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Intr oduction to Description Logics
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What are Description Logics?

+ A family of logic based Knowledge Representation formalisms
� Descendants of semantic netw orks and KL-ONE
� Describe domain in terms of concepts (classes), roles

(relationships) and individuals

+ Distinguished by:
� Formal semantics (model theoretic)

– Decidable fragments of FOL
– Closely related to Propositional Modal & Dynamic Logics

� Provision of inf erence services
– Sound and complete decision procedures for key problems
– Implemented systems (highly optimised)
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DL Architecture

Tbox (schema)

Abox (data)

Knowledge Base
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Shor t Histor y of Description Logics

Phase 1:
+ Incomplete systems (Back, Classic, Loom, . . . )
+ Based on structural algorithms

Phase 2:
+ Development of tableau algorithms and comple xity results
+ Tableau-based systems for Pspace logics (e.g., Kris, Crack)
+ Investigation of optimisation techniques

Phase 3:
+ Tableau algorithms for very expressive DLs
+ Highl y optimised tableau systems for ExpTime logics (e.g.,

FaCT, DLP, Racer)
+ Relationship to modal logic and decidable fragments of FOL
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Latest Developments

Phase 4:

+ Mature implementations
+ Mainstream applications and Tools

� Databases
– Consistency of conceptual schemata (EER, UML etc.)
– Schema integration
– Query subsumption (w.r.t. a conceptual schema)

� Ontologies and Semantic Web (and Grid )
– Ontology engineering (design, maintenance, integration)
– Reasoning with ontology-based markup (meta-data)
– Service description and discovery

+ Commer cial implementations
� Cerebra system from Network Inference Ltd
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The Semantic Web
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The Semantic Web Vision

+ Web made possible through established standar ds
� TCP/IP for transporting bits down a wire
� HTTP & HTML for transporting and rendering hyperlinked text

+ Applications able to exploit this common infrastructure
� Result is the WWW as we know it

+ 1st generation web mostly handwritten HTML pages

+ 2nd generation (current) web often machine generated/active

+ Both intended for direct human processing/interaction

+ In next generation web, resour ces should be more accessible to
automated processes

� To be achieved via semantic markup
� Metadata annotations that describe content/function

+ Coincides with Tim Berners-Lee's vision of a Semantic Web
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Ontologies

+ Semantic markup must be meaningful to automated processes

+ Ontologies will play a key role
� Source of precisel y de�ned terms (vocabulary)
� Can be shared across applications (and humans)

+ Ontology typically consists of:
� Hierar chical description of important concepts in domain
� Descriptions of proper ties of instances of each concept

+ Degree of formality can be quite variable (NL–logic)

+ Increased formality and regularity facilitates machine understanding

+ Ontologies can be used, e.g.:
� To facilitate buyer–seller communication in e-commer ce
� In semantic based search
� To provide richer service descriptions that can be more �e xibly

interpreted by intelligent agents

Reasoningwith ExpressiveDescriptionLogics– p. 10/40



Ontologies

+ Semantic markup must be meaningful to automated processes

+ Ontologies will play a key role
� Source of precisel y de�ned terms (vocabulary)
� Can be shared across applications (and humans)

+ Ontology typically consists of:
� Hierar chical description of important concepts in domain
� Descriptions of proper ties of instances of each concept

+ Degree of formality can be quite variable (NL–logic)

+ Increased formality and regularity facilitates machine understanding

+ Ontologies can be used, e.g.:
� To facilitate buyer–seller communication in e-commer ce
� In semantic based search
� To provide richer service descriptions that can be more �e xibly

interpreted by intelligent agents

Reasoningwith ExpressiveDescriptionLogics– p. 10/40



Ontologies

+ Semantic markup must be meaningful to automated processes

+ Ontologies will play a key role
� Source of precisel y de�ned terms (vocabulary)
� Can be shared across applications (and humans)

+ Ontology typically consists of:
� Hierar chical description of important concepts in domain
� Descriptions of proper ties of instances of each concept

+ Degree of formality can be quite variable (NL–logic)

+ Increased formality and regularity facilitates machine understanding

+ Ontologies can be used, e.g.:
� To facilitate buyer–seller communication in e-commer ce
� In semantic based search
� To provide richer service descriptions that can be more �e xibly

interpreted by intelligent agents

Reasoningwith ExpressiveDescriptionLogics– p. 10/40



Ontologies

+ Semantic markup must be meaningful to automated processes

+ Ontologies will play a key role
� Source of precisel y de�ned terms (vocabulary)
� Can be shared across applications (and humans)

+ Ontology typically consists of:
� Hierar chical description of important concepts in domain
� Descriptions of proper ties of instances of each concept

+ Degree of formality can be quite variable (NL–logic)

+ Increased formality and regularity facilitates machine understanding

+ Ontologies can be used, e.g.:
� To facilitate buyer–seller communication in e-commer ce
� In semantic based search
� To provide richer service descriptions that can be more �e xibly

interpreted by intelligent agents

Reasoningwith ExpressiveDescriptionLogics– p. 10/40



Ontologies

+ Semantic markup must be meaningful to automated processes

+ Ontologies will play a key role
� Source of precisel y de�ned terms (vocabulary)
� Can be shared across applications (and humans)

+ Ontology typically consists of:
� Hierar chical description of important concepts in domain
� Descriptions of proper ties of instances of each concept

+ Degree of formality can be quite variable (NL–logic)

+ Increased formality and regularity facilitates machine understanding

+ Ontologies can be used, e.g.:
� To facilitate buyer–seller communication in e-commer ce
� In semantic based search
� To provide richer service descriptions that can be more �e xibly

interpreted by intelligent agents

Reasoningwith ExpressiveDescriptionLogics– p. 10/40



Ontologies

+ Semantic markup must be meaningful to automated processes

+ Ontologies will play a key role
� Source of precisel y de�ned terms (vocabulary)
� Can be shared across applications (and humans)

+ Ontology typically consists of:
� Hierar chical description of important concepts in domain
� Descriptions of proper ties of instances of each concept

+ Degree of formality can be quite variable (NL–logic)

+ Increased formality and regularity facilitates machine understanding

+ Ontologies can be used, e.g.:
� To facilitate buyer–seller communication in e-commer ce
� In semantic based search
� To provide richer service descriptions that can be more �e xibly

interpreted by intelligent agents

Reasoningwith ExpressiveDescriptionLogics– p. 10/40



Ontologies

+ Semantic markup must be meaningful to automated processes

+ Ontologies will play a key role
� Source of precisel y de�ned terms (vocabulary)
� Can be shared across applications (and humans)

+ Ontology typically consists of:
� Hierar chical description of important concepts in domain
� Descriptions of proper ties of instances of each concept

+ Degree of formality can be quite variable (NL–logic)

+ Increased formality and regularity facilitates machine understanding

+ Ontologies can be used, e.g.:
� To facilitate buyer–seller communication in e-commer ce
� In semantic based search
� To provide richer service descriptions that can be more �e xibly

interpreted by intelligent agents

Reasoningwith ExpressiveDescriptionLogics– p. 10/40



Ontologies

+ Semantic markup must be meaningful to automated processes

+ Ontologies will play a key role
� Source of precisel y de�ned terms (vocabulary)
� Can be shared across applications (and humans)

+ Ontology typically consists of:
� Hierar chical description of important concepts in domain
� Descriptions of proper ties of instances of each concept

+ Degree of formality can be quite variable (NL–logic)

+ Increased formality and regularity facilitates machine understanding

+ Ontologies can be used, e.g.:
� To facilitate buyer–seller communication in e-commer ce
� In semantic based search
� To provide richer service descriptions that can be more �e xibly

interpreted by intelligent agents

Reasoningwith ExpressiveDescriptionLogics– p. 10/40



Ontologies

+ Semantic markup must be meaningful to automated processes

+ Ontologies will play a key role
� Source of precisel y de�ned terms (vocabulary)
� Can be shared across applications (and humans)

+ Ontology typically consists of:
� Hierar chical description of important concepts in domain
� Descriptions of proper ties of instances of each concept

+ Degree of formality can be quite variable (NL–logic)

+ Increased formality and regularity facilitates machine understanding

+ Ontologies can be used, e.g.:
� To facilitate buyer–seller communication in e-commer ce
� In semantic based search
� To provide richer service descriptions that can be more �e xibly

interpreted by intelligent agents

Reasoningwith ExpressiveDescriptionLogics– p. 10/40



Ontologies

+ Semantic markup must be meaningful to automated processes

+ Ontologies will play a key role
� Source of precisel y de�ned terms (vocabulary)
� Can be shared across applications (and humans)

+ Ontology typically consists of:
� Hierar chical description of important concepts in domain
� Descriptions of proper ties of instances of each concept

+ Degree of formality can be quite variable (NL–logic)

+ Increased formality and regularity facilitates machine understanding

+ Ontologies can be used, e.g.:
� To facilitate buyer–seller communication in e-commer ce
� In semantic based search
� To provide richer service descriptions that can be more �e xibly

interpreted by intelligent agents

Reasoningwith ExpressiveDescriptionLogics– p. 10/40



Web Ontology Langua ges

+ OIL and DAML-ONT web ontology languages developed in
European and DARPA projects

+ Efforts merged to produce DAML+OIL
� Submitted to W3C as basis for standar disation
� WebOnt working group developing OWL language standard

+ DAML+OIL/OWL “la yered” on top of RDFS
� RDFS based syntax and ontological primitives (subclass etc.)
� Adds much richer set of primitives (transitivity, cardinality, . . . )

+ Describes class/property structure of domain (Tbox)
� E.g., Person subc lass of Animal whose parents are all Persons

+ Uses RDF for class/property membership assertions (Abox)
� E.g., john instance of Person; hjohn; maryi instance of parent
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Logical Foundations of DAML+OIL

+ DAML+OIL equivalent to very expressive Description Logic

+ More precisely, DAML+OIL is (extension of) SHI Q DL

+ DAML+OIL bene�ts from many years of DL research
� Well de�ned semantics
� Formal proper ties well understood (complexity, decidability)
� Known reasoning algorithms
� Implemented systems (highly optimised)

+ DAML+OIL classes can be names (URI's) or expressions
� Various constructor s provided for building class expressions

+ Expressive power determined by
� Kinds of constructor provided
� Kinds of axiom allowed
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DAML+OIL Class Constructor s

Constructor DL Syntax Example (Modal Syntax)

intersectionOf C1 u : : : u Cn Human u Male C1 ^ : : : ^ Cn

unionOf C1 t : : : t Cn Doctor t Lawyer C1 _ : : : _ Cn

complementOf : C : Male : C
oneOf f x1 : : : xn g f john; maryg x1 _ : : : _ xn

toClass 8P:C 8hasChild:Doctor [P]C
hasClass 9P:C 9hasChild:Lawyer hPi C
maxCardinalityQ 6 nP:C 6 1hasChild:Male [P]n +1 C
minCardinalityQ > nP:C > 2hasChild:Lawyer hPi n C

+ XMLS datatypes as well as classes in 8P:C and 9P:C
� E.g., 9hasAge:nonNegativeInteger

+ Arbitrarily complex nesting of constructors
� E.g., Person u 8hasChild:(Doctor t 9hasChild:Doctor)
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RDFS Syntax

<daml:Class>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Person"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasChild"/>
<daml:toClass>

<daml:unionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Doctor"/>
<daml:Restriction>

<daml:onProperty rdf:resource="#hasChild"/>
<daml:hasClass rdf:resource="#Doctor"/>

</daml:Restriction>
</daml:unionOf>

</daml:toClass>
</daml:Restriction>

</daml:intersectionOf>
</daml:Class>
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Semantics

+ Semantics de�ned by interpretations : I = (� I ; �I )

� concepts � ! subsets of � I

� roles � ! binary relations over � I (subsets of � I � � I )

� individuals � ! elements of � I

+ Interpretation function �I extended to concept expressions

� (C u D)I = CI \ D I (C t D)I = CI [ D I (: C)I = � I n CI

� f xn ; : : : ; xn gI = f xI
n ; : : : ; xI

n g

� (8R:C)I = f x j 8y:(x; y) 2 RI ) y 2 CI g

� (9R:C)I = f x j 9y:hx; yi 2 RI ^ y 2 CI g

� (6 nR:C)I = f x j # f y j hx; yi 2 RI ^ y 2 CI g 6 ng

� (> nR:C)I = f x j # f y j hx; yi 2 RI ^ y 2 CI g > ng
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DAML+OIL Axioms

Axiom DL Syntax Example

subClassOf C1 v C2 Human v Animal u Biped
sameClassAs C1 � C2 Man � Human u Male
disjointWith C1 v : C2 Male v : Female
sameIndividualAs f x1g � f x2g f President_Bushg � f G_W_Bushg
differentIndividualFrom f x1g v :f x2g f johng v :f peterg
subPropertyOf P1 v P2 hasDaughter v hasChild
samePropertyAs P1 � P2 cost � price
inverseOf P1 � P �

2 hasChild � hasParent�

transitiveProperty P + v P ancestor+ v ancestor
uniqueProperty > v 6 1P > v 6 1hasMother
unambiguousProperty > v 6 1P � > v 6 1hasSSN�

+ I satis�es C1 v C2 iff CI
1 � CI

2 ; satis�es P1 v P2 iff P I
1 � P I

2

+ I satis�es ontology O (is a model of O) iff satis�es every axiom in O
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XML Datatypes in DAML+OIL

+ DAML+OIL supports XML Schema datatypes
� Primitive (e.g., decimal) and derived (e.g., integer sub-range)

+ Clean separation between “object” classes and datatypes

� Disjoint interpretation domain: dI � � D , and � D \ � I = ;

� Disjoint datatype properties: P I
D � � I � � D

+ Philosophical reasons:
� Datatypes structured by built-in predicates
� Not appropriate to form new datatypes using ontology language

+ Practical reasons:
� Ontology language remains simple and compact
� Semantic integrity of ontology language not compromised
� Implementability not compromised — can use hybrid reasoner

– Only need sound and complete decision procedure for
dI

1 \ : : : \ dI
n , where di is a (possibly negated) datatype
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Reasoning with DAML+OIL
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Reasoning

+ Why do we want it?
� Semantic Web aims at “machine understanding”
� Under standing closely related to reasoning

+ What can we do with it?
� Design and maintenance of ontologies

– Check class consistency and compute class hierarchy
– Particularly important with large ontologies/multiple authors

� Integration of ontologies
– Assert inter-ontology relationships
– Reasoner computes integrated class hierarchy/consistency

� Querying class and instance data w.r.t. ontologies
– Determine if set of facts are consistent w.r.t. ontologies
– Determine if individuals are instances of ontology classes
– Retrieve individuals/tuples satisfying a query expression
– Check if one description more general than another w.r.t.

ontology
– . . .
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Basic Inference Problems

+ Consistenc y — check if knowledge is meaningful

� Is O consistent? There exists some model I of O
� Is C consistent? CI 6= ; in some model I of O

+ Subsumption — structure knowledge, compute taxonomy

� C v O D ? CI � D I in all models I of O

+ Equiv alence — check if two classes denote same set of instances

� C � O D ? CI = D I in all models I of O

+ Instantiation — check if individual i instance of class C
� i 2O C? i 2 CI in all models I of O

+ Retrie val — retrieve set of individuals that instantiate C
� set of i s.t. i 2 CI in all models I of O

+ Problems all reducib le to consistency (satis�ability):
� C v O D iff C u : D not consistent w.r.t. O
� i 2O C iff O [ f i 2 : Cg is not consistent
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� i 2O C? i 2 CI in all models I of O

+ Retrie val — retrieve set of individuals that instantiate C
� set of i s.t. i 2 CI in all models I of O

+ Problems all reducib le to consistency (satis�ability):
� C v O D iff C u : D not consistent w.r.t. O
� i 2O C iff O [ f i 2 : Cg is not consistent
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Reasoning Suppor t for Ontology Design: OilEd
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Description Logic Reasoning
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Tableaux Algorithms — Basics

+ Tableaux algorithms used to test satis�ability

+ Try to build tree-like model I of input concept C

+ Work on concepts in negation normal form
� Push in negation using de Morgan's, :9 R:C  8R:: C etc.

+ Break down C syntacticall y, inferring constraints on elements of I

+ Decomposition uses tableau rules corresponding to constructors in
logic (e.g., u , 9)

� Some rules are nondeterministic (e.g., t , 6 )
� In practice, this means search

+ Stop when clash occurs or when no rules are applicable

+ Bloc king (cycle check) used to guarantee termination

+ Return “C is consistent” iff C is consistent
� Tree model property
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Tableaux Algorithms — Details

+ Work on tree T representing model I of concept C

� Nodes represent elements of � I ; labeled with subconcepts of C

� Edges represent role-successorships between elements of � I

+ T initialised with single root node labeled f Cg

+ Tableau rules repeatedly applied to node labels
� Extend labels or extend/modify T structure
� Rules can be bloc ked, e.g, if predecessor has super set label
� Nondeterministic rules � ! search possible extensions

+ T contains Clash if obvious contradiction in some node label
� E.g., f A; : Ag � L (x) for some concept A and node x

+ T full y expanded if no rules are applicable

+ C satis�ab le iff fully expanded clash free T found
� Trivial correspondence between such a T and a model of C
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Tableaux Rules for ALC

! u

x f9 R:C; : : :g x

f Cg

f9 R:C; : : :g
R

y

x
R

y f C; : : :gy

R
x f8 R:C; : : :g

f : : :g

f8 R:C; : : :g

! 9

! 8

! t

for C 2 f C1; C2g
x f C1 u C2; C; : : :g

x f C1 u C2; C1; C2; : : :g

x f C1 t C2; : : :g

x f C1 u C2; : : :g
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Tableaux Rules for ALC
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Tableaux Rule for Transitive Roles

x
R

yy

R
x f8 R:C; : : :g

f : : :g

f8 R:C; : : :g

f 8R:C; : : :g

! 8+

Where R is a transitive role (i.e., (RI )+ = RI )

+ No longer naturally terminating (e.g., if C = 9R:> )

+ Need blocking
� Simple blocking suf�ces for ALC plus transitive roles
� I.e., do not expand node label if ancestor has superset label
� More expressive logics (e.g., with inverse roles) need more

sophisticated blocking strategies
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Tableaux Rule for Transitive Roles
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Tableaux Algorithm — Example

Test satis�ability of 9S:C u 8S:(: C t : D ) u 9R:C u 8R:(9R:C)g where R is
a transitive role

Concept is satis�ab le: T corresponds to model
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More Advanced Techniques

Satis�ability w.r.t. a Terminology
+ For each axiom C v D 2 T , add : C t D to every node label

More expressive DLs
+ Basic technique can be extended to deal with

� Role inclusion axioms (role hierarchy)
� Number restrictions
� Inverse roles
� Concrete domains and datatypes
� Aboxes
� etc.

+ Extend expansion rules and use more sophisticated bloc king
strategy

+ Forest instead of Tree (for Aboxes)
� Root nodes correspond to individuals in Abox
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Highl y Optimised Implementation

+ Naive implementation � ! effective non-termination

+ Modern systems include MANY optimisations

+ Optimised classi�cation (compute partial ordering)
� Use enhanced traversal (exploit information from previous tests)
� Use structural information to select classi�cation order

+ Optimised subsumption testing (search for models)
� Normalisation and simpli�cation of concepts
� Absorption (simpli�cation) of general axioms
� Davis-Putnam style semantic branching search
� Dependency directed backtracking
� Caching of satis�ability results and (partial) models
� Heuristic ordering of propositional and modal expansion
� . . .
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Research Challeng es
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Challeng es

+ Increased expressive power
� Existing DL systems implement (at most) SHI Q
� DAML+OIL extends SHI Q with datatypes and nominals

+ Scalability
� Very large KBs
� Reasoning with (very large numbers of) individuals

+ Other reasoning tasks
� Querying
� Matching
� Least common subsumer
� . . .

+ Tools and Infrastructure
� Support for large scale ontological engineering and deployment
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Increased Expressive Power: Datatypes

+ DAML+OIL has simple form of datatypes
� Unary predicates plus disjoint object-class/datatype domains

+ Well understood theoreticall y
� Existing work on concrete domains [Baader & Hanschke, Lutz]
� Algorithm already known for SHOQ(D ) [Horrocks & Sattler]
� Can use hybrid reasoning (DL reasoner + datatype “oracle”)

+ May be practicall y challenging
� All XMLS datatypes supported (?)

+ Already seeing some (partial) implementations
� Cerebra system (Network Inference), Racer system (Hamburg)
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Increased Expressive Power: Nominals

+ DAML+OIL oneOf constructor equivalent to hybrid logic nominals
� Extensionally de�ned concepts, e.g., EU � f France; Italy; : : :g

+ Theoretically very challenging
� Resulting logic has known high comple xity (NExpTime)
� No known “practical” algorithm
� Not obvious how to extend tableaux techniques in this direction

– Loss of tree model property
– Spy-points: > v 9R:f Spyg
– Finite domains: f Spyg v 6 nR�

� ?? automata based algorithms ??

+ Standar d solution is weaker semantics for nominals
� Treat nominals as (disjoint) primitive classes
� Loose some inferential power, e.g., w.r.t. max cardinality
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Scalability

+ Reasoning hard (ExpTime) even without nominals (i.e., SHI Q)

+ Web ontologies may grow very large

+ Good empirical evidence of scalability/tractability for DL systems
� E.g., 5,000 (complex) classes; 100,000+ (simple) classes

+ But evidence mostly w.r.t. SHF (no inverse)

+ Problems can arise when SHF extended to SHI Q
� Important optimisations no longer (fully) work

+ Reasoning with individuals
� Deplo yment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals/tuples
� Unlikely that standard Abox techniques will be able to cope
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Other Reasoning Tasks

+ Querying
� Retrieval and instantiation wont be suf�cient
� Minimum requirement will be DB style quer y langua ge
� May also need “what can I say about x?” style of query

+ Explanation
� To support ontology design
� Justi�cations and proofs (e.g., of query results)

+ “Non-Standar d Inferences ”, e.g., LCS, matching
� To support ontology integration
� To support “bottom up” design of ontologies
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Summar y

+ Description Logics are family of logical KR formalisms

+ Applications of DLs include DataBases and Semantic Web
� Ontologies will provide vocabulary for semantic markup
� DAML+OIL web ontology language based on SHI Q DL
� Set to become W3C standard (OWL) & already widely adopted
� Use of DL provides formal foundations and reasoning support

+ DL Reasoning based on tableau algorithms

+ Highl y Optimised implementations used in DL systems

+ Challeng es remain
� Reasoning with full DAML+OIL/OWL language
� (Convincing) demonstration(s) of scalability
� New reasoning tasks
� Development of (high quality) tools and infrastructure
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Ackno wledg ements

+ Members of the OIL and DAML+OIL development teams, in
particular Dieter Fensel and Frank van Harmelen (Amsterdam) and
Peter Patel-Schneider (Bell Labs)

+ Franz Baader, Uli Sattler and Stefan Tobies (Dresden)

+ Members of the Information Management, Medical Informatics and
Formal Methods Groups at the University of Manchester
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Resour ces

Slides from this talk

http://www.cs.man.ac.uk/~horrocks/Slides/ed02.pdf

FaCT system (open source)

http://www.cs.man.ac.uk/FaCT/

OilEd (open source)

http://oiled.man.ac.uk/

OIL

http://www.ontoknowledge.org/oil/

DAML+OIL

http://www.w3c.org/Submission/2001/12/

W3C Web-Ontology (WebOnt) working group (OWL)

http://www.w3.org/2001/sw/WebOnt/ DL Handbook — available
autumn 2002 from Cambridge University Press
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