
1

Foundations of the Semantic Web:
Ontology Engineering

Building Ontologies 3+
Common problems
Ontology Patterns

Re-representing properties and classes
Parts and Wholes

Alan Rector & colleagues
Special acknowledgement to Jeremy Rogers & Chris Wroe

2

“Elephant Traps”

• ‘Some’ does not imply only
‘Only’ does not imply some’

• Trivial satisfaction of universal restrictions
• Domain and Range Constraints
• What to do when it all turns red

3

someValuesFrom means “some”

• someValuesFrom means “some” means “at least 1”
• Dog_owner complete

Person and hasPet someValuesFrom Dog
– means:

A Pet_owner is any person who has as a pet some (i.e. at least 1) dog

• Dog_owner partial
Person and hasPet someValuesFrom Dog

– means
All Pet_owners are people and have as a pet some (i.e. at least 1) dog.

4

allValuesFrom means “only”

• allValuesFrom means “only” means “no values except”
• First_class_lounge complete

Lounge and hasOccupants allValuesFrom FirstClassPassengers
– Means

“A ‘first class lounge’ is any lounge where the occupants are only first class passengers”
or
“A first ‘class lounge’ is any lounge where there are no occupants except first class
passengers”

• First_class_lounge partial
Lounge and hasOccupants allValuesFrom FirstClassPassengers

– Means
“All first class lounges have only occupants who are first class passengers”
“All first class lounges have no occupants except first class passengers”
“All first class lounges have no occupants who are not first class passengers”

5

“Some” does not mean “only”
• A “dog owner” might also own cats, and rats, and guinea

pigs, and…
– It is an open world, if we want a closed world we must add a

closure restriction or axiom
• Dog_only_owner complete

Person and hasPet someValuesFrom Dog and
hasPet allValuesFrom Dog

• A “closure restriction” or “closure axiom”
– The problem in making maguerita pizza a vegie pizza
– Closure axioms use ‘or’ (disjunction)
– dog_and_cat_only_owner complete

hasPet someValuesFrom Dog and
hasPet someValuesFrom Cat and
hasPet allValuesFrom (Dog or Cat)

6

“Only” does not mean “some”

• There might be nobody in the first class lounge
– That would still satisfy the definition
– It would not violate the rules

• A pizza with no toppings satisfies the definition of a
vegetarian pizza
– Pizza & has_topping_ingredient allValuesFrom Vegetarian_topping

• It has no toppings which are meat
– It has not toppings which are not vegetables

» It has no toppings which aren’t fish…

– Analogous to the empty set is a subset of all sets
• One reason for a surprising subsumption is that you have made it

impossible for there to be any toppings
– allValuesFrom (cheese and tomato)

7

Trivial Satisfiability

• A universal (‘only’) restriction with an
unsatisfiable filler is “trivially satisfiable”
– i.e. it can be satisfied by the case where there is no filler

• If there is an existential or min-cardinality restriction, inferred
or explicit, then the class will be unsatisfiable

– Can cause surprising ‘late’ bugs

8

Domain & Range Constraints

• Actually axioms
– Property P range(RangeClass)

means
• owl:Thing

restriction(P allValuesFrom RangeClass)

– Property P domain(DomainClass)
means

• owl:Thing
restriction(inverse(P) allValuesFrom DomainClass)

9

What happens if violated

• Actually axioms
– Property eats range(LivingThing)

means
• owl:Thing

restriction(P allValuesFrom LivingThing)
– Bird eats some Rock

• All StoneEater eats some rocks
– What does this imply about rocks?

» Some rocks are living things
» because only living things can be eaten
» What does this say about “all rocks”?

10

Domain & Range Constraints

• Actually axioms
– Property eats domain(LivingThing)

means
• owl:Thing

restriction(inverse(eats) allValuesFrom LivingThing)
• “Only living things eat anything”

– StoneEater eats some Stone
• All StoneEaters eat some Stone

– Therefore All StoneEaters are living things
» If StoneEaters are not already classified as living things, the

classifier will reclassify (‘coerce’) them
» If StoneEaters is disjoint from LivingThing it will be found

disjoint

11

Example of Coercion by Domain violation
• has_topping: domain(Pizza) range(Pizza_topping)

class Ice_cream_cone
has_topping some Ice_cream

• If Ice_cream_cone and Pizza are not disjoint:
– Ice_cream_cone is classified as a kind of Pizza

…but: Ice_cream is not classified as a kind of Pizza_topping

– Have shown that:
all Ice_cream_cones are a kinds of Pizzas,

but only that:
some Ice_cream is a kind of Pizza_topping

» Only domain constraints can cause reclassification
… by now most people are very confused - need lots of examples &

back to basics

12

Reminder
Subsumption means necessary implication
• “B is a kind of A”

means
“All Bs are As”

– “Ice_cream_cone is a kind of Pizza”
means

“All ice_cream_cones are pizzas”

– From “Some Bs are As” we can deduce very little of interest in DL
terms

» “some ice_creams are pizza_toppings”
says nothing about “all ice creams”

13

Summary:Domain & Range Constraints
Non-Obvious Consequences

• Range constraint violations – unsatisfiable or ignored
– If filler and RangeClass are disjoint: unsatisfiable
– Otherwise nothing happens!

• Domain constraint violations – unsatisfiable or coerced
– If subject and DomainClass are disjoint: unsatisfiable
– Otherwise, subject reclassified (coerced) to kind of DomainClass!

• Furthermore cannot be fully checked before classification
– although tools can issue warnings.

14

What to do when “Its all turned red”

• Unsatisfiability propagates – so trace it to its source
– Any class with an unsatisfiable filler in a someValuesFor

(existential) restriction is unsatisfiable
– Any subclass of an unsatisfiable class is unsatisfiable
– Therefore errors propagate, trace them back to their source

• Only a few possible sources
– Violation of disjoint axioms
– Unsatisfiable expressions in some restrictions

• Confusion of “and” and “or”
– Violation of a universal (allValuesFrom) constraint

(including range and domain constraints)
• Unsatisfiable domain or range constraints

• Tools coming RSN

Don’t Panic!

15 16

Part IV – Patterns: n-ary relations

• Upper ontologies & Domain ontologies
• Building from trees and untangling
• Using a classifier
• Closure axioms & Open World Reasoning
• Specifying Values
• n-ary relations
• Classes as values – using the ontology

17

Saying something about a restriction

• Not just
– that an animal is dangerous,
– but why
– And how dangerous
– And how to avoid

• But can say nothing about properties
– except special thing

• Super and subproperties
• Functional, transitive, symmetric

18

Re-representing properties as classes

• To say something about a property it must be re-represented
as a class
– property:has_danger Class: Risk

• plus property: Thing has_quality Risk
• plus properties: Risk has_reason

has_risk_type
has_avoidance_measure

– Sometimes called “reification”
• But “reification” is used differently in different communities

19

Re-representing the property has_danger as
the class Risk

Animal Dangeroushas_danger

Animal Risk
has_Quality

Risk_type

Seriousness

Avoidance

has_
risk

_ty
pe

has_seriousness
has_avoidance

20

Lions are dangerous

• All lions pose a deadly risk of physical attack that
can be avoided by physical separation

• All lions have the quality risk that is
– of type some physical attack
– of seriousness some deadly
– has avoidance means some physical separation

21

Can add a second definition of Dangerous
Animal

• A dangerous animal is any animal that has the quality Risk
that is Deadly

– or

• Dangerous_animal =
– Animal

has_quality some
(Risk AND has_seriousness some Deadly)

– [NB: “that” paraphrases as “AND”]

22

In the tool

– Dangerous_animal =
• Animal

has_quality some
(Risk AND has_seriousness some Deadly)

23

This says that

• Any animal that is Dangerous

is also

An animal that has the quality Risk
with the seriousness Deadly

24

Anopheles Mosquitos now count as
dangerous

– Because they have a deadly risk of carrying disease

25

Multiple definitions are dangerous

• Better to use one way or the other
– Otherwise keeping the two ways consistent is difficult

– … but ontologies often evolve so that
simple Properties are re-represented
as Qualities

• Then throw away the simple property

26

Often have to re-analyse

• What do we mean by “Dangerous”
– How serious the danger?
– How probable the danger?
– Whether from individuals (Lions) or the presence or many

(Mosquitos)?

• Moves to serious questions of “ontology”
– The information we really want to convey

• Often a sign that we have gone to far
– So we will stop

27

Parts and Wholes: The Basics

28

Part VI – Patterns:
Part-whole relations

• Upper ontologies & Domain ontologies
• Building from trees and untangling
• Using a classifier
• Closure axioms & Open World Reasoning
• Specifying Values
• n-ary relations
• Classes as values – using the ontology
• Part-whole relations

29

Part-whole relations
One method: NOT a SWBP draft

• How to represent part-whole relations in OWL is
a commonly asked question

• SWBP will put out a draft.
• This is one approach that will be proposed

– It has been used in teaching
– It has no official standing
– It is presented for information only

30

Part Whole relations

• OWL has no special constructs
– But provides the building blocks

• Transitive relations
– Finger is_part_of Hand

Hand is_part_of Arm
Arm is_part_of Body

•
– Finger is_part_of Body

31

Implementation Pattern
Transitive properties with non-transitive “direct”

subproperties

• Transitive properties should have non-transitive children
– isPartOf : transitive

isPartOfDirectly : non-transitive
• Split which is used in partial descriptions and complete definitions

– Necessary conditions use non-transitive version
– Definitions use transitive version

• Benefits
– Allows more restrictions in domain/range constraints and cardinality

• Allows the hierarchy along that axis to be traced one step at a time
• Allow a good approximation of pure trees

– Make the nontransitive subproperty functional
» Transitive properties can (almost) never be functional

(by definition, a transitive property has more than one value in any non-
trivial system)

• Constraints on transitive properties easily lead to unsatisfiability

32

Many kinds of part-whole relations

• Physical parts
– hand-arm

• Geographic regions
– Hiroshima - Japan

• Functional parts
– cpu – computer

• See Winston & Odell
Artale
Rosse

33

Simple version

• One property is_part_of
– transitive

• Finger is_part_of some Hand
Hand is_part_of some Arm
Arm is_part_of some Body

34

Get a simple list

• Probe_part_of_body =
Domain_category
is_part_of some Body

• Logically correct
– But may not be what we want

to see

35

Injuries, Faults, Diseases, Etc.

• A hand is not a kind of a body
– … but an injury to a hand is a kind of injury to

a body

• A motor is not a kind of automobile
– … but a fault in the motor is a kind of fault in

the automobile

• And people often expect to see partonomy hierarchies

36

Being more precise: “Adapted SEP Triples”

• Body (‘as a whole’)
– Body

• The Body’s parts
– is_part_of some Body

• The Body and it’s parts
– Body OR is_part_of some Body

• Repeat for all parts
– Use ‘Clone class’ or
– NB: ‘JOT’ Python plugin is good for this

37

Adapted SEP triples:
UML like view

Forearm

Arm Part of
Arm

Hand

Arm OR part part of arm
has_locus

some
Injury to Arm

(or part of arm)

Injury to Hand has_locus
some 38

Adapted SEP triples:
Venn style view

Arm or parts of Arm

Arm

Parts of Arm

HandFore
Arm

39

Resulting classification:
Ugly to look at, but correct

40

Using part-whole relations: Defining injuries
or faults

• Injury_to_Hand =
Injury has_locus some Hand_or_part_of_hand

• Injury_to_Arm =
Injury has_locus some Arm_or_part_of_Arm

• Injury_to_Body =
Injury has_locus some Body_or_part_of_Body

• The expected
hierarchy from
point of view of
anatomy

41

Parts & Wholes in More Detail

42

Parts & Wholes, containment,
connection and adjacency –

common sense merology
• Standard lexical semantic versions motivated by history

Many philosophical versions motivated by topology
– This version motivated primarily by anatomy and engineering

• Classic knowledge representation work is
– Odell, J. J. (1994). "Six different kinds of composition." Journal of

Object Oriented Programming 5(8): 10-15.
• A short readable summary

– Not complete nor completely up to date
– Winston, M., R. Chaffin, et al. (1987). "A taxonomy of part-whole

relations." Cognitive Science 11: 417-444.

• Merology – the study of parts and wholes
– A quick glance at Google…

43

Parts & wholes:
Some examples

• The leg is part of the chair
• The left side of the body is part of the body
• The liver cells are part of the liver
• The ignition of part of the electrical system of the car
• The goose is part of the flock
• Manchester is part of England
• Computer science is part of the University

44

Five families of relations

• Partonomic
– Parts and wholes

• The lid is part of the box
– Constitution

• The box is made of cardboard
– Membership

• The box is part of the shipment

• Nonpartonomic
– Containment

• The gift is contained in the box
– Connection/branching/Adjacency

• The box is connected to the container by a strap

45

Some tests
• True kinds of part-of are transitive and

A fault to the part is a fault in the whole
– The finger nail is part of the finger is part of the hand is part of the upper

extremity is part of the body
• Injury to the fingernail is injury to the body

– The tail-light is part of the electrical system is part of the car
• A fault in the tail light is a fault in the car

• Some similar relations are not transitive
– The foot of the goose is part of the goose but not part of the flock of geese

• Damage to the foot of the goose is not damage ot the flock of geese

• Containment is transitive but things contained are not necessarily parts
– A fault (e.g. souring) to the milk contained in the bottle is not damage to

the bottle
• Some kinds of part-whole relation are questionably transitive

– Is the cell that is part of the finger a part of the body?
• Is damage to the cell that is part of the finger damage to the body?

– Not necessarily, since the cells in my body die and regrow constantly

46

Structural parts
• The leg is a component of of the table

• Discrete
• connected,
• clear boundary,
• specifically named
• may be differently constituted
• Can have metal legs on a wooden table or vice versa

• The left side is a subdivision of the table
– ‘Side’, ‘Lobe’, ‘segment’, ‘region’,…

• Arbitrary, similarly constituted,
• components typically fall into one or another subdivision;
• defined in relation to something else;
• sensible to talk about what fraction it is: half the table, a third of the table, etc.

47

Propagates_via / transitive_across
• Components of subdivisions are components of the whole,

but
subdivisions of components are not subdivisions of the
whole
– A the left side of the steering wheel of the car is not a subdivision

of the car
• and certainly not a subdivision of the left side of the car

– (at least not in the UK)

• No consistent name for this relation between properties
– We shall call it propagates_via or transitive_across

• Also known as “right identities”
– Not supported in most DLs or OWL directly

• Although an extension to FaCT to support it exists
• Heavily used in medical ontologies (GRAIL and SNOMED-CT)

48

No simple solution:
Here’s one of several nasty kluges

• Component_of_table is defined as a component of table or any
subdivision of table
– Must do it for each concept

• A Schema rather than an axiom
– No way to say “same as”
– No variables in OWL

» or most DLs

• SCHEMA:
Components_of_X Í

isComponentOf someValuesFrom
(X or (someValuesfrom isSubDivisionOf X))

– Tedious to do with OilEd Expression editor
• Schemas to be built into new tools

49

Functional parts
• Structural parts form a contiguous whole

– May or may not contribute to function
e.g. decorative parts, vestiges such as the human appendix, “spandrels”1,

accidental lumps and bumps

• The remote control is part of the projection system
– May or may not be physically connected to it

• Part of a common function

• Biology examples:
– The endocrine system

• The glands are not connected, but form part of a functioning system
communicating via hormones and transmitters

• The blood-forming system
– Bone marrow in various places, the spleen, etc.

1 See Stephen J Gould 50

If something is both a structural and
functional part…

• Must put in both restrictions explicitly
– Can create a common child property but this gets

complicated with the different kinds of structural parts
– Better to put syntactic sugar in tools

• But syntactic sugar has not arrived, so for this course you have
to do it by hand!

– Coming Real Soon Now (RSN)

51

So far we have
• isPartOf

isStructuralPartOf
isSubdivisionOf
isComponentOf

isFunctionalPartOf
• Many other varieties

– Layers, surfaces, …
• Many other constraints, e.g.

– Dimensions must match
• 3-D things can only be structural parts of 3-D things

– boundaries have one less dimension than the things they bound
• surfaces bound volumes, lines bound areas

– layers of subdivisions are subdivisions of layers of the whole
• the skin of the finger is a subdivision of the skin of the upper hand

• Can add isSubprocessOf –
– similar to isComponentOf

52

What about containment

– X isContainedIn Y isStructuralPartOf Z
X isContainedIn Z

– Rigorous version needs analogous schema to subdivision
• contained_in_X Í

contained_in someValuesFor
(X or (someValuesFor is_structural_part_of X))

– Weak approximation
• make contained_in a parent of is_structural_part

– Not right – implies all structural parts are contained in the whole
» A “kluge”

