
Overall Overview 1

Advanced Algorithms CS3172,
02/03

Time: Monday and Friday, 10-11.

www: Do check the website regularly.

Lecture Course comes in 2 parts:
Part I (Dix) Introduction to Complexity Classes,
Part II (Rydeheard) Specific Algorithms.

Organisation:
Part I (Dix): 8 lectures, one week free (3/7 March), one week
to discuss the homework (10/14 March).
Part II (Rydeheard): 8 lectures, one week free (5/9 May), one
week to discuss the homework (12/16 May).
Exam:

CS 3172, 02/03: Advanced Algorithms Dix/Rydeheard

Overall Overview 2

Overview

1. Turing Machines
2. Complexity Classes
3. Hierarchies, Complete Problems

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 47 Overview

2 Complexity Classes

2.1 Time/Space Complexity

2.2 Speed up

2.3 Relations between Time/Space

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 48 2.1 Space/Time Complexity

2.1 Time/Space Complexity

Definition 2.1 (NTIME (T(n)), DTIME (T(n)))
We consider as base model a multitape TM M with k two-way
infinite tapes, one of which contains the input. If for every word
of length n as input, M makes at most T(n) moves, then M is
called T(n) time bounded.
The language accepted by M is said to be of time complexity
T(n) (actually we mean max(n+1,dT(n)e)).

• DTIME (T(n)) is the class of languages accepted by T(n)
time bounded deterministic DTMs.

• NTIME (T(n)) is the class of languages accepted by T(n)
time bounded nondeterministic NDTMs.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 49 2.1 Space/Time Complexity

Definition 2.2 (NSPACE (S(n)), DSPACE(S(n)))
We consider as base model an offline TM M with k one-way
infinite tapes and a special input tape. If for every word of length
n as input, M scans at most S(n) cells on the storage tapes, then
M is called S(n) space bounded.
The language accepted by M is said to be of space complex-
ity S(n) (actually we mean max(1,dS(n)e)).

• DSPACE(S(n)) is the class of languages accepted by S(n)
space bounded deterministic DTMs.

• NSPACE (S(n)) is the class of languages accepted by S(n)
space bounded nondeterministic NDTMs.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 50 2.1 Space/Time Complexity

Why offline TM?
(tape bounds of less than linear growth)

To which time/space complexity class belongs

Lmirror := {wcwR : w∈ (0+1)∗},

i.e. the set of words that can be mirrored on the middle letter c?

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Time: DTIME (n+1). Just copy the input to the right of c in
reverse order on another tape. Once a c is found, just
compare the remaining part (the w) with the copy of w
on the tape.

Space: DSPACE(lgn). The machine just described gives us a
bound of DSPACE(n). But we can do better. We use two
tapes as binary counters. Firstly the input is checked
for the occurrence of just one c and an equal number
of symbols to the left and right of c. This needs only
constant space, resp. it can be done with a number of
states (and thus needs no space at all). Secondly we
check the right and left part symbol by symbol: to do
this we just have to keep in mind the two positions to
be checked (for equality) (and they are coded on the two
tapes).

50-1

Chapter 2: Complexity Classes 51 2.1 Space/Time Complexity

A few words on terminology.

computable: A function is computable, if, by definition, there is a
DTM computing it (given the input n, the DTM computes f (n)).
The function can be partial or not. We also say the function is
partial recursive (see slide 11).

accepted: A language is accepted (or recognised), if there is a
DTM accepting it (given an input w, the DTM stops in an
accepting state if and only if w is in the language).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 52 2.1 Space/Time Complexity

decided: We say a DTM decides a language, if there is a DTM that
accepts it and it always terminates. The language is then
called decidable.

decidable: We say a problem is decidable, if there is a DTM that
decides it. A problem can always be put in the form “Is w∈ L”
for an appropriate language L .

Recall that we also call a function recursive, if it is partial
recursive and total.
If a language is decidable, then its complement is as well.
This is not true for acceptance.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 53 2.1 Space/Time Complexity

Time: Is any language in DTIME (f (n)) decided by a DTM?

Space: Is any language in DSPACE(f (n)) decided by a DTM?

Time/Space: Same questions about NTIME (,) NSPACE.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 54 2.1 Space/Time Complexity

Homework 2 (Acceptability/Decidability)
Comment on the following statements.

1. The traditional algorithm for checking whether a number is
prime, is decidable.

2. Any finite language is accepted by a DTM.
3. Any infinite language is accepted by a NDTM.
4. Any finite language is decided by a DTM.
5. There are algorithms that are undecidable.
6. If L is decidable, then its complement is decidable as well.
7. There is at least one DTM that is decidable.
8. There is at least one NDTM that is undecidable.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 55 2.1 Space/Time Complexity

9. The following function is decidable:

f : N−→ N,n 7→

1, if cricket is a sport for stupid people;
0, otherwise.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 56 2.2 Speed Up

2.2 Speed up

The aim of this section is to illustrate that only the functional rate
of growth of a function matters in a complexity class: constant
factors have to be ignored.

Theorem 2.1 (Tape compression)
For any c > 0 and space function S(n):

DSPACE(S(n)) = DSPACE(cS(n))

NSPACE(S(n)) = NSPACE(cS(n))

Note that one direction is trivial. The proof for the other is by
representing a fixed number r (> 2

c) of adjacent tape cells by a new
symbol. The states of the new machine keep track which of the
many cells represented is actually scanned during simulation.
CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 57 2.2 Speed Up

Theorem 2.2 (Time speed up)
For any c > 0 and time function T(n) with infn→∞

T(n)
n = ∞:

DTIME (T(n)) = DTIME (cT(n))

NTIME (T(n)) = NTIME (cT(n))

Again one direction is trivial. The proof for the other is also by
representing a fixed number r (> 16

c) of adjacent tape cells by a
new symbol (the states of the new machine keep track which of the
many cells represented is actually scanned (when simulating the
old machine)).

When simulating the old machine, the new one only needs to make
8 moves instead of r: 4 to check the immediate neighbours and
another 4 to modify them.
CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 58 2.2 Speed Up

What happens if we reduce the number of tapes? Let us consider
again Lmirror from Slide 50. The linear complexity does no more
hold if there is only one tape available. However, the following
holds.

Theorem 2.3 (Reduction of tapes (1))
• If L ∈ DTIME (T(n)), then L is accepted in time T2(n) by a

one-tape DTM.
• If L ∈ NTIME (T(n)), then L is accepted in time T2(n) by a

one-tape NDTM.

The proof is simple. Remember that we need 6T2(n) steps to
simulate the k-tape DTM using a 1-tape DTM (see slide 34). Now
we speed it up by 1√

6
.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 59 2.2 Speed Up

The last theorem also holds for space bounded functions:

Theorem 2.4 (Reduction of tapes (2))
• If L ∈ DSPACE(S(n)), then L is accepted in space S(n) by a

one-tape DTM.
• If L ∈ NSPACE(S(n)), then L is accepted in space S(n) by a

one-tape NDTM.

This proof is as simple as the last one. Note that in simulating a
k-tape TM with a 1-tape TM we need the same number of storage
cells. So we do not even need to speed up to get our result.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

I should have reached this point after the fifth lecture.

59-1

Chapter 2: Complexity Classes 60 2.3 Relations between Time/Space

2.3 Relations between Time/Space

Theorem 2.5 (Time versus Space)
• DTIME (f (n))⊆ DSPACE(f (n)).
• If f (n)≥ lgn, and L ∈ DSPACE(f (n)), then there is a c > 0

s.t. L ∈ DTIME (cf (n)).
• If L ∈NTIME (f (n)), then there is a c> 0 s.t. L ∈DTIME (cf (n)).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 61 2.3 Relations between Time/Space

Proof:

• Obvious.

• Suppose we have s states and t tape symbols. By using at most
f (n) cells, the number of different IDs on an input of length n is
bounded by s(n+2)(f (n)+1)t f (n) (we assume in view of
Theorem 2.4 that we are dealing with an offline DTM with just
one storage tape). Because of f (n)≥ lgn, there is a c such that
for n≥ 1: cf (n) ≥ s(n+2)(f (n)+1)t f (n). We can construct a 3-tape
DTM: one tape is used to count up to cf (n), the other two to
simulate the old machine. When no accepting state is reached
until the maximal count, it will never accept (the old machine
actually loops): we then simply terminate in a non accepting
state. If an accepting state is reached, the new machine
accepts as well.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 62 2.3 Relations between Time/Space

• Similar to the last case, but now we have to take into account
the number k of tapes as well (and that it is a regular k-tape
NDTM). Number of IDs is bounded by ... We construct a
multitape DTM to simulate the old NDTM. Our machine first
constructs a list L of all accessible IDs (from the initial input):
This can be done in time bounded by length2(L) (why?) and we
have length(L)≤ . . . and therefore ≤ cf (n). It then checks
whether any of the IDs leads to an accepting state or not ...

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 63 2.3 Relations between Time/Space
In the following we want to state some more relations between
complexity classes. Unfortunately they do not hold for all time
functions T(n) or space functions S(n), but for almost all that do
occur naturally. We therefore define the following space of
functions.

Definition 2.3 (Well-behaved functions)
We consider the vector space of functions from N into N
containing logan,nk,2n,n! and closed under multiplication,
exponentiation and composition. We call such functions
well-behaved .

Theorem 2.6 (Det. versus Non-Det. Space)
Let S(n) be well-behaved. Then:

NSPACE(S(n))⊆ DSPACE(S2(n)).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 64 2.3 Relations between Time/Space

Theorem 2.7 (Time/Space Hierarchies)
Let S1(n),S2(n) and T1(n),T2(n) be well-behaved. We assume
further that S1(n) < S2(n) and T1(n) < T2(n) for all n > n0 for a
n0 ∈ N.

1. If infn→∞
S1(n)
S2(n) = 0 then DSPACE(S1(n))& DSPACE(S2(n)) .

2. If infn→∞
T1(n) lgT1(n)

T2(n) = 0 then DTIME (T1(n))& DTIME (T2(n)) .

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 65 2.3 Relations between Time/Space

The last theorem implies the following hierarchies:

DSPACE(n)& DSPACE(n2)& . . .& DSPACE(nr)& . . .

and
DTIME (n)& DTIME (n2)& . . .& DTIME (nr)& . . .

as well as

DSPACE(logn)& DSPACE(log2n)& . . .& DSPACE(logr n)& . . .

and

DTIME (logn)& DTIME (log2n)& . . .& DTIME (logr n)& . . .

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 66 2.3 Relations between Time/Space

What about similar results for nondet. space and time?

Theorem 2.8 (Nondeterministic Hierarchies)
Let S1(n),S2(n) and f (n) be well-behaved. We assume further that
S2(n)≥ n and f (n)≥ n for all n∈ N.

1. NSPACE(S1(n))⊆ NSPACE(S2(n)) implies
NSPACE(S1(f (n)))⊆ NSPACE(S2(f (n))).

2. NTIME (S1(n))⊆ NTIME (S2(n)) implies
NTIME (S1(f (n)))⊆ NTIME (S2(f (n))).

This theorem is applied as follows. Suppose
NSPACE(n4)⊆ NSPACE(n3). We then apply the theorem for n3, n4

and n5 separately and get: NSPACE(n20)⊆ NSPACE(n9). By
Theorem 2.6 we know that NSPACE(n9)⊆ DSPACE(n18) and by
Theorem 2.7 DSPACE(n18)(DSPACE(n20), which is a contradiction.
CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 67 2.3 Relations between Time/Space

The last theorem implies the following hierarchies:

NSPACE(n)& NSPACE(n2)& . . .& NSPACE(nr)& . . .

and
NTIME (n)& NTIME (n2)& . . .& NTIME (nr)& . . .

as well as

NSPACE(logn)& NSPACE(log2n)& . . .& NSPACE(logr n)& . . .

and

NTIME (logn)& NTIME (log2n)& . . .& NTIME (logr n)& . . .

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 68 2.3 Relations between Time/Space

Homework 3 (Simple Relations)
Consider the problem of testing whether a given natural number is
prime. Use unary representation. Is there a DTM solving this
problem in polynomial time? I.e. is this problem in DTIME (nr) for a
r ∈ N? Note that you do not have to actually construct a DTM, it
suffices if you can argue convincingly.
Complete the third part of the proof of Theorem 2.5.
Discuss the two notions of decidability versus acceptability of a
language wrt. NDTM's and DTM's. What happens, if we take time
bounds into consideration? If a language is acceptable in time
T(n), it is also decidable in T(n)?

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 69 2.3 Relations between Time/Space

What, if any, is the relationship between the following pairs of
complexity classes?

1. DSPACE(n2) and DSPACE(f (n)) where f (n) := n for odd n and
f (n) := n3 for even n.

2. DTIME (134n) and DTIME ((lnn)n).
3. DTIME (2n) and DTIME (3n).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 2: Complexity Classes 70 2.3 Relations between Time/Space

4. NSPACE (2n) and DSPACE(5n).
5. DSPACE(n) and DTIME (dlgnen).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

This is what I did until the end of the sixth lecture.

70-1

References 94

References
Hopcroft, J. and J. Ullman (1979). Introduction to Automata

Theory, Languages, and Computation. Reading, MA: Addison
Wesely.

Lin, S. and T. Rado (1965). Computer studies of turing machine
problems. Journal of the ACM 12(2), 196–212.

Papadimitriou, C. (1994). Computational Complexity.
Addison-Wesley.

Rado, T. (1962). On non-computable functions. The Bell System
Technical Journal XLI(3), 877–884.

Turing, A. M. (1936). On Computable Numbers with an
Application to the Entscheidungsproblem. Proc. London
Mathematical Soc., series 2 42, 230–265. corrections ibid.,
43:544–546.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

