

Efficient First-Order Theorem
Proving

Kryštof Hoder

Supervisor: Andrei Voronkov

First-Order Theorem Proving

● Input: first-order formulas (theory & conjecture)
● Conjecture negated, formulas converted to

CNF
● Generating inference rules applied to clauses to

get new ones
● until we obtain refutation, or no rule is applicable

● Leads to large amount of clauses
● simplification and deletion rules reduce it
● indexing helps us handle it

Vampire Theorem Prover

● Consistently winning CASC FOF and CNF
2002-09

● New version (being) developed
● completely rewritten
● framework for the research

– allows immediate applications of intermediate results
● already helpful on CASC

Unification in Term Indexing

● A paper accepted to the KI 2009 conference
● together with A. Voronkov
● presented also at the Automated Deduction

Seminar in Dagstuhl 2009

● Comparison of unification algorithms in
substitution tree indexes
● different from term-to-term unification
● building a large substitution in small steps

● Robinson algorithm shown the best
● our polynomial modification was almost the same

(now used in Vampire)

Interpolant Generation

● A paper submitted to the TACAS 2010
conference
● together with L. Kovacs and A. Voronkov

● Formulas A, B such that AͰB,
Interpolant I is a formula such that
AͰI, IͰB, and IL

A
∩L

B

● Useful for software verification
● Interpolant generation and symbol

eliminating inferences output
implemented in Vampire

Propositional Reasoning

● First-order not efficient for propositional
● “Clauses” have prop. and non-prop. parts

● prop. parts might not necessarily be clauses
– merging common non-propositional parts (→ conj.)

● Representing the prop. part
● BDD

– less efficient, allow for more operations
● SAT solver

– faster, only checks for unsatisfiability
– suitable for “empty” clause

● Indexes and prop. parts

Offline Data Structures

● Axiom selection for large knowledge bases
● Some are too large even for that (memory)

● DBpedia – 4.7 bln pieces of information

● SInE axiom selection algorithm
● winner of CASC LTB division

● Transform into offline algorithm
● building (maintaining) index
● retrieval of selected axioms

Compiling of Term Indexes

● Code trees
● Set of clauses compiled to a sequence of byte-code

instructions
● Retrieval from index = execution of the code

● Byte code → native
● for Java 5–20 times speed-up
● we need to deal with index modifications

● (dealing with prop. clause parts)

Parallelization

● Growing CPU core number, not speed of a core
● Some tasks should be easily parallelizable

● retrieval from indexes
– usually the most expensive
– read-only access to the index structure

● Multiple Vampire instances can share derived
clauses

Evaluation

● TPTP library
● around 10,000 first-order problems
● from different areas
● standard format

– easy comparison with other first-order provers

● Very large KB problems
● we expect benchmarks to appear
● some TPTP problems could be joined with large KB

● Keep winning the CASC competition :)

Plan

Thank you for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

