
Problem-Solving Methods
BMI 210A / CS 270A

Mark A. Musen
Stanford Medical Informatics

Stanford University

The battles of the 1970s
� Are frame systems better than more general

semantic networks?
� Are frames useful if there is no associated

description logic?
� Are rule-based systems better than frame-

based systems?
� Isn’t logic programming better than any of

these less complete approaches?
� Who wants a representation system that may

not allow for decidable inference?

Allen Newell’s AAAI
Presidential Address (1980)
� We should stop bickering about

representation
� What really matters is the knowledge

that a system has, not how that
knowledge is represented

� Knowledge is what an observer
attributes to an agent to allow the
observer to call that agent intelligent

The important distinction
� Knowledge representations are symbols such

that, when some process is applied, an
observer attributes intelligence to the
emergent behavior
� Knowledge representations acquire meaning only

when there is some process that is applied to
them; representations are symbols that must be
interpreted

� Knowledge is a competence for intelligent
behavior
� Knowledge is inferred by observing an agent’s

behaviors; knowledge ultimately is something that
is experienced and attributed

An analogy:
The notes are not the music

Knowledge has some degree
of structure
� The goals that an agent has
� The actions of which an agent is capable
� How the agent selects actions to help it

achieve its goals

The “knowledge level”
(Newell, 1982)

� Computer systems can be viewed at discrete,
hierarchical levels, where each level consists of
� A medium that is processed
� Components that provide primitive processing
� Laws of composition
� Laws of behavior

� Each level can be defined either
� Autonomously
� In terms of the components of the level below it

A hierarchy of
computer-system levels

Hardware level

Symbol level Knowledge representations

Machine-level instructions

Intelligent behavior

The Symbol Level
� Systems: Computer programs
� Medium: Symbols, expressions
� Components: Memory stores,

operations
� Composition laws: Designation,

association
� Behavior laws: Sequential interpretation

The Knowledge Level
� Systems: Agents
� Medium: Knowledge
� Components: Goals, actions, bodies of

knowledge
� Composition laws: None; an agent has

just the three components
� Behavior laws: The principle of

rationality

Newell’s thoughts on the
knowledge level
� Knowledge and rationality are intimately tied

together
� Splitting what was once a single level into

two allows each one to be addressed
technically

� Knowledge is not representable by a structure
at the symbol level; it requires both structures
and processes.

� Knowledge is an abstraction that can never be
had in hand.

Knowledge-level analysis
� Ability to understand intelligent

behavior in terms of
�Goals
�Actions
�Bodies of knowledge

� Makes underlying knowledge
representation irrelevant

Heuristic classification
in MYCIN (after Clancey)

WBC < 2.5

Leukopenia

Immuno-
suppressed

Compromised
host

Feature
Abstraction

Solution
Refinement

Gram-negative
infection

Pseudo-
monas

E. coli

Alcoholic

Heuristic
Match

Heuristic classification
in GRUNDY (after Clancey)

Self-description
and behavior

Class of
Person

Feature
Abstraction

Solution
Refinement

Class of book

Books to
recommend

Heuristic
Match

Problem-Solving Methods
(PSMs)
� Provide abstract procedures for solving

stereotypical tasks
� Offer a set of terms (an ontology) for

talking about the problem-solving
behavior

� Make precise the roles in which domain
knowledge is used in problem solving

Some tasks for which
developers have made PSMs:
� Classification
� Fault diagnosis
� Constraint satisfaction
� Planning
� Design
� Scheduling

A key distinction:
� Inference Engines

(e.g., backward chaining) are
procedures that operate on data
structures
(e.g., rules, frames)

� Problem-Solving Methods
(e.g., heuristic classification) are
procedures that operate on ontologies

Families of Problem-Solving
Methods
� Classification

Solutions are selected from a
pre-enumerated set

� Construction
Solutions are created during problem
solving

Matching a task to candidate
problem-solving methods
� Given a problem, there may be more than one

appropriate PSM
� For example, we can multiply two numbers

by
� Using multiplication tables
� Performing repeated addition
� Adding logarithms

� Selecting a PSM is highly tied to
� How a developer conceptualizes a problem
� What knowledge may be available at knowledge-

acquisition time
� What data may be available at run time

A case study: The Propose
and Revise method
� VT (Vertical Transportation) was a

knowledge-based system developed by
Marcus and McDermott (CMU) to configure
elevators in new buildings

� VT used the Propose-and-Revise problem-
solving method
� As a generic, underlying reasoning strategy
� To ensure that, as designs are extended,

constraints are not violated:
– Available parts must work together
– Architectural requirements must be satisfied
– Building codes may not be violated

Propose and Revise
1. Select a procedure to extend a configuration and

identify constraints on the extension

2. Identify constraint violations; if none, go to Step 1.

3. Suggest potential fixes for the constraint violation.

4. Select the least costly fix not yet attempted.

5. Modify the configuration; identify constraints on
the fix.

6. Identify constraint violations due to the fix; if any,
go to Step 4.

7. Remove extensions incompatible with the revision.
8. If the configuration is incomplete, go to Step 1.

Propose-and-revise has a
simple method ontology:
� Procedure
� Constraint
� Fix

Building a tool for knowledge
entry into VT: SALT
� SALT (kNowledge ACquisition Language)

was developed to allow reuse of the “propose
and revise” problem-solving method

� SALT framed all knowledge in VT in terms of
the knowledge roles entailed by propose-and-
revise (the propose-and-revise method
ontology)

� Developers conceptualized application tasks
in terms of “propose and revise” method
ontology

� SALT would output knowledge bases as
OPS5 rules

SALT Dialog
1. PROCEDURE Enter a procedure for a value
2. CONSTRAINT Enter constraints for a value
3. FIX Enter remedies for a constraint violation
4. EXIT Exit interviewer

Enter your command [EXIT]: 1

1. Name: HOIST-CABLE-QUANTITY
2. Precondition NONE
3. Procedure: DATABASE-LOOKUP
4. Table name: HOIST-CABLE
5. Column with value: QUANTITY
6. Parameter test: MAX-LOAD > CAR-WEIGHT
7. Parameter test: DONE
8. Ordering column: QUANTITY
9. Optimal: SMALLEST

10. Justification: THIS ESTIMATE IS THE SMALLEST HOIST CABLE
QUANTITY THAT CAN BE USED ON ANY JOB

SALT allows knowledge-level
analysis
� User conceptualizes content knowledge

using terms of Propose-and-Revise
method ontology (a knowledge-level
description)

� SALT prompts user for “procedures”,
“constraints” and “fixes”

� SALT generates OPS5 symbols that can
carry out the knowledge-level
description

Reuse of Propose-and-Revise
� SALT has been used to build knowledge

bases for systems for
� Elevator design (Westinghouse)
� Scheduling of flight simulator (Boeing)

� Propose-and-revise has been useful for
constraint-satisfaction tasks for which
backtracking to avoid unsatisfied constraints
is not a frequent problem

� Propose-and-revise is a terrible method when
backtracking takes place often

“Method-to-Task” approach
embodied by SALT
� Propose-and-revise method ontology

provides language for expressing problem-
solving behavior (e.g., constraint, fix)

� Knowledge-acquisition tool (e.g., SALT)
allows developer to instantiate method
ontology to enter domain knowledge

� Benefit: All knowledge defined in terms of
knowledge roles (e.g., constraint, fix), allowing
modeling of knowledge at “the knowledge
level”

� Problem: There is no explicit domain
ontology

Another example: MOLE
(Eshelman, 1986)

� MOLE, like SALT
� Is a knowledge-acquisition system
� Assumes a particular PSM (in this case, one called

Cover-and-Differentiate)
� Generates systems that, when given a device

model and a set of abnormal symptoms,
perform fault diagnosis by
� Identifying candidate faults that could explain

symptoms
� Differentiating among the candidates to select the

best explanation

The PSM:
Cover-and-Differentiate
� For each symptom, propose a set of

covering explanations
� Seek runtime data that will differentiate

among these alternatives
� Select the most parsimonious

explanation

Acquiring initial symptoms
� List possible complaints or symptoms

that might need to be diagnosed
� >> High-fly-ash-flow
� >> High-bottom-ash-flow
� >> Dark-ash
� >> Loss-in-gas
� >>

Acquiring covering knowledge
� List possible explanations for

LOSS-IN-GAS:
� >> low-heat-transfer
� >> Excess-air high
� >>
� List possible explanations for

LOW-HEAT-TRANSFER:
� >> misbalance-of-convection
� >> low radiation
� >>

Acquiring differentiating
knowledge
LOW-HEAT-TRANSFER is explained by the following

possible explanations:
MISBALANCE-OF-CONVECTION
LOW-RADIATION

Which of the following would be relevant evidence for
preferring one of the explanations over the others:

1. LARGE-PARTICLES favoring LOW RADIATION
2. FOULING favoring MISBALANCE-OF-CONVECTION
3. EXCESS-AIR LOW favoring MISBALANCE-OF-

CONVECTION
List the relevant response:
>> 2 3

As a result of this dialog:
� MOLE elicits

� covering knowledge to build a network of
symptoms, their potential explanations,
explanations of those explanations, etc.

� differentiating knowledge to tease apart situations
when a symptom or intermediary explanation has
more than one root explanation

� MOLE can transform the knowledge-level
model of symptoms and explanations into a
symbol-level representation in OPS5

Role-limiting PSMs
� Define an enumerable set of knowledge roles by

which domain knowledge guides problem
solving

� Help to ensure the adequacy of elicited
knowledge: If a role is not satisfied by
domain knowledge, then there the knowledge
base must be incomplete

� Aid knowledge-base maintenance: The
purpose of every entry in the knowledge base
is clarified by its link to some knowledge role

During the 1980s
� Investigators began to identify dozens of

abstract problem-solving methods (PSMs),
hoping that each might be reusable for a
variety of tasks

� In general, PSMs were identified by building
a conventional knowledge-based system and
then abstracting the control knowledge that
the system used

� Often, PSMs formed the basis of knowledge-
acquisition tools like SALT and MOLE

� The approach worked as long as a new task
could be solved by a single PSM

But think about MYCIN …
� One PSM, heuristic classification, solves the subtask

of identifying the organisms for which therapy is
needed

� A second PSM, “the therapy-planning algorithm”,
constructs a set of antibiotics to administer, based on
� likely sensitivities of the organisms
� treatment heuristics (e.g., the tetracycline rule)
� parsimony

� The “goal rule” invokes a set of backward-chaining
rules in its premise to initiate the heuristic
classification component; it calls a LISP function in its
conclusion to invoke the therapy-planning algorithm

MYCIN’s Goal Rule
IF:

1) Information has been gathered about organisms isolated from
this patient, organisms noted on smears taken from this
patient, negative cultures of this patient, suspected infections
without microbiological evidence, current drugs of this
patient, and prior drugs of this patient,

2) An attempt has been made to deduce the organisms which
require therapy, and

3) You have given consideration to organisms (other than those
noted in cultures and smears) that might be present

THEN:
Determine the best therapy recommendation from among the
drugs likely to be effective against the significant organisms,
or indicate that no therapy is required at this time

Application tasks seldom can
be solved by a single PSM
� Most real-world tasks are

heterogeneous
� Need PSMs to decompose tasks into

more homogeneous subtasks
� Need appropriate control structures to

allow appropriate problem solving

Task

Method

SubtaskSubtask

Mechanism Mechanism

PSMs and task decomposition
� Tasks are solved by

PSMs
� PSMs may entail

subtasks, which
themselves are
solved by PSMs,
which themselves
may entail subtasks,
which …

� Primitive PSMs
sometimes are called
mechanisms

Problem-solving methods
� Assume that required problem solving can be

construed as compositions of well-
characterized, generic algorithms

� Provide terms and relationships for talking
about
� problem-solving behavior
� data on which that behavior operates

� Encode such terms and relationships as a
method ontology

The goal: Libraries of
problem-solving methods that
� Serve as repositories of reusable

algorithms
� Aid rapid development of new

problem-solving systems
� Codify the results of careful analysis of

biomedical problem-solving tasks

The next steps in this course:
� Learning how problem solving methods

can be linked to domain ontologies to
build real systems

� Understanding some specific problem-
solving methods that are particularly
important in biomedicine

