
Overall Overview 1

Advanced Algorithms CS3172,
02/03

Time: Monday and Friday, 10-11.

www: Do check the website regularly.

Lecture Course comes in 2 parts:
Part I (Dix) Introduction to Complexity Classes,
Part II (Rydeheard) Specific Algorithms.

Organisation:
Part I (Dix): 8 lectures, one week free (3/7 March), one week
to discuss the homework (10/14 March).
Part II (Rydeheard): 8 lectures, one week free (5/9 May), one
week to discuss the homework (12/16 May).
Exam:

CS 3172, 02/03: Advanced Algorithms Dix/Rydeheard

Overall Overview 2

Overview

1. Turing Machines
2. Complexity Classes
3. Hierarchies, Complete Problems

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 3 Overview

1 Turing Machines
1.1 The very definition

1.2 Computable languages

1.3 Modifications of TM’s

1.4 Undecidability

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 4 1.1 The very definition

1.1 The very definition

Computability: Consider functions over the natural numbers N.
Which of these should we call computable?

Complexity: In order to measure the complexity of an algorithm,
we need a machine model to check it against!
Which model do we choose?

Robustness: Model should not depend on small modifications.
It should be robust against such small changes.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 5 1.1 The very definition

One machine to rule them all!

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 6 1.1 The very definition

This ring of the rings is the Turing machine, named after
Alan Mathison Turing.

One can think of a Turing machine as a device, consisting of

Tape: A one-way infinite tape consisting of single cells (storage
tape).

Head: A head which always scans exactly one cell. The head can
move on the tape to the right or left and it can also print
something on the cell that is currently scanned (thereby
overwriting the contents of the cell).

Finite control: A mechanism that can be described by a finite
table. It tells the head

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 7 1.1 The very definition

1. to write a certain symbol on the current cell,

2. to move right or left and

3. to enter another state,
all this depending on the current state and the
symbol scanned.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 8 1.1 The very definition
Definition 1.1 (Turing Machine, Version 1)
A deterministic Turing machine (DTM) is a tuple 〈Q,Σ,Γ,#,δ,q0〉:
• Q is a finite set (set of states).
• Γ (set of tape symbols) is a finite set with #∈ Γ,
• Σ (set of input symbols) is also a finite set with Σ Γ,
• # is a distinguished symbol (the blank) with # 6∈ Σ.
• q0 is a distinguished element of Q (start state): q0 ∈Q.
• δ is a function (the next move function) from Q×Γ to

Q×Γ×{L,R} which needs not to be defined on some inputs.
A DTM takes as input a word w∈ Σ∗ and either halts after a
number of moves (in which case the output is the word left on the
tape) or it does not (in which case there is no output). The number
of states of a DTM is ‖Q‖−1.
CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 9 1.1 The very definition

To be precise, we define the following:

ID: An instantaneous description of a DTM is denoted by the
string α1qα2α1qα2α1qα2 where α1,α2 ∈ Γ∗, q∈Q.

– Informally it means that the tape contains the string α1α2

(the first symbol of α1 represents the first cell of the tape,
and all cells beyond the last symbol of α2 are blanks), the
head is scanning the leftmost symbol of α2 (if α2 = ε then it
is scanning a blank #) and the DTM is in state q.

– We also use a distinguished ID denoted by stop:α1qα2: this
means that α1qα2 is the current description and the DTM
stops.

An ID is like a snapshot of the current status of the DTM.
It gives a complete description.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 10 1.1 The very definition

Move: For a DTM M we define a relation `̀̀M (a direct move)
between ID’s as follows. Firstly, stop:α1qα2 `̀̀M stop:α1qα2 for
all α1,α2 ∈ Γ∗, q∈Q. Secondly, X1 · · ·Xi−1qXi · · ·Xn `̀̀M

`̀̀M

X1 · · ·Xi−1Y pXi+1 · · ·Xn, if i > 1, δ(q,Xi) = (p,Y,R);

X1 · · ·Xi−2pXi−1YXi+1 · · ·Xn, if i > 1, δ(q,Xi) = (p,Y,L);

stop:qX1 · · ·Xn, if i = 1, δ(q,Xi) = (p,Y,L);

X1 · · ·Xi−2pXi−1Y, if i−1 = n > 0, δ(q,#) = (p,Y,L);

stop:X1 · · ·Xi−1qXi · · ·Xn, if δ(q,Xi) is not defined ;

We denote by `̀̀ ∗
M the transitive closure of `̀̀M . Thus for two

ID’s the relation
ID1`̀̀∗M ID2 means that ID2 can be reached from ID1 in finitely
many steps.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 11 1.1 The very definition

Comp: Let a partial function f : Σ∗ −→ Σ∗; w 7→ f (w) be given

(f needs not be defined on all inputs).

We say that a DTM M computes f ,when the following holds:

f (w) = w′ if and only if #wq0 `∗M stop:#w′q,

where q∈Q.
Note that a DTM might not stop on certain inputs.

Definition 1.2 ((Partial) recursive functions over Σ)
A function computed by a DTM is called partial recursive. If
such a function is defined on all inputs, it is called recursive.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 12 1.1 The very definition

The last definition was introduced by Alan Turing in his ground
breaking paper (Turing 1936). It is one of the most ingenious
definitions in mathematics and logic of all times.

Church’s Thesis: The intuitive notion of an algorithm is
correctly reflected by a Turing machine: The input is a word
written on the tape and the output also is a word obtained
after the machine stops.

The intuitive notion of a computable function over N is
that of a function computed by a Turing Machine with
Σ = {1}. Input and output are written in unary.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 13 1.1 The very definition

Visual Turing: http://www.cheransoft.com/vturing/

A nice tool to develop, play and understand Turing machines.
Note the differences between our definition and visual Turing:

1. variable assignments in visual Turing are represented in our

definition by introducing additional states (one for each tape
symbol: when an assignment α is made, we enter a particular
state so that we know to remember α and can print it later on if
needed).

2. In our model we must both write on the tape and move the head
(in the same step).

3. In visual Turing subprograms can be easily incorporated,
whereas in our definition we have to rename the states involved
to avoid confusion (in particular the start state).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

I should reach this point at the end of the first lecture.
Finish with playing around with the visual Turing program.

13-1

Chapter 1: Turing Machines 14 1.1 The very definition

Here is the definition of visual Turing’s Left# wrt. Γ = {#,a,b}
(Go to the first blank on the left of the current position of the head).

Let Q := {q0,q1}, Σ := {a,b}, and δ be defined as follows:

state # a b

q0 〈q1,#,L〉 〈q1,a,L〉 〈q1,b,L〉
q1 − 〈q1,a,L〉 〈q1,b,L〉

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 15 1.1 The very definition

• It is easy to design DTMs for addition, subtraction,
multiplication, copying of strings etc. It might be tedious at
first.

• DTMs can also simulate any type of subroutine, including
recursive procedures and parameter passing mechanisms.

• I doubt whether you can come up with any number theoretic
function that is not computable by a DTM. Anything goes
with a DTM.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 16 1.1 The very definition

Homework 1 (Number of DTMs)
Given numbers n, m, exactly how many Turing machines with up to
n states and m tape symbols are there?
How many Turing machines are there at all (no restriction on the
number of states)?
Do the above answers change, if we allow the set Σ to be
countably infinite?
How many instantaneous descriptions are there for a DTM
working on a part of the tape of length n?
How many Turing machines or equivalents have actually been built
from 1936-1986? I mean machines that can compute all partial
recursive functions in the sense of Definition 1.2. Just make a
guess.
CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 17 1.1 The very definition

Example 1.1 (Printing n on the tape: Printn)
For each n∈ N, let us design a machine that prints exactly n 1's on
the tape, starting with the empty tape standing on the second
blank (from the left). We try to do it with as few states as
possible. We use the machine copy. For given n, we first write bn

2c
many 1's on the tape. This can be done with bn

2c many states. We
then copy this number (this can be done with a constant number
of states, namely 7). Then, we replace the separating # with a 1
and, depending on whether n is odd or even, we leave it as is or we
replace the last 1 by a #. To do this we need another 2 states.
In total, we can write n 1s with only bn

2c+9 states.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 18 1.1 The very definition

The machine Copy, using seven states:

state q0 q1 q2 q3 q4 q5 q6 q7

〈q1,#,L〉〈q2,#,R〉〈q7,#,R〉〈q4,#,R〉〈q5,1,L〉〈q6,#,L〉〈q2,1,R〉 −
1 − 〈q1,1,L〉〈q3,#,R〉〈q3,1,R〉〈q4,1,R〉〈q5,1,L〉〈q6,1,L〉〈q7,1,R〉

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 19 1.2 Acceptable languages

1.2 Acceptable languages

In the last section we viewed a DTM as a computing device :
given an input, it computes an output. Often, however, it is
conceptually simpler to view a DTM as a device getting an input
and returning Yes or No: this is called an acceptor.

A DTM under this viewpoint gets an input, runs and either stops
in an accepting state, stops in an non-accepting state or runs
forever. We therefore have to add a set of accepting states.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 20 1.2 Acceptable languages

Definition 1.3 (Turing Machine, Version 2 (Acceptor))
A deterministic Turing machine (DTM) M is a seven-tuple

〈Q,Σ,Γ,#,δ,q0,F〉, where

• Q is a finite set (set of states).
• Γ (set of tape symbols) is a finite set with #∈ Γ,
• Σ (set of input symbols) is also a finite set with Σ Γ,
• # is a distinguished symbol (the blank) with # 6∈ Σ.
• q0 is a distinguished element of Q (start state): q0 ∈Q.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 21 1.2 Acceptable languages

• δ is a function (the next move function) from Q×Γ to
Q×Γ×{L,R} which needs not to be defined on some inputs.

• F⊆Q, F is the set of final states.
A DTM takes as input a word w∈ Σ∗ and either (1) halts in an
accepting state, or (2) halts in a non-accepting state, or (3) does
not halt at all.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 22 1.2 Acceptable languages

The only modification we have to make for the definition of a move
(see slide 10) is the following:

If q∈ F , then X1 · · ·Xi−1qXi · · ·Xn `̀̀M stop:X1 · · ·Xi−1qXi · · ·Xn.

Definition 1.4 (Language accepted by a DTM)
The language L ⊆ Σ∗ accepted by a DTM M, denoted by L(M), is
the set of words in Σ∗ that cause M to enter a final state (when
started on the string "#w" with the head at the first blank to the
right of w).

Note that for non-accepted words, a DTM needs not halt!

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 23 1.2 Acceptable languages

Why are we talking about accepting languages? Because it
is a nice unifying framework and makes the introduction of
complexity notions so much easier!

Example 1.2 (Instances of Definition 1.4)
The following examples will be discussed and illustrated in greater
depth later.
Numeric: Σnum := {1}, Lprimes := {p : p is a prime }. Lprimes: the

set of non-primes. Here we use unary notation.
One could also code integers in n-ary notation. We need an

input alphabet Σ := {0,1, . . . ,n−1} and code an integer
according to its value to the base n. For example, in 2-ary
notation (binary), the integer 5 would be written as �101�,
whereas in unary notation it would be �11111�.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 24 1.2 Acceptable languages

Writing numbers in n-ary notation (n> 1) saves storage tape:
instead of m cells we only need lognm many.
However, there is only a gain when switching from unary to
binary notation (from m to lgm). Switching further to lognm

saves only a (linear) constant, but nothing more in the limit.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 25 1.2 Acceptable languages

Formulae: Σsat := {∧,∨,¬,(,),x,0,1}. This is enough to define
boolean expressions w over variables {x1,x2, . . .}. A variable xi

is denoted be the string "x" followed by the binary notation of
i written as 0s and 1's.
As usual, when the variables of such a boolean expression are
set to t (true) or f (false), the whole expression evaluates to
either true or false.
The satisfiability problem is:
Given an expression w, is it satisfiable?

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 26 1.2 Acceptable languages

Suppose we are given a boolean expression (in the usual
form) with n symbols. What is the length of its coded ver-
sion in Σsat?

There can only be dn
2e different variables and each requires no

more than 1+ dlgne symbols: this gives a bound of ndlgne . All
our forthcoming complexity results will not depend on
whether we are using n or nlgn as the length of the input (this
will be explained later).
We then define:

Lsat := {w∈ Σ∗sat : there is an assignment of xi such that
formula w evaluates to true}

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 27 1.2 Acceptable languages

Graphs: Let G = 〈V,E〉 be a directed graph (V denotes the
vertices and E ⊆V×V the edges of the graph).
Is there a path leading from vertex 1 to vertex n?

We choose Σgraph := {v,e,0,1,(,)}. vi is represented as the
string "v" followed by the binary notation of i written as 0s and
1's. An edge ei, j is represented as the string "(string1#string2)"
where string1 stands for the binary representation of i and
string2 stands for the binary representation of j . We define:

Lreach := {w∈ Σ∗graph : there is a path in graph w leading from
the first vertex v1 to the last one vn}

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 28 1.2 Acceptable languages

Integer Linear Programming: Given an m×n matrix of
integers A and a column vector b.
Does there exist a column vector x such that Ax ≥ b?

Representation is straightforward: words of the language are
the entries of A and b written in binary.

LILP := {w∈ Σ∗ILP : w represents an ILP problem 〈A,b〉
such that there is x with Ax ≥ b.}

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

This is the point reached after the second lecture.
Is the language {wwR : w∈ Σ∗} acceptable? Is the language

/0 acceptable?
What language does the following DTM accept:

state # a b
q0 − − −

What does the following DTM do:

state # 1
q0 〈q1,1,R〉 −
q1 〈q2,1,R〉 −
q2 − 〈q1,a,L〉

How many DTM’s with 0 states are there?

28-1

Chapter 1: Turing Machines 29 1.2 Acceptable languages

Σ∗ : Let Σ be finite or countable infinite. Then Σ∗ is countably
infinite. Each finite string can be represented as a natural
number by using the prime factor decomposition.

Computable functions : There are as many computable
functions as natural numbers.

f : N→{0,1} : There are uncountably many such functions. Given
f1, . . . fn, . . . we construct

C : N→ N;n 7→

1, if fn(n) = 0;

0, else.

C is certainly different from all fi (why?).

Subsets of N : There are uncountably many subsets of N.
Therefore there must be non-computable functions.
CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 30 1.3 Modifications of TM’s

1.3 Modifications of DTM’s

Various Modifications of DTMs have been defined. They are
all equivalent when it comes to the class of computable func-
tions or acceptable languages they lead to.

1.3.1 Modifying the tape

Two-way infinite tape: we can allow the tape to be two-way
infinite. This adds even more storage and the head can not fall
off when too far left.

Multitape DTM: We can allow multiple tapes (all of them
two-way infinite). One can be distinguished as the input tape.
In each step, all the heads on all tapes have to be moved
(independently).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 31 1.3 Modifications of TM’s

Theorem 1.1 (Two-way infinite = one-way infinite)

DTMs with a two-way infinite tape or with multiple such
tapes are equivalent to ordinary DTMs: the set of accept-
able languages is the same.

Proof:

two-way infinite: Obviously, a two-way infinite tape DTM can
simulate an ordinary DTM: it just has to mark the left of its
tape (the second blank to the left of the input) and can then
simulate the programme of the DTM.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 32 1.3 Modifications of TM’s

We have to show how to simulate a two-way infinite DTM on a
DTM:
use all even numbered cells of the one-way tape to store the
contents of the left hand side of the two-way tape, and all odd
numbered cells for the right hand side.

We need some more states to remember on which tape we are
and the simulation has to do two moves (to stay on the right
tape) rather than just one. For each state q of the two-way
infinite machine, we need two states (q,even),(q,odd).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 33 1.3 Modifications of TM’s

Multiple tapes: We have to show how to simulate a k-tape DTM
on an ordinary one. As in the case of the two-way infinite tape,
we split the tape into a number of tracks, namely 2k many.
Each tape of the k-tape DTM corresponds to 2 tracks: one
just indicates the position of the head, and the other track
corresponds to the contents of the tape.

It is quite obvious how this new DTM has to act to simulate
the k-tape DTM (note that k is fixed: this information is stored
in the states of the DTM).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 34 1.3 Modifications of TM’s

Consider the language {wwR : w∈ Σ∗} where wR is the reverse of w.

1-tape DTM: How can this language be decided by a 1-tape DTM?
How many moves is the head doing?

2-tape DTM: How can this language be decided by a 2-tape DTM?
How many moves are the heads doing?

This technique shows that for m moves of the k-tape DTM,
the 1-tape DTM needs a number of moves that is quadratic
in m (actually, 6m2).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

I should have reached this point after the third lecture.

34-1

Chapter 1: Turing Machines 35 1.3 Modifications of TM’s
1.3.2 Indeterminism

Our Definition 1.3 is deterministic in the sense that the move
function δ is always uniquely determined (or undefined).
A nondeterministic version allows the machine to go into a
finite number of successor states.

Definition 1.5 (Turing Machine, Nondeterministic Acceptor)
A nondeterministic Turing machine (NDTM) M is a seven-tuple
〈Q,Σ,Γ,#,δ,q0,F〉 as in Definition 1.3, where δ is modified
• δ is a function (the next move function) from Q×Σ to

2(Q×Σ×{L,R}) which needs not to be defined on some inputs.
A NDTM takes as input a word w∈ Σ∗ and either (1) halts in an
accepting state, or (2) halts in a non-accepting state, or (3) does
not halt at all.
CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 36 1.3 Modifications of TM’s

The language L ⊆ Σ∗ accepted by a NDTM M, denoted by L(M), is
the set of words in Σ∗ such that there is a series of moves that
cause M to enter a final accepting state (when placed on the
empty tape with the head at the first blank to the right).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 37 1.3 Modifications of TM’s

Why are NDTM so important? The precise answer will be given in
Section 3. But let us consider Example 1.2, the instance with the
satisfiability problem.

Given a formula, to find whether it is satisfiable or not, we
have to guess the right assignment of truth values for the
variables.

We can model this very easily with a NDTM: whenever the NDTM
reaches a variable, it makes two possible moves: one where the
variable is set to true, the other where it is set to false.

Obviously, the formula is satisfiable if and only if there is
a sequence of moves leading to an assignment making the
whole formula true.
CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 38 1.3 Modifications of TM’s

We want to construct a machine which checks whether the
input wrt. Σ = {a,b} is of the form ww, with w∈ Σ∗.

The idea is to

1. find the middle position of the input, and

2. then successively replace the appropriate symbols (in the left
word by #, in the right word by a new symbol c), and

3. checking whether they match.

We end up with a tape which consists of only cs (in which
case the input had this form) or not (in which case the input
was not of this form).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 39 1.3 Modifications of TM’s

Here is the deterministic part of the program describing δ:

state q1 q2 q3 q4 q5 q6 q7 q8

〈q2,#,R〉 〈q5,#,R〉〈q6,#,R〉
a 〈q2,a,R〉〈q3,c,L〉〈q3,a,L〉〈q4,a,L〉〈q7,###,R〉 〈q7,a,R〉〈q1,a,L〉
b 〈q2,b,R〉〈q4,c,L〉〈q3,b,L〉〈q4,b,L〉 〈q7,###,R〉〈q7,b,R〉〈q1,b,L〉
c 〈q3,c,L〉 〈q4,c,L〉 〈q8,c,R〉〈q8,c,R〉

How can you make this into a NDTM that correctly solves
our problem?

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 40 1.3 Modifications of TM’s

Theorem 1.2 (DTM and NDTM are equivalent)
A language accepted by a NDTM is also accepted by some DTM.

Proof: Suppose we are given a NDTM. In order to construct an
equivalent DTM, we have to make sure that all possible moves are
simulated in a systematic manner. Note that there is a maximal
number r of possible next-moves for our NDTM (determined by δ).

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 41 1.3 Modifications of TM’s

The simulation will be done on a 3-tape DTM. The first tape is for
the input. The second tape systematically generates finite
sequences of numbers from 1, . . . , r. The sequence 1,5,6,3,6 means:
in the simulation of the NDTM, when coming to the first
choicepoint use possibility 1, for the second use 5, etc. for the fifth
choicepoint use 6.

The third tape is for the actual simulation, where the choices are
dictated by tape 2.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 42 1.3 Modifications of TM’s

1.3.3 Restrictions

Can we restrict the number of states or the number of sym-
bols on the tape alphabet?

Definition 1.6 (Off-Line (N)DTM)
An off-line (N)DTM is a k-tape (N)DTM where one tape is the
input tape. We assume the input is enclosed between two blanks
#. The head of this tape can only move on the input and the
enclosing blanks (to determine that the end of the input is
reached), but not write or go farther to the left or right of the
input.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 43 1.3 Modifications of TM’s

Theorem 1.3 (Minimal number of tapes/Minimal alphabet)
Any acceptable language can be accepted by an off-line (N)DTM
with one storage tape the alphabet of which is {#,1}.
Any acceptable language can be accepted by an off-line (N)DTM
with one storage tape and 3 states.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 44 1.3 Undecidability

1.4 Undecidability

As mentioned on slide 15, it is not easy to think of a function that
is not computable, without sorting to very artificial examples.
Here is one dating back to (Rado 1962; Lin and Rado 1965).

Define BB : N→ N as follows

n 7→ f (n) := the maximal number of 1s a DTM (as in
Definition 1.1 defined over Γ = {#,1}) with
maximal n states can print on an empty tape
and halt.

It is easy to compute BB for 1,2: what results do you get?

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 45 1.3 Undecidability

The classical busy beaver is for two-way infinite tapes and final
states (Definition 1.3). The only known values are (in our
terminology): BB(1) = 1,BB(2) = 4,BB(3) = 13. Already BB(5) is not
known. And BB(6) is greater than 1.29∗10865.

Theorem 1.4 (BB is not computable)
The busy beaver increases too much to be computable: there is no
DTM computing BB.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

Chapter 1: Turing Machines 46 1.3 Undecidability
Proof: As one can always add 1 state to print one more 1:

• BB is strictly monotonically increasing.

Suppose there is a DTM BB computing BB. Let it have n0 states.
We build a series of other machines which write BB(m) 1s
on the empty tape and use less than m states. This is a
contradiction to our observation above.

Consider the compound machines Compm := BB◦Printm,
i.e. firstly m 1s are printed on the empty tape (see Example 1.1 on
page 17) and then, secondly, BB runs to compute BB(m). These
machines have n0 + bm

2 c+9 states. Now choose m0 such that

m0 > n0 + bm0

2
c+9.

Then for all m≥m0, Compm writes BB(m) 1s on the tape and works
with strictly less than m states.
CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

This is the point reached after the fourth lecture.

46-1

References 94

References
Hopcroft, J. and J. Ullman (1979). Introduction to Automata

Theory, Languages, and Computation. Reading, MA: Addison
Wesely.

Lin, S. and T. Rado (1965). Computer studies of turing machine
problems. Journal of the ACM 12(2), 196–212.

Papadimitriou, C. (1994). Computational Complexity.
Addison-Wesley.

Rado, T. (1962). On non-computable functions. The Bell System
Technical Journal XLI(3), 877–884.

Turing, A. M. (1936). On Computable Numbers with an
Application to the Entscheidungsproblem. Proc. London
Mathematical Soc., series 2 42, 230–265. corrections ibid.,
43:544–546.

CS 3172, 02/03: Advanced Algorithms, Part I Jürgen Dix

