OWL Tutorial

An Example OWL Ontology

We will present a small OWL ontology

e to demonstrate the syntaxes of OWL
e to demonstrate how to use OWL
e to demonstrate the utility of OWL

e to demonstrate reasoning in OWL

Abstract syntax version of the ontology is attached.

OWL Tutorial

Reasoning Services

Reasoning services help knowledge engineers and users to build and use ontologies

(Many of the following slides have been taken from a longer tutorial on Logical Foundations for the Semantic Web by Ian Horrocks and Ulrike Sattler)

Complexity of Ontology engineering

Ontology engineering tasks:

- e Ontology Mavigator - mK-OncoTerm
e design

File: Publish Browser Help
|MYELOID =] ﬂ #15@]#'
» = F\I._L ;
e evolution

Generated by OntoT erm. Tpdated: 02/04/00 17:07:54
. MENTAL-EVENT
.- PHYSIZALEVENT
[} APPLY-FORCE MYELOID-LEUKEMIA
. . d I . [l ARTIFACT-EVEMT
® lnter_operatlon an ntegratlon - BE-AVAILABLE
[} CHANGE-LOCATION

5} CHANGE-STATE Definition: form of leuktermia charactenzed by an
T L. ADAPT

e uncontrolled proliferation of the myeloid lineage
L d e p I Oy m e n t i and thetr precursors in the bone marrow and other
- CHANGE-IN-GUALITY sites (TTWLEY.

|- CHANGE-STATE-ANIMAL
... BE-BORN
... BULD |
F]- CHANGE-STATE-HUMARN - Conceptual Structures

Further complications are due to 154 A

. BNOREXIA ACUTE MYELOID-

. CONSTIPATION LEUKEMIA

- COUGH CHRONIC-MYELOID.-

- DIFHTHER1A, SUBCLASSES LEUKEEMLA

bl MYELOID-3ARCOM A
- HAVE-NEOQPLASM SUBACUTE MYELOID-

e number of persons involved | Simme v

| v

i3

e sheer size of ontologies

[MALIGNAMT-NEOPLA ACUTEMYELOID-
[#- MALIGNAMT-NEOFPLA LEUKEMIA
[3]- MALIGNAMT-NEOPLA ACUTE-PREOMYELOCYTIC:

& MALIGNANT-NEOPLA LEUKEMIA

£} MALIGNANT-NEOPLE, CHRONIC_MYELOID-
1. HODGKINS-DISE: DESCENDANTS |LEUKEML:

+].- LEUKEMIA-OF LI

i EQSINOPHILIC. LEUKELIA

hro NG s MYELOID-SARCONA

e users not being knowledge experts

e natural laziness

MOMOCYTIC-LEL HEUTROFPHILIC. T EUEENMLA
MULTIPLE-MYEL SUBACUTE MYELOID-
ER vELOCE0ES LEUKEMIA
4 | ' ";I—‘ | ALL #
e ctc.

| 6041 Concepts i

Reasoning Services: what we might want in the Design Phase

e be warned when making meaningless statements
w test satisfiability of defined concepts

SAT(C, T) iff there is a model Z of T with CT # ()

unsatisfiable, defined concepts are signs of faulty modelling

e see consequences of statements made
w test defined concepts for subsumption

SUBS(C, D, T) iff C* C D?Z for all model Z of T

unwanted or missing subsumptions are signs of imprecise/faulty modelling

e see redundancies
w test defined concepts for equivalence

EQUIV(C, D, T) iff C* = D7 for all model Z of T

knowing about “redundant” classes helps avoid misunderstandings

Reasoning Services: what we might want when Modifying Ontologies

e the same system services as in the design phase, plus

e automatic generation of concept definitions from examples

w given individuals o4, ... , 0, with assertions (“ABox”) for them, create
a (most specific) concept C such that each o; € C7 in each model Z of T

“non-standard inferences”

e automatic generation of concept definitions for too many siblings

w» given concepts C, ... ,C,, create
a (most specific) concept C such that SUBS(C;, C, T)

“non-standard inferences”

e etc.

Reasoning Services: what we might want when Integrating and Using Ontologies

For integration:

e the same system services as in the design phase, plus

e the possibility to abstract from concepts to patterns and compare patterns
w e.g., compute those concepts D defined in 73 such that

SUBS (Human M (Vchild.(X MVchild.Y)), D, 71 U T5)

“non-standard inferences”
When using ontologies:

e the same system services as in the design phase and the integration phase, plus
e automatic classification of indidivuals
w given individual o with assertions, return all defined concepts D such that

o € DZ for all models Z of T~

Reasoning Services: what we can do

(many) reasoning problems are inter-reducible:
EQUIV(C,D,T) iff sub(C,D,T) and sub(D,C,T)
SUBS(C, D, 7T) iff not SAT(C 1 —~D,T)
SAT(C,7T) iff not SUBS(C, AT —-A,T)

SAT(C,T) iff cons({o: C},T)

w In the following, we concentrate on SAT(C, T")

Do Reasoning Services need to be Decidable?

We know SAT is reducible to co-SUBS and vice versa
Hence SAT is undecidable iff SUBS is
SAT is semi-decidable iff co-SUBS is

w if SAT is undecidable but semi-decidable, then

there exists a complete SAT algorithm:
SAT(C, T) < “satisfiable”, but might not terminate if not SAT(C, T)

there is a complete co-SUBS algorithm:
SUBS(C, T) < “subsumption”, but might not terminate if SUBS(C, D, 7))

1. Do expressive ontology languages exist with decidable reasoning problems?

2. Is there a practical difference between ExpTime-hard and non-terminating?

Do Reasoning Services need to be Decidable?

We know SAT is reducible to co-SUBS and vice versa

Hence SAT is undecidable iff SUBS is
SAT is semi-decidable iff co-SUBS is

w if SAT is undecidable but semi-decidable, then

there exists a complete SAT algorithm:
SAT(C, T) < “satisfiable”, but might not terminate if not SAT(C, T)

there is a complete co-SUBS algorithm:
SUBS(C, T) < “subsumption”, but might not terminate if SUBS(C, D, 7))

1. Do expressive ontology languages exist with decidable reasoning problems?
Yes: DAML+OIL and OWL DL

2. Is there a practical difference between ExpTime-hard and non-terminating?
let’s see

Relationship with other Logics

e SHZ is a fragment of first order logic

e SHIQ is a fragment of first order logic with counting quantifiers
equality

e SHI without transitivity is a fragment of first order with two variables

e ALC is a notational variant of the multi modal logic K
inverse roles are closely related to converse/past modalities
transitive roles are closely related to transitive frames/axiom 4

number restrictions are closely related to deterministic programs in PDL

10

Deciding Satisfiability of SHZ QO

Remember: SHZQ is OWL DL without datatypes and nominals

Next: tableau-based decision procedure for SAT (C,7)

The algorithm proceeds by trying to construct a representation of a model Z for C'
This can be done because there always is such a representation, and the representation is
at most of size exponential in the size of the ontology

11

Complexity of DLs: Summary

Deciding satisfiability (or subsumption) of

without w.r.t.
concepts in | Definition a TBox is a TBox is
ALC M, u, -, 3R.C, VR.C, PSpace-c ExpTime-c
S ALC + transitive roles PSPace-c ExpTime-c
ST SZ + inverse roles PSPace-c ExpTime-c
SH S + role hierarchies ExpTime-c ExpTime-c
SHIQO SHI + number restrictions ExpTime-c ExpTime-c
SHIQO | SHI + nominals NExpTime-c? | NExpTime-c?
SHIQ t | SHIQ + “naive number restrictions” | undecidable undecidable
SH T SH + “naive role hierarchies” undecidable undecidable

12

Complexity of SHZ Q (Roughly OWL Lite)

SHIQ is ExpTime-hard because ALC with TBoxes is and SHZ Q can
internalise TBoxes: polynomially reduce SAT (C, 7)) to SAT(Cr, 0)

Cr:=cCcn [l (C;=D)nvu. [l (C;= D)
C;CD;eT C;ED;eT

for U new role with trans(U), and

RL U,R~ L U for all roles R in T or C

Lemma: C is satisfiable w.r.t. T iff C'+ is satisfiable

Why is SHZQ in ExpTime?

Tableau algorithms runs in worst-case non-deterministic double exponential space
using double exponential time....

13

SHIQ is in ExpTime

Translation of SHZQ into Buchi Automata on infinite trees

C, T ~ Acrt

such that

1.SAT(C,T) iff L(Ac,1) # 0
2. |Ac, 7| is exponential in |C| + |T|
(states of ¢ 7 are sets of subconcepts of C' and T')

This yields ExpTime decision procedure for SAT(C, ") since

emptyness of L(A) can be decided in time polynomial in | A]

Problem Ac 7 needs (?7) to be constructed before being tested: best-case ExpTime

14

SHI QOO (roughly OWL DL) is NExpTime-hard

Fact: for SHZQ and SHOQ, SAT(C, T) are ExpTime-complete

7 stands for “with inverse roles”, @” for “with nominals”

Lemma: their combination is NExpTime-hard
even for ACCOTO, SAT(C, T) is NExpTime-hard

15

Implementing OWL Lite or OWL DL

Naive implementation of SHZ O tableau algorithm is doomed to failure:

Construct a tree of exponential depth in a
non-deterministic way
~ requires backtracking in a deterministic implementation

Optimisations are crucial

A selection of some vital optimisations:

Classification: reduce number of satisfiability tests when classifying TBox
Absorption: replace globally disjunctive axioms by local versions
Optimised Blocking: discover loops in proof process early

Backjumping: dependency-directed backtracking

SAT optimisations: take good ideas from SAT provers

16

| Missing in SHZ O from OWL DL: Datatypes and Nominals

(Remember: Z stands for “with inverse roles”, O@” for “with nominals”)

So far, we discussed DLs that are fragments of OWL DL

SHIQ + Datatypes = SHZQO(D,,)
SHIQ + Nominals = SHZQO SHOQ + Datatypes = SHOQ(D,,)
e we have seen: e extend SH? QO with concrete data and
SHI QO is NExpTime-hard built-in predicates
e so far: no “goal-directed” reasoning e extend SH?Q with, e.g.,
algorithm known for SHZ QO Jdage. > 18 or
e unclear: whether SHZ QO is Jage, shoeSize. =
“practicable” e relevant in many ontologies

e but: t-algorithm designed for SHO QO e dangerous, but well understood extension

m live without nominals or inverses e currently being implemented and tested
for SHOQ (D)

17

Missing in SHZ O from OWL DL: Datatypes

In DLs, datatypes are known as concrete domains

Concrete domain D + (dom(D), pred) consists of

e a set dom(D), e.g., integers, strings, lists of reals, etc.
e a set pred of predicates, each predicate P € pred comes with
—arity n € N and
—a (fixed!) extension P" C dom(D)"
e e.g. predicates on Q: unary =3, <., binary <, =, ternary {(z,y,2) | ¢ + y = y}

18

Summing up: SAT and SUBS in OWL DL

We know

e how to reason in SHZ Q (proven to be ExpTime-complete)
implementations and optimisations well understood

e how to reason in SHOQ (D) (decidable, exact complexity unknown)

optimisation for nominals © need more investigations
optimisation for (D) are currently being investigated

e that their combination, OWL DL!, is more complex: NExpTime-hard
so far, no “goal-directed” reasoning algorithm known for OWL DL

w accept an incomplete algorithm for OWL DL
w yse a first-order prover for reasoning (and accept possibility of non-termination)
w live with OWL Lite while waiting for complete OWL DL algorithm

1. SHZQO(D) with number restrictions restricted to >nR. T, <nR.T

19

ABoxes and Instances

Remember: when using ontologies, we would like to automatically classify individuals
described in an ABox

an ABox Ais a finite set of assertions of the form
C(a) or R(a,b)

Z is a model of A if at € C* foreach C(a) € A
(aZ,b?) € RT for each R(a,b) € A

Cons(A, T) if there is a model Z of Aand T

Inst(a,C, A, T) if a € C* for each model Z of Aand T
Easy: Inst(a,C, A, T) iff not Cons(A U {—C(a)},T)
Example: A = {A(a), R(a,b), A(b),S(b,c), B(c)}

T = {AC <1R.T}
Inst(a,VR.A, A, T) but not Inst(b,VS.B, A, T)

20

ABoxes and Instances

How to decide whether Cons(A, 7)?

~+ extend tableau algorithm to start with ABox C(a) € A = C € L(a)
R(a,b) € A = (a,R)y)
this yields a graph—in general, not a tree
work on forest—rather than on a single tree
I.e., trees whose root nodes intertwine in a graph
theoretically not too complicated

many problems in implementation

Current Research: how to provide ABox reasoning for huge ABoxes
approach: restrict relational structure of ABox

21

Non-Standard Reasoning Services

For Ontology Engineering, useful reasoning services can be based on SAT and SUBS

Are all useful reasoning services based on SAT and SUBS?

Remember: to support modifying ontologies, we wanted

e automatic generation of concept definitions from examples

w given ABox Aand individuals a; create
a (most specific) concept C such that each a; € C* in each model Z of T

msc(ai,... ,a,), A, T)
e automatic generation of concept definitions for too many siblings

m given concepts Cq, ... ,C,, create
a (most specific) concept C' such that SUBS(C;, C, 7))

ICS(Cl, cee o Cn)7 A’ T)

22

Non-Standard Reasoning Services: msc and Ics

Unlike SAT, SUBS, etc., msc and Ics are computation problems

Fix a DL L. Define
C = msc(ay... yan, A, T)iff a € CT V1 < i< nandV Z model of Aand T

C is the smallest such concept, i.e.,

if aZ € C'* V1 < i < m and V Z model of Aand T
then SUBS(C, C’, T)

C =lcs(Ci,... ,Cn,T)iff SUBS(C;,C,T)V1<i<m

C' is the smallest such concept, i.e.,
ifC,eC'Vl1<i<n
then SUBS(C, C’, T)

Clear: msc(ay,... ,an, A, T) = lcs(msc(a;, A, T),... ,msc(a,, A, T))
|CS(Cl, C,, Cs, T) = ICS(ICS(CD C,, T)a Cs, T))

23

Non-Standard Reasoning Services: msc and Ics

Known Results:

e Ics in DLs with U is useless: Ics(C1,C>, T) = C, U C;

e msc(a, A, 7) might not exist: e.g., L = ALC

T =0
A = {A(a), R(a,a)}
msc(a, A, T) = ANIR.A? ANIR.(AMIR.A)?

e J DLs: (SUBS, SAT) msc, Ics are decidable/computable in polynomial time
E L with cyclic TBoxes (only M and 3R.C)

e 1 DLs: lcs can be computed, but might be of exponential size
ALE (only M, primitive =, VR.C, 3R.C)

24

Non-Standard Reasoning Services: other

concept pattern: concept with variabels in the place of concepts

The following non-standard reasoning services also come w.r.t. TBoxes

unification: C =’ D for C, D concept patterns
solution to C =’ D: a substitution o (replacing variables with concepts)
such that o(C) = o (D)
Goal: decide unification problem and find a (most specific) such substitution

matching: C =’ D for C concept patterns and D a concept
solution to C =’ D: a substitution o with o(C) = D

approximation: given DLs £, £ and L-concept C, find
L>-concept C with SUBS(C, C) and
SUBS(C, D) implies SUBS(C, D) for all L£,-concepts D

rewriting given C, T, find “shortest” C such that EQUIV(C, C, T)

25

Resources

ESSLI Tutorial by lan Horrocks and Ulrike Sattler
http://www.cs.man.ac.uk/\"horrocks/ESSLI203/

W3C Webont Working Group Documents http://www.w3.0rg/2001/sw/Web0Ont/
Particularly OWL Web Ontology Language Guide http://www.w3.org/TR/owl-guide/

W3C RDF Core Working Group Documents http://www.w3.o0rg/2001/sw/RDFCore/
Particularly RDF Primer http://www.w3.org/TR/rdf-primer/

Description Logics Handbook http://books.cambridge.org/0521781760.htm

RDF and OWL Tutorials by Roger Costello and David Jacobs
http:/www.xfront.com/rdf/
http:/www.xfront.com/rdf-schema/
http:/www.xfront.com/owl-quick-intro/
http:/www.xfront.com/owl/

26

