
Overall Overview 1

Advanced Algorithms CS3172,
02/03

Time: Monday and Friday, 10-11.

www: Do check the website regularly.

Lecture Course comes in 2 parts:
Part I (Dix) Introduction to Complexity Classes,
Part II (Rydeheard) Specific Algorithms.

Organisation:
Part I (Dix): 8 lectures, one week free (3/7 March), one week
to discuss the homework (10/14 March).
Part II (Rydeheard): 8 lectures, one week free (5/9 May), one
week to discuss the homework (12/16 May).
Exam:

CS 3172, 02/03: Advanced Algorithms Dix/Rydeheard

Overall Overview 2

Overview

1. Turing Machines
2. Complexity Classes
3. Hierarchies, Complete Problems

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 71 Overview

3 Hierarchies, P/NP

3.1 The Structure of PSPACE

3.2 Completeness, Hardness

3.3 Examples

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 72 3.1 PSPACE, Reductions

3.1 The structure of PSPACE

We define the most important complexity classes and look into
their structure.

Definition 3.1 (P, NP, PSPACE, NSPACE)
We define the following complexity classes:

P :=
⋃

i>1DTIME (ni)

NP :=
⋃

i>1NTIME (ni)

PSPACE :=
⋃

i>1DSPACE(ni)

NSPACE :=
⋃

i>1NSPACE(ni)

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 73 3.1 PSPACE, Reductions

The intuition is as follows:

• Problems in P are efficiently solvable,
whereas those in NP require exponential time.

• PSPACE is a huge class, way above P and NP.

• DSPACE(logn) is a small class within P and very small in
PSPACE.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 74 3.1 PSPACE, Reductions

What are the precise relations between the complexity
classes introduced in Definition 3.1?

Using Theorem 2.6 it is obvious that (remember the hierarchies
introduced on slide 65)

PSPACE = NSPACE
⋃

i>1NSPACE(logi n) =
⋃

i>1DSPACE(logi n)

This gives us (using Theorem 2.7)

DSPACE(logn) j P j NP j PSPACE

where at least one containment is proper (but it is unknown
which).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 75 3.1 PSPACE, Reductions

• How do we show that a particular problem is in a certain
class?

Reduce it to a known one!
But we have to have one to start with! Yes, and this is the most
difficult step. A suitable problem is SAT introduced in
Example 1.2.

• Can we find problems in a class that are the most difficult
ones in that class?

There are several ways to define a most difficult
problem. They depend on which notion of reducibility
we use.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 76 3.1 PSPACE, Reductions

Based on a particular reducibility notion, the answer to
our question is Yes: such problems are called complete
problems for the given class under the chosen reducibil-
ity notion.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 77 3.1 PSPACE, Reductions
Definition 3.2 (polynomial-time-, log-space reducibility)
Let L1,L2 be languages.
poly-time: We say that L2 is poly-time reducible to L1, if there

is a polynomial-time bounded DTM that produces for each
input w an output f (w) such that

w∈ L2 if and only if f (w) ∈ L1

log-space: We say that L2 is log-space reducible to L1, if there
is a logn space bounded offline DTM that always halts and
produces for each input w an output f (w) such that

w∈ L2 if and only if f (w) ∈ L1

The output tape is write-only and the head never moves left.
Space on the output tape is not counted.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 78 3.1 PSPACE, Reductions

The notions just introduced are important because of the following

Lemma 3.1 (Properties of poly-time and log-space reductions)
1. Let L2 be poly-time reducible to L1. Then

L2 is in NP if and only if L1 is in NP

L2 is in P if and only if L1 is in P

2. Let L2 be log-space reducible to L1. Then
L2 is in P if and only if L1 is in P

L2 is in DSPACE(logk n) if and only if L1 is in DSPACE(logk n)

L2 is in NSPACE (logk n) if and only if L1 is in NSPACE (logk n)

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 79 3.1 PSPACE, Reductions

3. The composition of two log-space (resp. poly-time) reduc-
tions is itself a log-space (resp. poly-time) reduction.

4. Log-space reducibility implies poly-time reducibility.

The next slide shows a log-space reduction of Lsat to LILP.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

I am here after the seventh lecture.

79-1

Chapter 3: Hierarchies, P/NP 80 3.1 PSPACE, Reductions

Recall the integer linear programming problem LILP from
slide 28. How is this problem related to Lsat?

Suppose we are given a formula φ : ψ1∧·· ·∧ψl where each ψi is a
disjunction of literals (over variables x1, . . . ,xn).

We construct an ILP problem 〈A,b〉 as follows:

Matrix A: 2n columns of A correspond to x1,x1, . . . ,xn,xn. The first n

rows each contain exactly two consecutive 1’s (starting from
position i at row i). The next n rows each contain exactly two
consecutive −1’s (starting from position i at row 2i). The next l

rows contain 1’ at exactly the positions determined by the
clauses ψi . Finally, we have n rows containing only one 1 (at
position xi) and another n rows containing only one 1 (at
position xi).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 81 3.1 PSPACE, Reductions

Vector b: The first n entries are 1, the next n entries are −1, the
next l (number of clauses) are 1. Finally, we have 2n entries
which are 0.

φ ∈ Lsat if and only if 〈A,b〉 ∈ LILP

Why? Just split off the matrix multiplication into its many
inequalities and find out what they really mean.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 82 3.1 PSPACE, Reductions

Theorem 3.1 (Characterisation of NP)
A language L is in NP if and only if there is a language L ′ in P and
there is k≥ 0 such that for all w∈ Σ

w∈ L if and only if there is c : 〈w,c〉 ∈ L ′ and |c|< |w|k.

c is called a witness (or certificate) of w in L . A DTM accepting
the language L ′ is called a verifier of L .

A decision problem is in NP, if and only if every yes-instance
has a succinct certificate (i.e. its length is polynomial in the
length of the input) which can be verified in polynomial time.

E.g. checking “nonprimeness”, graphs being hamiltonian,
satisfiability.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 83 3.2 Completeness, Hardness

3.2 Completeness, Hardness

Definition 3.3 (Completeness, Hardness)
A language L is called NP complete, if L ∈ NP and every language
L ′ ∈ NP is log-space reducible to L .
A language L is called NP hard, if every language L ′ ∈ NP is
log-space reducible to L .
A language L is called PSPACE complete, if L ∈ PSPACEand every
language L ′ ∈ PSPACE is poly-time reducible to L .
A language L is called NSPACE hard, if every language
L ′ ∈ PSPACE is poly-time reducible to L .

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 84 3.2 Completeness, Hardness

It is worth noting the following:

• If a NP hard problem is shown to be in P, then P =NP.

• If a PSPACEhard problem is shown to be in P, then P
=PSPACE.

• If P 6= NP, then no NP complete problem is solvable in
polynomial time.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 85 3.2 Completeness, Hardness

Complexity classes defined on deterministic Turing ma-
chines are closed under complementation: If a language L
belongs to it, then its complement belongs to it as well (just
run the old machine and swap the answers).

Does that hold for NP as well?

Nobody knows!!

The last complexity class we introduce is co-NP.

Definition 3.4 (co-NP)
co-NP is the class of languages L whose complements L (= Σ∗ \L)
are in NP.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 86 3.2 Completeness, Hardness

The following are unknown to science:

1. P 6= NP.
2. NP 6= co-NP.
3. P 6= PSPACE.
4. NP 6= PSPACE.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 87 3.2 Completeness, Hardness

3.3 Some reductions

SAT, 3-CNF are NP complete

Definition 3.5 (SAT, kkk-CNF, kkk-DNF)
We have already introduced the satisfiability problem in
Example 1.2 on slide 25. A literal l i is a variable xi or its negation
¬xi . A clause is a disjunction of literals. Let us define the
following:
DNF: A formula is in disjunctive normal form (DNF), if it is of

the form (l11∧ . . .∧ l1n1)∨ . . .∨ (lm1∧ . . .∧ lmnm).
CNF: A formula is in conjunctive normal form (CNF), if it is of

the form (l11∨ . . .∨ l1n1)∧ . . .∧ (lm1∨ . . .∨ lmnm).
CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 88 3.2 Completeness, Hardness

kkk-DNF: A formula is in kkk-DNF, if it is in DNF and every disjunct
contains exactly kkk literals.

kkk-CNF: A formula is in kkk-CNF, if it is in CNF and every conjunct
contains exactly kkk literals.

We also use the notation k-SAT for k-CNF: each clause contains at
most k literals (they can of course vary from clause to clause, so
that the whole formula can contain an arbitrary number of
literals).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 89 3.2 Completeness, Hardness

DNF: What is the time complexity of the satisfiability problem for
formulae in DNF?

2-CNF: What is the time complexity for the satisfiability problem
for 2-CNF?

Reducibility: How can we reduce a satisfiability problem in CNF
to one into DNF and vice versa? What does this imply about
the poly-time or log-space reducibility of SAT wrt to DNF and
SAT wrt. CNF to each other?

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 90 3.2 Completeness, Hardness

Theorem 3.2 (NP complete Problems)
The following are NP complete problems: Lsat, L3-sat, integer
linear programming, the problem whether a graph contains a
hamiltonian cycle.

Proof: not trivial!

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 91 3.2 Completeness, Hardness

3.4 Graph Reachability, Vertex Cover

Theorem 3.3 (Completeness of Lreach)
Lreach (graph reachability) is log-space complete for
NSPACE(logn).

Theorem 3.4 (Completeness of Vertex Cover)
Vertex Cover is NP complete.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 92 3.2 Completeness, Hardness

Homework 4 (Reducibilities, P/NP)
1. Suppose there is a function f : N→ N mapping integers of

length k onto integers of length k such that
(a) f ∈ P,
(b) f−1 6∈ P.
Show that

{〈x,y〉 : f−1(x) < y} ∈ (NP∩co-NP)\P

2. Suppose we have a DTM M that decides a language L . If
x∈ L , M says yes in polynomial time. If x 6∈ L , M says no in
exponential time. Is L ∈ P?

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 3: Hierarchies, P/NP 93 3.2 Completeness, Hardness

3. Classify the following problems to t (true), f (false), or u
(unknown to science, i.e. depending on the P/NP problem).
• SAT ∈ P.
• If a problem in NP can be solved in polynomial time, then

P = NP.
• If a problem in NP can be shown not to be solvable in

polynomial time, then P 6= NP.
• SAT can be polynomially reduced to 1-CNF.
• All problems in P can be polynomially reduced to each other.
• Some problems in NP can not be polynomially reduced to each

other.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

References 94

References
Hopcroft, J. and J. Ullman (1979). Introduction to Automata

Theory, Languages, and Computation. Reading, MA: Addison
Wesely.

Lin, S. and T. Rado (1965). Computer studies of turing machine
problems. Journal of the ACM 12(2), 196–212.

Papadimitriou, C. (1994). Computational Complexity.
Addison-Wesley.

Rado, T. (1962). On non-computable functions. The Bell System
Technical Journal XLI(3), 877–884.

Turing, A. M. (1936). On Computable Numbers with an
Application to the Entscheidungsproblem. Proc. London
Mathematical Soc., series 2 42, 230–265. corrections ibid.,
43:544–546.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

