Foundations of the Semantic Web: Ontology Engineering

Building Ontologies 1 Alan Rector & colleagues

Goals for this module: for you

- Be able to implement an ontology representation in OWL-DL
 - Be able to elicit a conceptualisation
 - Be able to formulate an ontology representation
 - Be able to implement the ontology representation in OWL-DL
 - Or be able to say you can't
 - To understand the limits of OWL-DL ontologies
 - Be able to test the resulting ontology implementation
 - Be ready to apply ontology representations in any of several use cases
 - In one week, we can't build the applications...
 - ... but to build an ontology is only a means to building applications
 - Without applications ontologies are pointless

Goals for this Module: For us

- Still experimental we need your feedback
 - Feedback
 - On tools we treat this as a User Centred Design experiment
 - · Please be patient
 - The good news is they are getting better
 - On the course
 - Did the content work for you?
 - What other content would you like?
 - · Balance of labs and lecture
 - Content of labs
 - For the Semantic Web Best Practice Working Group
 - New ideas

Mechanics - reminder

- Assessment
 - 30% lab
 - 30% Mini project
 - 40% Exam
- All labs to be handed in by number via Boddington see lab handout
- Theoretical deadline end term before Christmas
 Will allow to go until the first day of exam period but don't advise it
 - You are better to study for the exams!

1

Ontologies and Ontology Representations

- "Ontology" a word borrowed from philosophy
 - But we are necessarily building logical systems
 - "Physical symbol systems"
 Simon, H. A. (1969, 1981). The Sciences of the Artificial, MIT Press
- "Concepts" and "Ontologies"/ "conceptualisations" in their original sense are psychosocial phenomena
 - $-\;$ We don't really understand them
- "Concept representations" and "Ontology representations" are engineering artefacts
 - At best approximations of our real concepts and conceptualisations (ontologies)
 - And we don't even quite understand what we are approximating

Ontologies and Ontology Representations (cont)

- Most of the time we will just say "concept" and "ontology" but whenever anybody starts getting religious, remember...
 - It is only a representation!
 - We are doing engineering, not philosophy although philosophy is an important guide
- There is no one way!
 - But there are consequences to different ways
 - and there are wrong ways
 - and better or worse ways for a given purposes
 - The test of an engineering artefact is whether it is fit for purpose
 - Ontology representations are engineering artefacts

Why build an ontology

- Interworking and information sharing
 - Providing a well organised controlled vocabulary
- Indexing complex information
 - "Knowledge is fractal"
 - Ontologies are fractal
 - Self similar structure at every level of granularity (detail)
- Combat combinatorial explosions
 - The exploding bicycle
 - "Conceptual Lego"
 - A "dictionary and grammar" instead of a "phrasebook"

Logic-based Ontologies: Conceptual Lego: A BioInformatics View

"SNPolymorphism of CFTRGene causing Defect in MembraneTransport of ChlorideIon causing Increase in Viscosity of Mucus in CysticFibrosis..."

5

Approach

- Design patterns
 - Analogous to Java design patterns
 - Standard ways to do things
 - Someday they will be supported by tools, but today you have to do it yourself
 - Being codified by Semantic Web Best Practice Working Group
- Elephant traps
 - Common errors & misconceptions
 - · Especially those that seem to work at first
- Foundations of knowledge representation
 - 200 to 2000 years of experience & mistakes you need not repeat
- Common dilemmas & tradeoffs
 - Things for which we don't have a perfect answer

13

Why does the W3C Semantic Web need a "Best Practice working Group"?

- There is no established "best practice"
 - It is new: We are all learning
 - A place to gather experience
 - A catalogue of things that work -Analogue of Software Patterns
 - · Some pitfalls to avoid

-...but there is no one way

- Learning to build ontologies
 - Too many choices
 - · Need starting points for gaining experience
- Provide requirements for tool builders ٠

14

You can contribute to identifying "best practice"

- Please give us feedback
 - Your questions and experience
 - On the SW in general: semanticweb@yahoogroups.com
 - · For specific feedback to SWBP
 - Home & Mail Archive: http://www.w3.org/2001/sw/BestPractices/ public-swbp-wg@w3.org

Protégé OWL: New tools for ontologies

- Transatlantic collaboration
- Implement robust OWL environment within PROTÉGÉ framework
- New ideas for debugging visualisation syntax ontology managem
- Tell us what works and ideas for improvements

Protégé-OWL & CO-ODE

- Joint work: Stanford & U Manchester + Southampton & Epistemics
 - Please give us feedback on tools mailing lists & forums at:
 - protege.stanford.edu
 - www.co-ode.org
- Don't beat your head against a brick wall!
 - Look to see if others have had the same problem; If not...
 - ASK!
 - We are all learning.

Example Ontologies for this Module

- Pizzas
 - For the mechanics of OWL and Protégé/OWL
 - Simple no ontological problems, just mechanics
- Animals for best practice examples and ontology building
 - The example for you to work from
 - · Also for examples of parts and wholes
- The University and courses
 - Your job is to build an ontology for the University by analogy to the examples
 - with some specific help
 - · Leads on to major ontological issues
- Simple Upper Ontology
 - To put it together
 - Mostly about the University

OWL-DL & Classification

- Not all of OWL-DL can yet be implemented
 - We will deal mostly with the subset that can be classified using FaCT, Racer or FaCT++
 - Not all of the things that are implemented scale successfullyAll classifiers are worst-case exponential (or worse)
- Racer
 - Standard classifier for Protégé OWL
- FaCT++
 - New classifier being developed here
 - Faster, more expressive, better, ...
 - but not quite yet done
- We will try to provide warnings of things which cannot be classified or do not scale
 - But you may discover new things on your own

18

Building Ontologies

• Basic Concepts and Mechanics

Why it's hard (1)

- Clash of intuitions
 - Subject Matter Experts motivated by custom & practice
 - Prototypes & Generalities
 - Logicians motivated by logic & computational tractability
 - Definitions and Universals
- Transparency & predictability vs Rigour & Completeness
- Neophytes (you?) caught in the muddled middle

Why it's hard (2)

• Conflation of Models – Meaning: Correctness of Classification & retrieval – Indexing: Task of discovery, search, or finding Task of data entry, decision support, ... – Use: Task of capturing knowledge – Acquisition: • Assuring quality & managing change - Quality assurance: Criteria for whether it is 'correct' – Evolution Coping with change - Regression testing Controlling changes & maintaining Ouality 22

Why its hard (3)

- Confusion of terminology and usage
 - Religious wars over words and assumptions
- The intersection of
 - Linguistics
 - Cognitive science
 - Software engineering
 - Philosophy
 - Human Factors
- A jumble of syntaxes

Vocabulary

- "Class" \approx "Concept" \approx "Category" \approx "Type"
- "Instance" ≈ "Individual"
- "Entity" ≈ "object", Class or individual
- "Property" ≈ "Slot" ≈ "Relation" ≈ "Relationtype" ≈
 "Attribute" ≈ Semantic link type" ≈ "Role"
 - but be careful about "role"
 - Means "property" in DL-speak
 - Means "role played" in most ontologies
 - E.g. "doctor_role", "student role" ...

Syntaxes

Three official syntaxes + Protégé-OWL syntax - Abstract syntax -Specific to OWL - N3 -OWL & RDF - used in all SWBP documents - XML/RDF -very verbose, not for human consumption - "German DL" -very concise, symbolic - First order logic - - complete but more powerful than DL - Protégé-OWL -Compact, derived from DL syntax - Paraphrase -Verbose but precise			• Clash with vocabulary and practice of related software disciplines	
This tutorial uses simplified abstract syntax				
- someValuesFrom →	some	3		
$-$ allValuesFrom \rightarrow	only	A		
$-$ intersectionOf \rightarrow	AND			
– unionOf \rightarrow	OR			
– complementOf \rightarrow	NOT	7		
– complete	definition	necessary & sufficient		
– partial	description	necessary	25	
Protégé/OWL can generate all syntaxes except German				

Clash with intuitions of related fields

- Object Oriented Programming
 - Java,a C++, Smalltalk, etc.
 - But OO programming is not knowledge representation
- Object Oriented Design (Databases)
 - But data models are not ontologies either
 - Although UML is often a good starting point
 - Additional a-logical issues
 - » Difference between attributes and relations
 - » Issues of life cycle and handling of aggregation\$
 - » Notion of an instance
 - » Implicitly "closed world"
- Frame based systems, Semantic Nets,... Traditional AI – Where it all started but real differences
- RDF(S), Topic Maps and other node-and-arc symbolisms
 - "What's in a link?"
 - The battles in standards committees continue

Summary of Approach Steps in developing an Ontology (1)

Why its hard (4)

- 1. Establish the purpose
 - Without purpose, no scope, requirements, evaluation,
- 2. Informal/Semiformal knowledge elicitation
 - Collect the terms
 - Organise terms informally
 - Paraphrase and clarify terms to produce informal concept definitions
 - Diagram informally
- 3. Refine requirements & tests

Summary of Approach Steps in implementing an Ontology (2)

- 4. Implementation
 - Develop normalised schema and skeleton
 - Implement prototype recording the *intention as a paraphrase*
 - Keep track of what you meant to do so you can compare with what happens
 - Implementing logic-based ontologies is programming
 - Scale up a bit
 - Check performance
 - Populate
 - Possibly with help of text mining and language technology
- 5. Evaluate & quality assure
 - Against
 - Include tests for evolution and change management
 - Design regression tests and "probews"
- 6. Monitor use and evolve
 - Process not product!

If this were three modules...

- 1. Knowledge elicitation and analysis – A quick overview
- 2. Implementation – A solid introduction
- 3. Evolution, ontology alignment, and management
 - Left for another module
 - But a major motivation for the methods taught in this module
 - Normalisation and documentation of intentions

30

Plan of Labs

- Monday the mechanics of OWL in Protégé Owl
 - The pizza example
- Tuesday Ontology building the life cycle
 - A more realistic example
 - Start building the University example
 - On the pattern of the lecture example of animals
- Wednesday
 - Problems and tricks of the trade
 - DL problems (IH)
- Thursday
 - More on patterns and parts and whole
- Friday
 - Upper ontologies and clarification of the mini project

31