OWL Tutorial

An Example OWL Ontology

We will present a small OWL ontology

- to demonstrate the syntaxes of OWL
- to demonstrate how to use OWL
- to demonstrate the utility of OWL
- to demonstrate reasoning in OWL

Abstract syntax version of the ontology is attached.

OWL Tutorial

Reasoning Services

Reasoning services help knowledge engineers and users to build and use ontologies

(Many of the following slides have been taken from a longer tutorial on Logical Foundations for the Semantic Web by Ian Horrocks and Ulrike Sattler)

Complexity of Ontology engineering

Ontology engineering tasks:

- design
- evolution
- inter-operation and Integration
- deployment

Further complications are due to

- sheer size of ontologies
- number of persons involved
- users not being knowledge experts
- natural laziness
- etc.

Reasoning Services: what we might want in the Design Phase

- be warned when making meaningless statements
 - test satisfiability of defined concepts

 $\mathsf{SAT}(C,\mathcal{T})$ iff there is a model \mathcal{I} of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$ unsatisfiable, defined concepts are signs of faulty modelling

- see consequences of statements made
 - test defined concepts for subsumption

 $\mathsf{SUBS}(C,D,\mathcal{T}) \text{ iff } C^\mathcal{I} \subseteq D^\mathcal{I} \text{ for all model } \mathcal{I} \text{ of } \mathcal{T}$ unwanted or missing subsumptions are signs of imprecise/faulty modelling

- see redundancies
 - test defined concepts for equivalence

 ${\sf EQUIV}(C,D,\mathcal T) \ {\sf iff} \ C^{\mathcal I} = D^{\mathcal I} \ {\sf for \ all \ model} \ \mathcal I \ {\sf of} \ \mathcal T$ knowing about "redundant" classes helps avoid misunderstandings

Reasoning Services: what we might want when Modifying Ontologies

- the same system services as in the design phase, plus
- automatic generation of concept definitions from examples
 - given individuals o_1, \ldots, o_n with assertions ("ABox") for them, create a (most specific) concept C such that each $o_i \in C^{\mathcal{I}}$ in each model \mathcal{I} of \mathcal{T} "non-standard inferences"
- automatic generation of concept definitions for too many siblings
 - given concepts C_1, \ldots, C_n , create a (most specific) concept C such that $\mathsf{SUBS}(C_i, C, \mathcal{T})$ "non-standard inferences"

etc.

Reasoning Services: what we might want when Integrating and Using Ontologies

For integration:

- the same system services as in the design phase, plus
- the possibility to abstract from concepts to patterns and compare patterns
 - •e.g., compute those concepts D defined in \mathcal{T}_2 such that

$$\mathsf{SUBS}(\mathsf{Human} \sqcap (\forall \mathsf{child.}(X \sqcap \forall \mathsf{child.}Y)), D, \mathcal{T}_1 \cup T_2)$$
 "non-standard inferences"

When using ontologies:

- the same system services as in the design phase and the integration phase, plus
- automatic classification of indidivuals
 - \blacksquare given individual o with assertions, return all defined concepts D such that

$$o \in D^{\mathcal{I}}$$
 for all models ${\mathcal{I}}$ of ${\mathcal{T}}$

Reasoning Services: what we can do

(many) reasoning problems are inter-reducible:

$$\begin{split} \mathsf{EQUIV}(C,D,\mathcal{T}) & \text{ iff } \mathsf{sub}(C,D,\mathcal{T}) \text{ and } \mathsf{sub}(D,C,\mathcal{T}) \\ \mathsf{SUBS}(C,D,\mathcal{T}) & \text{ iff } \mathsf{not} \ \mathsf{SAT}(C\sqcap \neg D,\mathcal{T}) \\ & \mathsf{SAT}(C,\mathcal{T}) & \text{ iff } \mathsf{not} \ \mathsf{SUBS}(C,A\sqcap \neg A,\mathcal{T}) \\ & \mathsf{SAT}(C,\mathcal{T}) & \text{ iff } \mathsf{cons}(\{o\colon C\},\mathcal{T}) \end{split}$$

In the following, we concentrate on $SAT(C, \mathcal{T})$

Do Reasoning Services need to be Decidable?

We know SAT is reducible to co-SUBS and vice versa

Hence SAT is undecidable iff SUBS is SAT is semi-decidable iff co-SUBS is

if **SAT** is undecidable but semi-decidable, then

there exists a **complete SAT** algorithm:

 $\mathsf{SAT}(C,\mathcal{T}) \Leftrightarrow$ "satisfiable", but might not terminate if not $\mathsf{SAT}(C,\mathcal{T})$

there is a complete co-SUBS algorithm:

 $\mathsf{SUBS}(C,\mathcal{T}) \Leftrightarrow$ "subsumption", but might not terminate if $\mathsf{SUBS}(C,D,\mathcal{T})$)

- 1. Do expressive ontology languages exist with decidable reasoning problems?
- 2. Is there a practical difference between ExpTime-hard and non-terminating?

Do Reasoning Services need to be Decidable?

We know SAT is reducible to co-SUBS and vice versa

Hence SAT is undecidable iff SUBS is SAT is semi-decidable iff co-SUBS is

if **SAT** is undecidable but semi-decidable, then

there exists a **complete SAT** algorithm:

 $\mathsf{SAT}(C,\mathcal{T}) \Leftrightarrow$ "satisfiable", but might not terminate if not $\mathsf{SAT}(C,\mathcal{T})$

there is a complete co-SUBS algorithm:

 $\mathsf{SUBS}(C,\mathcal{T}) \Leftrightarrow$ "subsumption", but might not terminate if $\mathsf{SUBS}(C,D,\mathcal{T})$)

- 1. Do expressive ontology languages exist with decidable reasoning problems?

 Yes: DAML+OIL and OWL DL
- 2. Is there a practical difference between ExpTime-hard and non-terminating? let's see

Relationship with other Logics

- \mathcal{SHI} is a fragment of first order logic
- SHIQ is a fragment of first order logic with counting quantifiers equality
- SHI without transitivity is a fragment of first order with two variables
- ALC is a notational variant of the multi modal logic K
 inverse roles are closely related to converse/past modalities
 transitive roles are closely related to transitive frames/axiom 4
 number restrictions are closely related to deterministic programs in PDL

Deciding Satisfiability of \mathcal{SHIQ}

Remember: SHIQ is OWL DL without datatypes and nominals

Next: tableau-based decision procedure for SAT (C,T)

The algorithm proceeds by trying to construct a representation of a $model \ \mathcal{I}$ for C. This can be done because there always is such a representation, and the representation is at most of size exponential in the size of the ontology

Complexity of DLs: Summary

Deciding satisfiability (or subsumption) of

concepts in	Definition	without a TBox is	w.r.t. a TBox is
ALC	\sqcap , \sqcup , \neg , $\exists R.C$, $\forall R.C$,	PSpace-c	ExpTime-c
\mathcal{S}	ALC + transitive roles	PSPace-c	ExpTime-c
\mathcal{SI}	\mathcal{SI} + inverse roles	PSPace-c	ExpTime-c
SH	\mathcal{S} + role hierarchies	ExpTime-c	ExpTime-c
SHIQ	\mathcal{SHI} + number restrictions	ExpTime-c	ExpTime-c
SHIQO	\mathcal{SHI} + nominals	NExpTime-c?	NExpTime-c?
SHIQ+	SHIQ + "naive number restrictions"	undecidable	undecidable
\mathcal{SH}^+	SH + "naive role hierarchies"	undecidable	undecidable

Complexity of SHIQ (Roughly OWL Lite)

 \mathcal{SHIQ} is ExpTime-hard because \mathcal{ALC} with TBoxes is and \mathcal{SHIQ} can internalise TBoxes: polynomially reduce $SAT(C, \mathcal{T})$ to $SAT(C_{\mathcal{T}}, \emptyset)$

$$C_{\mathcal{T}} := C \sqcap \prod_{C_i \stackrel{.}{\sqsubseteq} D_i \in \mathcal{T}} (C_i \Rightarrow D_i) \sqcap orall U. \prod_{C_i \stackrel{.}{\sqsubseteq} D_i \in \mathcal{T}} (C_i \Rightarrow D_i)$$

for U new role with trans(U), and

$$R\mathrel{\dot\sqsubseteq} U, R^-\mathrel{\dot\sqsubseteq} U$$
 for all roles R in ${\mathcal T}$ or C

Lemma: C is satisfiable w.r.t. $\mathcal T$ iff $C_{\mathcal T}$ is satisfiable

Why is SHIQ in ExpTime?

Tableau algorithms runs in worst-case non-deterministic double exponential space using double exponential time....

SHIQ is in ExpTime

Translation of SHIQ into Büchi Automata on infinite trees

$$C$$
, \mathcal{T} $\;\leadsto\;\; A_{C,\mathcal{T}}$

such that

- 1. $\mathsf{SAT}(C,\mathcal{T}) \text{ iff } L(A_{C,\mathcal{T}}) \neq \emptyset$
- 2. $|A_{C,\mathcal{T}}|$ is exponential in $|C|+|\mathcal{T}|$ (states of $_{C,\mathcal{T}}$ are sets of subconcepts of C and \mathcal{T})

This yields ExpTime decision procedure for $\mathsf{SAT}(C,\mathcal{T})$ since

emptyness of L(A) can be decided in time polynomial in |A|

Problem $A_{C,\mathcal{T}}$ needs (?) to be constructed before being tested: best-case ExpTime

SHIQO (roughly OWL DL) is NExpTime-hard

Fact: for \mathcal{SHIQ} and \mathcal{SHOQ} , $SAT(C, \mathcal{T})$ are ExpTime-complete \mathcal{I} stands for "with inverse roles", \mathcal{O} " for "with nominals"

Lemma: their combination is NExpTime-hard even for \mathcal{ALCQIO} , SAT (C, \mathcal{T}) is NExpTime-hard

Implementing OWL Lite or OWL DL

Naive implementation of SHIQ tableau algorithm is doomed to failure:

Construct a tree of exponential depth in a non-deterministic way

→ requires backtracking in a deterministic implementation

Optimisations are crucial

A selection of some vital optimisations:

Classification: reduce number of satisfiability tests when classifying TBox

Absorption: replace globally disjunctive axioms by local versions

Optimised Blocking: discover loops in proof process early

Backjumping: dependency-directed backtracking

SAT optimisations: take good ideas from SAT provers

Missing in SHIQ from OWL DL: Datatypes and Nominals

(Remember: \mathcal{I} stands for "with inverse roles", \mathcal{O} " for "with nominals")

So far, we discussed DLs that are fragments of OWL DL

$$SHIQ$$
 + Nominals = $SHIQO$

- we have seen:SHIQO is NExpTime-hard
- ullet so far: no "goal-directed" reasoning algorithm known for \mathcal{SHIQO}
- unclear: whether SHIQO is "practicable"
- but: t-algorithm designed for SHOQ
- live without nominals or inverses

$$\mathcal{SHIQ}+\mathsf{Datatypes}=\mathcal{SHIQ}(D_n) \ \mathcal{SHOQ}+\mathsf{Datatypes}=\mathcal{SHOQ}(D_n)$$

- extend SH?Q with concrete data and built-in predicates
- extend SH? Q with, e.g., $\exists age. > 18$ or $\exists age, shoeSize. =$
- relevant in many ontologies
- dangerous, but well understood extension
- currently being implemented and tested for \mathcal{SHOQ} (D)

Missing in SHIQ from OWL DL: Datatypes

In DLs, datatypes are known as concrete domains

Concrete domain D + (dom(D), pred) consists of

- \bullet a set dom(D), e.g., integers, strings, lists of reals, etc.
- ullet a set **pred** of **predicates**, each predicate $P \in \mathsf{pred}$ comes with
 - arity $n\in\mathbb{N}$ and
 - -a (fixed!) extension $P^n \subseteq dom(D)^n$
- ullet e.g. predicates on $\mathbb Q$: unary $=_3$, \leq_7 , binary \leq ,=, ternary $\{(x,y,z) \mid x+y=y\}$

Summing up: SAT and SUBS in OWL DL

We know

- how to reason in SHIQ (proven to be ExpTime-complete) implementations and optimisations well understood
- how to reason in $\mathcal{SHOQ}(D)$ (decidable, exact complexity unknown) optimisation for nominals $\mathcal O$ need more investigations optimisation for (D) are currently being investigated
- that their combination, OWL DL¹, is more complex: NExpTime-hard so far, no "goal-directed" reasoning algorithm known for OWL DL
- accept an incomplete algorithm for OWL DL
- use a first-order prover for reasoning (and accept possibility of non-termination)

1. $\mathcal{SHIQO}(D)$ with number restrictions restricted to $\geqslant nR. \top$, $\leqslant nR. \top$

ABoxes and Instances

Remember: when using ontologies, we would like to automatically classify individuals described in an ABox

an ABox Ais a finite set of assertions of the form

$$C(a)$$
 or $R(a,b)$

$${\mathcal I}$$
 is a model of A if $a^{\mathcal I}\in C^{\mathcal I}$ for each $C(a)\in A$ $(a^{\mathcal I},b^{\mathcal I})\in R^{\mathcal I}$ for each $R(a,b)\in A$

 $\mathsf{Cons}(A,\mathcal{T})$ if there is a model \mathcal{I} of Aand \mathcal{T}

 $\mathsf{Inst}(a,C,A,\mathcal{T})$ if $a^\mathcal{I} \in C^\mathcal{I}$ for each model \mathcal{I} of Aand \mathcal{T}

Easy:
$$\mathsf{Inst}(a,C,A,\mathcal{T}) \ \mathsf{iff} \ \mathsf{not} \ \mathsf{Cons}(A \cup \{ \neg C(a) \}, \mathcal{T})$$

Example:
$$A=\{A(a),R(a,b),A(b),S(b,c),B(c)\}$$
 $\mathcal{T}=\{A\mathrel{\dot\sqsubseteq}\leqslant 1R.\top\}$ Inst $(a,\forall R.A,A,\mathcal{T})$ but not Inst $(b,\forall S.B,A,\mathcal{T})$

ABoxes and Instances

How to decide whether $\mathsf{Cons}(A,\mathcal{T})$?

 \sim extend tableau algorithm to start with ABox $C(a) \in A \;\Rightarrow\; C \in \mathrm{L}(a)$ $R(a,b) \in A \;\Rightarrow\; (\mathsf{a},\mathsf{R},\mathsf{y})$

this yields a graph—in general, not a tree work on forest—rather than on a single tree i.e., trees whose root nodes intertwine in a graph theoretically not too complicated many problems in implementation

Current Research: how to provide ABox reasoning for huge ABoxes approach: restrict relational structure of ABox

Non-Standard Reasoning Services

For Ontology Engineering, useful reasoning services can be based on SAT and SUBS

Are all useful reasoning services based on SAT and SUBS?

Remember: to support modifying ontologies, we wanted

- automatic generation of concept definitions from examples
 - given ABox Aand individuals a_i create a (most specific) concept C such that each $a_i \in C^{\mathcal{I}}$ in each model \mathcal{I} of \mathcal{T} $\mathsf{msc}(a_1,\ldots,a_n),A,\mathcal{T})$
- automatic generation of concept definitions for too many siblings
 - given concepts C_1,\ldots,C_n , create a (most specific) concept C such that $\mathsf{SUBS}(C_i,C,\mathcal{T})$ $\mathsf{lcs}(C_1,\ldots,C_n),A,\mathcal{T})$

Non-Standard Reasoning Services: msc and lcs

Unlike SAT, SUBS, etc., msc and lcs are computation problems

Fix a DL \mathcal{L} . Define

$$C=\mathsf{msc}(a_1,\ldots,a_n,A,\mathcal{T})$$
 iff $a_i^\mathcal{I}\in C^\mathcal{I}\ orall 1\leq i\leq n$ and $orall\ \mathcal{I}$ model of Aand \mathcal{T} C is the smallest such concept, i.e., if $a_i^\mathcal{I}\in {C'}^\mathcal{I}\ orall 1\leq i\leq n$ and $orall\ \mathcal{I}$ model of Aand \mathcal{T} then $\mathsf{SUBS}(C,C',\mathcal{T})$

$$C = \mathsf{lcs}(C_1, \ldots, C_n, \mathcal{T}) ext{ iff} ext{ SUBS}(C_i, C, \mathcal{T}) ext{ } orall 1 \leq i \leq n$$
 $C ext{ is the smallest such concept, i.e.,}$ if $C_i \in C' ext{ } orall 1 \leq i \leq n$ then $\mathsf{SUBS}(C, C', \mathcal{T})$

Clear:
$$\mathsf{msc}(a_1,\ldots,a_n,A,\mathcal{T}) = \mathsf{lcs}(\mathsf{msc}(a_1,A,\mathcal{T}),\ldots,\mathsf{msc}(a_n,A,\mathcal{T})) \ \mathsf{lcs}(C_1,C_2,C_3,\mathcal{T}) = \mathsf{lcs}(\mathsf{lcs}(C_1,C_2,\mathcal{T}),C_3,\mathcal{T}))$$

Non-Standard Reasoning Services: msc and lcs

Known Results:

- ullet lcs in DLs with oxed is useless: $\mathsf{lcs}(C_1,C_2,\mathcal{T})=C_1 oxed C_2$
- ullet msc (a,A,\mathcal{T}) might not exist: e.g., $\mathcal{L}=\mathcal{ALC}$ $\mathcal{T}=\emptyset$ $A=\{A(a),R(a,a)\}$ msc $(a,A,\mathcal{T})=A\sqcap \exists R.A?\ A\sqcap \exists R.(A\sqcap \exists R.A)?$
- \exists DLs: (SUBS, SAT) msc, lcs are decidable/computable in polynomial time \mathcal{EL} with cyclic TBoxes (only \Box and $\exists R.C$)
- \exists DLs: Ics can be computed, but might be of exponential size \mathcal{ALE} (only \Box , primitive \neg , $\forall R.C$, $\exists R.C$)

Non-Standard Reasoning Services: other

concept pattern: concept with variabels in the place of concepts

The following non-standard reasoning services also come w.r.t. TBoxes

unification: $C \equiv^? D$ for C, D concept patterns solution to $C \equiv^? D$: a substitution σ (replacing variables with concepts) such that $\sigma(C) \equiv \sigma(D)$

Goal: decide unification problem and find a (most specific) such substitution

matching: $C \equiv^? D$ for C concept patterns and D a concept solution to $C \equiv^? D$: a substitution σ with $\sigma(C) \equiv D$

approximation: given DLs \mathcal{L}_1 , \mathcal{L}_2 and \mathcal{L}_1 -concept C, find \mathcal{L}_2 -concept \hat{C} with $\mathsf{SUBS}(C,\hat{C})$ and $\mathsf{SUBS}(C,D)$ implies $\mathsf{SUBS}(\hat{C},D)$ for all \mathcal{L}_2 -concepts D

rewriting given C, $\mathcal T$, find "shortest" $\hat C$ such that $\mathsf{EQUIV}(C,\hat C,\mathcal T)$

Resources

ESSLI Tutorial by Ian Horrocks and Ulrike Sattler

http://www.cs.man.ac.uk/\~horrocks/ESSLI203/

W3C Webont Working Group Documents http://www.w3.org/2001/sw/WebOnt/Particularly OWL Web Ontology Language Guide http://www.w3.org/TR/owl-guide/

W3C RDF Core Working Group Documents http://www.w3.org/2001/sw/RDFCore/Particularly RDF Primer http://www.w3.org/TR/rdf-primer/

Description Logics Handbook http://books.cambridge.org/0521781760.htm

RDF and OWL Tutorials by Roger Costello and David Jacobs

```
http:/www.xfront.com/rdf/
http:/www.xfront.com/rdf-schema/
http:/www.xfront.com/owl-quick-intro/
http:/www.xfront.com/owl/
```