
BacterialPneumonia and PneumococcalPneumonia are siblings.

• Click classify icon as shown below (at end of red arrow).
• When the pop-up finishes, click Close

A pane for “Inferred Hierarchy” will appear.
• Click on anything else and then back on PneumococcalPneumonia to synchornise the

views. The two pans should now look as shown below. The blue colour of the
PneumococcalPneumonia indicates that it has been moved by the classifier. (The move will
also show up in the list of changes in the bottom pane.) .

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 9

2.2.3 ‘Inferred conditions”

Click on the Inferred Conditions tab to see that PneumococcalPneumonia has now been inferred
to have a necessary condition of being a BacterialPneumonia.

2.2.4 Inherited conditions
Notice the INHERITED conditions it has also inherited having the locus Lung and the status
Organic. (The significance of Organic will be explained later.)

2.2.5 What happens if you forget to make it a definition?

A common error in OWL is to make conditions only NECESSARY rather than NECESSARY &
SUFFICIENT – i.e. to leave a class as primitive when it should be defined. To see the effect of
this mistake, select BacterialPneumonia, and on the right menu click Convert to primitive class.
The NECESSARY & SUFFICIENT conditions will be moved down to the NECESSARY subpane.
Now run the classifier again. Note that PneumococcalPneumonia is no longer classified under
BacterialPneumonia

Nothing which is not Defined will ever have anything else
classified underneath it by the classifier!

(In the absence of axioms or domain/range constraints, to be
covered later)

The classifier can classify primitives under new definitions, but it cannot classify one primitive
beneath another. That is why they are called “Primitive”. That’s the meaning of the difference
between the single and double arrow in (14-16) above.

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 10

In OWL, to say that something is “primitive” is to say that we cannot (or do not choose to) give it
a complete definition – sufficient as well as necessary but only choose to give it a ‘description’
by which it can be classified under other defined classes.

Put the knowledge base back to the correct format.
• Select BacterialPneumonia and use the right mouse button menu item Convert to defined

class to reset the ontology to the correct form.
2.2.6 Mixed Pneumonia: Multiple values and the meaning of someValuesFrom (“some” / ∃ /

existential restrictions)
(Be sure you have performed the last correction so that the knowledge base is correct)
Some Pneumonia has a mixture of viral and bacterial causes.

First define ViralPneumonia
Follow the same procedure to make ViralPneumonia as to make BacterialPneumonia only this
time make the cause in the restriction Virus. Be sure you make the conditions necessary &
sufficient. (An easy way to do this is to use the Create clone item on the right mouse button for
the class and then edit the result.)
ViralPneumonia should now has the two necessary and sufficient conditions, with their
paraphrases

Pneumonia “isKindOf Pneumonia”
∃ hasCause Virus “hasCause SOME virus”

Then define MixedPneumonia

Define a new subclass of Pneumonia as MixedPneumonia
Pneumonia “isKindOf Pneumonia”
∃ hasCause Virus “hasCause SOME Virus”
∃ hasCause Bactium “hasCause SOME Bacterium”

Classify it
Press the classify button and then when classification is finished, reselect MixedPneumonia.
MixedPneumonia will appear in the Inferred Hierarchy window as a subclass of both
BacterialPneumonia and ViralPneumonia.

This is correct because t the restriction

∃ hasCause Bacterium “hasCause some Bacterium” (17.)
appears in both definitions. It means

“has some bacterium as its cause”
Nothing we have said up to this point prevents diseases from having more than one cause. The
restriction does not indicate the cause, but a cause, possibly amongst many.
(There is a way to indicate that a property can only have one value, which is dealt with later)

2.2.7 Visualising it with OwlViz

This is also a good point to demonstrate the use of OwlViz.
• From the Project menu select Configure
• Tick OwlVizTab and click OK.

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 11

• Select the OwlViz tab that has appeared at the right of the tabs.
• In the left-hand upper pane select MixedPneumonia. (You may have to drag down the

bottom border of the pane to see it.)
• Click the C (class) Icon in the tab’s icon row.
• Accept the defaults
• What you now see is the structure before classification

• Click the Inferred Model subtab. What you see now is the results of the classification

showing MixedPneumonia with two parents.

Save at this point
This is another good point to save your work, and then create a new file to go on by doing a Save
as to MyTutorial-03-01.

3. Creating new kinds of “Pneumonia”: ‘Self-standing concepts’,
‘Modifiers’ and ‘Value partitions”

3.1 Extending the causes of pneumonia: Disjointness axioms
At this stage there is only one bacterium, “pneumococcus”. Obviously we would eventually want
this to be a long list. For the time being we shall add just “staphylococcus” and “haemophilus” as
primitive subclasses of Bacterium

Manually:
• Select Bacterium in the Classes pane
• Choose add new subclass from the right mouse button menu
• Name the subclass Staphylococcus
• Repeat for Haemophilus
• Double click on Bacterium and check the hierarchy to make sure you got it right
• Make the different kinds of bacteria different (“disjoint”). With any of the new classes

selected , in the disjoint subpane at the lower right, click the all disjoint button as shown
below, and click OK to the pop-up default Mutually between all siblings.

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 12

The screen should look as above (except for the arrow indicating the correct icon.)
Also note, this list of subclasses for Bacterium is not complete – the subclasses do not ‘cover’ the
parent class Bacterium. This means that this list does not necessarily include all possible bacteria.
This is in general true of ‘Self-standing Concepts’ – i.e. the things in the world like bacteria,
people, bridges, diseases, etc. which have meaning on their own – in contrast to ‘modifiers’ such
as “severe” which only take their meaning in combination with the thing modified.

Summary

For self-standing concepts, the primitive subclasses of each
primitive class should be disjoint but do not cover the parent
class.

3.2 Representing “Severe pneumonia”: Properties, Value partitions and
subclass covering axioms
We want to represent the notion of a modifier or refining value for “pneumonia” to be able to say
“Severe pneumonia”, “Mild pneumonia”, “Moderately severe pneumonia” etc. This will take
several steps:
• Step 1: Create a new ValuePartition, SeverityValuePartition; create disjoint subclasses for

“mild”, “medium” and “severe”, mildSeverity, mediumSeverity, severeSeverity. We shall
be pedantic in the naming because “mild” might go with other value partitions. All of the
subclasses need to be disjoint, and should “cover” the parent SeverityValuePartition, i.e. the
class SeverityValuePartition is equal to mildSeverity OR mediumSeverity OR
severeSeverity

• Step 2: Create a new property for hasSeverity and make it functional (single valued)
• Step 3: Define a new kind of Pneumonia using the hasSeverity property and the filler

severeSeverity
Because there are several steps this is easiest to do using the Value Partition Wizard that can be
found on the Wizard menu (or the tools menu if you have a later version of Protégé.) The Wizard
steps through the process.
• Select Create Value Partition from the Wizards menu
• Enter the name SeverityValuePartition, and click next.
• Set the property name to hasSeverity, and then click next

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 13

• Click the append text box and enter Severity
• Enter the values mild, moderate, severe on separate lines, click next
• Check the names for typos, click next
• In annotations select rdfs:comment and add something like “severity for use with clinical

conditions”, click next.
• Accept the default to keep this value partition under ValuePartition by clicking Finish.
• Go to the properties tab and set the domain of hasSeverity to Disorder. (In new versions of

the widget this step is included in the Wizard.)
The results should be as shown below with three subclasses under SeverityValuePartition and
SeverityValuePartition defined as being “mildSeverity OR moderateSeverity OR severeSeverity”.
This type of definition is sometimes called a “covering axiom” and can be expressed separately
from the class axiom in the OWL Abstract syntax.

The subclasses are all disjoint as shown below.

We now have the machinery to define a SeverePneumonia as “any Pneumonia that hasSeverity
some severeSeverity”.

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 14

Some readers may find this formulation of “value partitions” surprising in that it uses classes
rather than individuals to specify values. A more detailed discussion can be found the
ProtegeOwl (Pizza) tutorial4 or on the Semantic Web Best Practice Working Group page.5

3.3 Improving the definition of “Pneumonia”
When we first created Pneumonia it was a s a primitive class. All that is represented in the class
is that it is a Disorder and hasLocus Lung. That might be enough for some applications, but for
any very extensive ontology of diseases we will probably want more information.
The simple definition in a dictionary for “pneumonia” is an “Inflammation of the lung”6. There
are many “inflammations” – of almost any organ – so that part of the definition seems worth
capturing.
What about “inflammation” should that be primitive or defined. Depending on the dictionary, the
definition will be something about a “morphology characterised by redness, heat, infiltration by
leukocytes…” Nothing like as simple as “Inflammation of the Lung”.
In general, “inflammation” is probably best thought of as what philosophers call a ‘natural kind’
and left as a primitive. Any definition is likely to be inadequate. More importantly, the
individual characteristics are almost never going to be used so the ontology will never need
recognise an “inflammation”—in fact to do well requires quite different reasoning techniques.
There are many other similar notions include “tumour”, “infection”, “fibrosis” “fracture” and
almost all named anatomical structures – “lung”, “liver”, “heart” etc. By contrast, “Inflammation
of the lung” is a simple definition that seems to mean what it says.
To implement this definition:

Make Inflammation, Infection, and Fibrosis
• Select Disorder; create a subclasses Inflammation, Fibrosis, and Infection, and make them

disjoint with their siblings. (This can also be done with the Create group of classes
wizard.)

• Add comments, something like “Primitive notion of Inflammation”, see dictionary definition
“a morphology characterised by redness, heat, infiltration by leukocytes…”, etc.

Edit the definition of Pneumonia
• Select Pneumonia
• Check the disjoints window to be sure that pneumonia is not disjoint with any other classes.

If it is, remove the disjoints using the remove disjoints button and selecting the option Only
between this class and its siblings from the pop-up. (Defined classes should almost never
have disjoints. It is easier and safer to remove them first.)

• Drag and drop the NECESSARY conditions to NECESSARY & SUFFICIENT
OR select Convert to defined class from the right mouse button menu on the class.

• Classify to make sure the results still work and are satisfiable. If some Disorders are
unsatisfiable, this is almost certainly because the disjoints are set incorrectly.

3.4 Normalising Ontologies - The principle of orthogonal taxonomies
The above principles can be elaborated as the “principle of orthogonal taxonomies”or
“Normalising ontologies” see [2]7
For self-standing concepts, it is important for modularity that each primitive class have only one
primitive superclass. The taxonomy of primitive classes forms the ‘skeleton’ or ‘backbone’ of the
ontology.
Keeping taxonomies of primitives independent means that each one can be modified separately.
For example, we can add new kinds of disorder or new kinds of micro-organism separately.

4 http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
5 http://www.w3.org/TR/swbp-specified-values/
6 We will ignore any difference between “pneumonia” and “pneumonitis” for the purposes of the examples in this
tutorial – a topic on which dictionaries disagree.
7 Available from http://www.cs.man.ac.uk/~rector/papers/rector-modularisation-kcap-2003-distrib.pdf

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 15

This is most easily seen in examples from either biology or organisations. Consider the example
of. It seems most natural to make the primary primitive classification of organic substances on
the basis of their structure: “steroid”, “protein”, “inorganic ion”, “peptide”, etc. However,
functional roles cut across all of these, so that “testosterone” is a “steroid hormone” and “Insulin”
a protein hormone. Another application might be more interested in which organs secreted which
hormone.
It is important that it be possible to modify the hierarchies for structure, role, and origin
separately. The best way to achieve this is to keep separate taxonomies for ‘roleSpecifiers’ or
‘actionRoleSpecifiers’ (not to be confused with the use of the word “role” for semantic link in
description logics”). Entire subtaxonomies of different roles can be built up and manipulated
independently. For now we shall just create the minimum.
To illustrate this we shall create simplified classes for notions of Hormone, Neurotransmiter,
Steroid, Protein, AminoAcid, and Testosterone, Insulin, and AcetylCholine.
Create RoleSpecifiers for Hormone and Neurotransmitter
• Select OrganicActionRole and make the two disjoint primitive subclasses

HormoneActionRole and NeurotransmitterActionRole8. (NB, do not make them covering
(using a “covering axiom” as defined above) because the list is obviously incomplete, and
would probably, in principle, always be incomplete.)

Define Hormone and Neurotransmitter
• Select PhysicalSubstance and create two defined subclasses for Hormone and

Neurotransmitter using the property hasActionRole and the two OrganicActionRoles you
have just created. (Note we create it at this level because there is no requirement that a
hormone or neurotransmitter be an organic substance, even if its action is biological), e.g.
Hormone ≡
 PhysicalSubstance “is kind of Physical substance”
 ∃ hasActionRole HormoneActionRole “has action some Hormone action role”

• Under OrganicSubstance create a subclass for Protein and under that a substance for
Insulin, both primitive, and use the property hasActionRole to give Insulin the ActionRole
HormoneActopmRole. Do analogously for Acetylcholine and
NeurotransmitterActionRole.

Run the classifier again to check that it comes out as you expect. Check it with OwlViz
(remember to click the Inferred Model subtab.)

3.4.1 Principle: Untangling Taxonomies – “Self-standing concepts” vs “Value partitions”
Untangling taxonomies so that they are independent is equivalent to normalising databases. If the
individual taxonomies of primitive concepts are not independent, then one is likely to introduce
anomalies when updating the taxonomy or adapting it to a different purpose.
Typically existing classifications from other sources are tangled – i.e not normalised – and come
with several different ‘axes’ mixed together in a single taxonomy – e.g. the axes “chemical
structure”, “action”, and “use” are entangled in typical drug classifications and must be entangled
to form a normalised logical ontology. Similarly, the axes “morphology”, “anatomy” and
“aetiology” are entangled in typical disease classifications.

8 Where such roles go in the overall high level ontology is somewhat arbitrary, but for now it is convenient to think
of them as a shorthand for more complex processes which we don’t want to specify in more detail

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 16

A major benefit of using a logic based classifier is that these tangled taxonomies can be untangled
and then reconstructed as sets of definitions which the classifier can maintain automatically. It is
almost impossible to maintain large multiple taxonomies manually.
In untangling taxonomies, it is important to distinguish self-standing concepts from value
partitions. Lists of self-standing primitive concepts are ‘open’, i.e incomplete, and so do not
‘cover’ the parent primitive concept. By contrast, lists of the values subsumed by a value
Zartition are (almost always) complete by definition. (However, the ValuePartitions themselves
need not be disjoint – e.g. a disease can be both serious and chronic. More on this point later)

Summary: Principles for Self-standing Taxonomies

For primitive classes representing self-standing concepts:

No primitive class should have more than one primitive
superclass (parent). (If there seems to be a need for a second
primitive parent, create a type of ‘role specifier’ instead or
reorganise the hierarchy in some other way.)

The primitive subclasses of a class should be disjoint but
should not covering – i.e the list of primitive subclasses
should be assumed incomplete.

For classes representing value partitions

The primitive subclasses should be both disjoint and
(usually) covering – the lists are usually complete by
definition.

For defined classes

There should be no disjoints specified. Disjointness (or not)
will be inferred by the classifier if the above rules (and a few
others) are followed.

In a designing large ontology project, selecting which axes will be primitive and which
constructed from definitions is a key task. For some implementation purposes, it may be
desirable to re-tangle the taxonomies just as may be appropriate to de-normalise a database for
efficiency. But the ontology design should be untangled.

3.5 Knowledge is fractal: How much detail should be modelled?
All ontologies are approximations. Building an ontology involves many decisions such as
deciding # whether a concept such as “pneumonia” should be left as a primitive or defined. There
is no simple rule. Knowledge is fractal –it is always possible to model in more detail, and
modelling is seductive – it is always possible to model in more detail than necessary.
However, there are a few guidelines:
• Natural kinds should be modelled as primitives – things that take a long time to define in a

dictionary or are most easily pointed to or given by examples are likely to have to be
modelled as primitives – species, parts of the body, basic disease processes “inflammation”,
are all probably best treated as natural kinds. Most natural kinds are expressed by a single
word, but sometimes it takes a phrase or compound to name them. Sometimes the distinction
is subtle. For example, the distinction between “black bird” and “blackbird”, or in biology
between “artery serving the liver” and “hepatic artery” – the first describes a class of arteries;
the second a specific named artery in that class.

• Categories that “mean what they say” such as “Disorders of the Lung” which will be used to
query the knowledge base should usually be defined – because the classifier can only classify
things under defined classes. In fact, defined classes can be thought of as predefined queries.
Such categories are sometimes called “analytic concepts” or “analytic kinds” because they
can be analysed into their different aspects.

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 17

• If the description does not involve axes that are critical to ‘normalising’ (‘untangling’) the
taxonomies, then may be easier to model them as primitives. You can always reconsider later
whether it is worth defining them as the design for the ontology develops.

There are two practical matters that cannot be discussed fully within the scope of this short
tutorial but should be mentioned.
• Definitions are more expensive than primitives computationally because the classifier has to

consider what things should be classified under them as well as where they themselves should
be classified. There may be practical reasons in large ontologies to leave some things
primitive even though they could be defined.

Summary

Natural kinds should be represented as primitives

Other concepts may be expressed as primitives either
because their definition is not needed in the applications or as
a temporary expedient while the ontology is developed.

Analytic kinds that involve major axes of the ontology should
be defined.

4. Locations and Parts
Part-whole relations and their interaction with the locus of diseases and procedures is one of the
major topics of any medical ontology. We have already met the hasLocus attribute. Here we go
on to provide an introduction to part-whole relations. Beware. The study of part-whole relations
(‘partonomies’ is a field in its own right, known to philosophers, linguists, and mathematicians as
‘mereology’. What follows barely scratches the surface.9

4.1 Lobar Pneumonia
The other important way to classify pneumonia is by where it appears in the lung. The goal of
this section is
• To create the subdivisions of the lung into lobes
• To modify the definition of Pneumonia so that the classification works for lobar pneumonias

to be kinds of pneumonias.
Note that the lobes of the lung are not kinds of Lung but rather parts of the lung. Kinds are not
parts. This is one of the common and pernicious errors of ontology development.

Create the properties for subdivision
We want isSubdivisionOf to be transitive – subdivisions of subdivisions are subdivisions.
Therefore we will create two roles, isSubdivisionOf and a child role isSubdivisionOfDirectly
which is not transitive. At the moment having the two roles has little benefit, but in more
complex applications it is much easier to put constraints on the non-transitive child role and it is
often useful to be able to ask the question – what are the immediate children of a thing along a
particular axis.
• Click on the Properties tab, select RelationProperty from the menu and add subproperty

from the right mouse button menu.
• Name the new property isSubdivisisonOf and tick the Transitive box at the bottom.10
• Click the O (for object property) button by inverses and in the pop up type hasSubdivision.

9 See also draft in preparation for the Semantic Web Best Practices Working Group,
http://www.cs.man.ac.uk/~rector/swbp/simple-part-whole/simple-part-whole-relations-v0-2.html
10 Setting inverses, domains, and ranges can have serious effects on performance so will be postponed for this
tutorial.

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 18

• Add some documentation such as “e.g. the relation between lobes and organs, divisions and
wholes, etc.”

• Select the new isSubdivisionOf property from the Properties list and make a new
subproperty isSubdivisionOfDirectly.

• Do not tick the transitive box.

Create the lobes of the lung
• Go back to the Classes window by clicking the OWL Classes tab.
• Select OrganPart (founder MacroOrganicStructure) and create a new primitive subclass

Lobe
• Select Lobe and create a new defined subclass LobeOfLung
• Add the restriction ∃ isSubdivisionOfDirectly Lung

Define two different versions of “lobar pneumonia”
• Select Pneumonia and create a defined subclass of Pneumonia named LobarPneumoniaX

which ∃ hasLocus LobeOfLung
• Select Inflammation and create a defined subclass of Inflammation named

LobarPneumoniaY which ∃ hasLocus LobeOfLung
• Run the classifier to see the results by clicking on classify icon.
• Select each of LobarPneumoniaX and LobarPneumoniaY to see the results
LobarPneumoniaX is classified under Pneumonia because that was part of the definition. But
look at LobarPneumoniaY. Clearly it ought to fit the definition, it is an “inflammation of the
lung”, but the problem is that it is of a part of the lung rather than the whole lung. (Note also that
LobarPneumoniaX classifies under LobarPneumoniaY. Why?)
To fix the classification of LobarPneumoniaY requires changing the definition of Pneumonia and
making it an expression equivalent to “inflammation located in the lung or any of its
subdivisions”. This requires the use of the expression editor that we will introduce here briefly by
example.

Edit the definition of Pneumonia
• Select Pneumonia and the restriction ∃ hasLocus Lung
• Using the icons or keyboard shortcuts11 edit the restriction until it looks like:

This means
“Pneumonia is any Inflammation which has some location either in the Lung or in some
subdivision of the lung”

Continue
• Reclassify the ontology
LobarPneumoniaX and LobarPneumoniaY should now be logically equivalent, as shown by:
LobarPneumoniaX ≡ LobarPneumoniaY.

11 You can also use the typing shortcut, “some” for ∃, “or” for Ë, “and” for È, etc.

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 19

5. Reciprocals: The asymmetry of statements in OWL.
5.1 Asymmetry of statements and reciprocals

Go back to the LobeOfLung. It has the property of being a lobe of the lung. Making this
definition says nothing about either lungs or lobes in general, just that there might be a class of
things which were lobes of lungs.
All lungs have lobes, but not all lobes are lobes of lungs. We might want to add this to the
description of lung, but of course not to the definition of Lobe. For this reason, restrictions in
OWL are normally asymmetrical.
We will come back to the right and left lung eventually, but leave it at that for now.

5.2 Reciprocal Statements
All “hands” are subdivisions of “some upper extremity”, and all “upper extremities” have some
subdivision “hand” (barring some nasty problems with congenital abnormalities which we will
leave aside for now). However, although isSubdivisionOf and hasSubdivision are inverses,
these two statements are not equivalent. Therefore, in some situations we need both.12
To show this requires a Restriction on both Hand and UpperExtremity.
• Add a new restriction ∃ isSubdivisionOfDirectly UpperExtremity to Hand
• Create a new defined class for “BodyParts which are subdivisions of UpperExtremity” Note

that in general in definitions we use the transitive parent isSubdivisisonOf rather than the
non-transitive child isSubdivisionOfDirectly.)

• Classify the model and be sure that Hand is classified under the new defined class.
• Create a new defined class for “BodyParts which hasSubdivision Hand”
• Classify the model and see that nothing appears under the new concept
• Add a new restriction ∃ hasSubdivisionOfDirectly Hand to UpperExtremity
• Reclassify the model again and see that UpperExtremity is classified under the new concept.

6. Adding additional necessary conditions to defined concepts
So far we have been adding additional restrictions to the description of Primitive Concepts, i.e.
the SubclassOf button has been pressed. As long as we are dealing with Primitive Concepts it is
simply a matter of adding new restrictions to their description.
However, when we are dealing with Defined Concepts, we have to be more careful about which
things are necessary and sufficient and which are just necessary. Consider what would happen if
we want to say that “BacterialPneumonia” has a potential treatment “Antibiotic”. We don’t want
the definition of BacterialPneumonia to include that it is potentially treatable by antibiotics. If we
did, then BacterialPneumonia would be defined as

“Any Inflammation which hasLocus Lung, hasCause Bacteria, and hasPotentialTreatment
Antibiotic”

In order to decide if something were BacterialPneumonia we would have to determine if it had the
potential treatment of Antibiotic. But we probably want to find out if something is a bacterial
pneumonia precisely to determine if it might be treatable by antibiotics. We would have to specify
in advance precisely what we want to infer.
Formally, in OWL syntax, this process is quite involved. The Protégé OWL tool was specifically
designed to make it easy.

To define Drug and Antibiotic
• Select OrganicActionRole from the OwlClasses list
• Create a new primitive subclass named DrugActionRole
• Create a primitive subclass of DrugActionRole name AntibioticActionRole
• Select PhysicalSubstance from the Classes list.

12 Care is needed when using the classifier with reciprocal statements, as it is easy to produce ontologies which
take for ever to classifier even though they are correct.

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 20

• Create a new Defined subclass named Drug, defined as any Substance that has an
DrugActionRole

• Repeat for Antibiotic with DrugActionRole

To define a property for isPotentialTreatmentFor
• Click to Properties tab to go to the properties window
• Select RelationProperty
• Add a subproperty named isPotentialTreatmentFor (In a real ontology, this property would

probably be part of a hierarchy of related properties, but we will keep it simple for now).
Make its inverse hasPotentialTreatment. (Do not make it functional or transitive or
symmetric.) Make the domain and range Drug and Disorder respectively

• Select BacterialPneumonia; currently it should have a set of NECESSARY & SUFFICIENT
conditions and no NECESSARY conditions.

• Highlight the NECESSARY line. and add a restriction ∃ hasPotentialTreatment Antibiotic.
(“has potential treatment some antibiotic”).

What it means
“All bacterial pneumonias (as defined) have a potential treatment some antibiotic”13.
Note that this is essentially a rule, “If something can be inferred to be a pneumonia, then it has
a potential treatment some antibiotic”. Taken with the definition of “bacterial pneumonia”, it
says “If an inflammation of the lung is caused by bacteria, then it is potentially treatable by
antibiotics”.
This is not to say that OWL is fundamentally a rule language. To the contrary, various query
and rule languages are being designed on top of OWL. However, it is often important to
create such simple rules, and it is important to understand the dual role played by additional
necessary statements on defined classes.

Test it out
• Create a defined subclass of Pneumonia which has a potential treatment by Antibiotic,

named PneumoniaPotentiallyAntibioticTreatable, with the restriction
has-class hasPotentialTreatment Antibiotic

• Run the classifier
• Check to make sure that BacterialPneumonia is classified under

PneumoniaPotentiallyAntibioticTreatable
Enter the “reciprocal”
So far we have said nothing about antibiotics, only about Pneumonias. However, it is probably
more important to say something about the fact that antibiotics are useful for treating
BacterialPneumonia
• Repeat the above to produce the axioms to say that all antibiotics are potentially treatment for

some pneumonia. (Again, don’t worry too much about the meaning of “potentially”.)

Test it out
• Create a defined subclass of PhysicalSubstance which is a potential treatment for

Pneumonia, named PotentialPneumoniaTreatmentSubstance, with the restriction
∃ isPotentialTreatmentFor Pneumonia (“isPotentialTreatment for some Pneumonia”)

• Run the classifier.
• Check to make sure that Antibiotic is classified under

PotentialPneumoniaTreatmentSubstance
6.1.1 The problem with generalisations – why the above is not really what we want to say

The statement “all antibiotics are potential treatments for pneumonia” is undoubtedly false,
certainly in any clinical sense. The above statement is therefore two strong. What we want to say
is that “Some antibiotics are treatments for some pneumonias”. But our basic rules say that the
only things we can say about a class are things that are true of all its individuals. On the other

13 This statement depends on the interpretation of “potential”, but such statements are highly useful in searching
for potential treatments.

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 21

hand we want to be able to find Antibiotics by searching for “potential treatments for
pneumonia”. How to cope?
There is no completely satisfactory solution in OWL.
One solution is to use “non-standard” reasoning simply to look at the inherited properties for
BacterialPneumonia and note that one of them is “hasPotentialTreatment some Antibiotic”. This
works well but does not actually produce a class of such treatments as would “standard
reasoning”.
Another solution is to accept the overstatement as convenient, or to use a “kluge” to indicate when
antibiotics are not really appropriate for pneumonia.
Other solutions involve extensions for defaults and exceptions and/or probabilities that are beyond
the scope of this tutorial.

7. PureBacterialPneumonia and Universal (“only”/∀) restrictions
If we want to say that there is a kind of pneumonia which is caused by bacteria and only bacteria,
then we have to add another restriction to say that it is caused by bacteria and only bacteria. For
this we need an allValuesFor (“universal”/only/∀) restriction.

• In the OwlClasses tab select BacterialPneumonia.
• From the right mouse button menu select Create clone and name the new class

PureBacterialPneumonia. Delete the restriction ∃ hasPotentialTreatment Antibiotic.
• In the Asserted conditions pane, select any of the restrictions in the NECESSARY &

SUFFICIENT subpane. (Do not select the NECESSARY & SUFFICIENT line itself. This will
start a new definition rather than add to the existing one.)

• Click the R (restrictions) icon and select the allValuesFrom in the right-hand upper pane;
Select hasCause in the left hand upper pane, and enter Bacterium in the Filler pane.

The Asserted Conditions pane should now look like:

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 22

This means14:
“hasCause only Bacterium” and
“hasCause some Bacteriums”

Or in otherwords
 “Pneumonias which are caused by bacteria and only bacteria”
• Classify it:
• Double click on PureBacterialPneumonia to see the classification.
The results should show PureBacterialPneumonia classified under BacterialPneumonia and a
sibling to MixedPneumonia and PneumococcalPneumonia.

7.1.1 Why both Restrictions are necessary: “Only does not imply some, nor vice versa”

Both Restrictions are necessary. To see why: =
• Create a clone of PureBacterialPneumonia and name it PurePureBacterialPneumonia
• Select the existential (∃ someValuesFrom) condition and delete it.
• Reclassify
PureBacterialPneumoniaXX is not classified as a kind of BacterialPneumonia. And if you click
on the + sign to open the tree you will see that PureBacterialPneumonia is classified as a
subclass ofPure BacterialPneumoniaXX. Why?
That PureBacterialPneumonia should be classified as a kind of PureBacterialPneumoniaXX is
easy to see. PureBacterialPneumonia has the same constraints as PureBacterialPneumoniaXX
plus one more; therefore anything that satisfies the constraints of PureBacterialPneumonia must
satisfy the constraints for PureBacterialPneumoniaXX. That is the definition of subclass.
That PureBacterialPneumoniaXX should not classified as a kind of BacterialPneumonia is
subtler but very important.
The restriction:

∀ hasCause Bacterium
means

“Causes are only Bacteriums” 15
However, that the causes are only bacteria merely means that there are no causes which are not
bacteria. It does not imply that there are any causes at all. Therefore an “uncaused” pneumonia
counts, trivially.

7.1.2 Open World Reasoning and allValuesfrom
A further question to think about. Why is PneumococcalPneumonia not classified under
PureBacterialPneumonia? Looking at the definition, the only cause given is Pneumococcus
which clearly classified as a Bacterium. Why is that not sufficient to satisfy the definition?
Anyone used to dealing with database queries or logic languages such as Prolog may be
particularly puzzled by this behaviour. Databases and logic programming use a ‘closed world
assumption’, i.e. they assume that everything is known in advance The reason is that unliked
databases and logic programming, OWL uses ‘open world reasoning”. Negation in OWL means
“impossible” or “would cause an inconsistency” or “provably false” – in any world consistent
with what we already know. To be false means that no new information could ever make it true.
Most database systems use a much weaker version of negation known as ‘negation as failure’.
Negation in database or logic programming uses a ‘closed world’ assumption in which negation is
failure, i.e. if you can’t find it to be true, it must be false.

14 or put another way—which is the reason for the notation—

“Some cause is a Bacterium” and
“All causes are Bacteriums”

 The use of “all” indicated by the logical symbol “∀”, can be confusing in OWL and related representations. It is
generally much easier to treat to-class constraints as meaning “only”
15 or equivalently as often put in logic textbooks

“All causes are Bacteriums”

DRAFT

OWL Biomedical Ontology Tutorial-v1.doc24/02/2005 16:50 © U Manchester 23

Since OWL is open world, PneumococcalPneumonia subsumes any Pneumonia that has
Pneumococcus as one of its causes, just as BacterialPneumonia subsumes anything which has a
bacteria as at least one of its causes, including MixedPneumonia. That MixedPneumonia is
consistent with PneumococcalPneumonia shows that it is not true to say that all possible
PneumococcalPneumonias are PureBacterialPneumonias – some might be mixed.

7.1.3 Summary

∃ property Value means:
“property has some value from the class Value”
 (and may have other values unless the property is ‘functional’)

∀ propertyName Value means:
“property can only have the values from the class Value”
 (but does not imply that property has any value)

References
1. Horridge, M., Drummond, N., Knublauch, H., Rector, A., Stevens, R., Wang, H. and Wroe, C.

Building Ontologies with Protege-OWL Plugin, 2004,http://www.co-ode.org/resources/
2. Rector, A., Modularisation of Domain Ontologies Implemented in Description Logics and related

formalisms including OWL. in Knowledge Capture 2003, (Sanibel Island, FL, 2003), ACM, 121-
128.

