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Abstract. The present paper defines a multi-modal logic for modelling and verifying the be-
haviour of intelligent and rational agents. The agents can perform actions, can reason about
their own knowledge and their motivational attitudes. We give a Hilbert-style axiomatisation
which is proved sound and complete with respect to a Kripke-style semantics. We also show the
small model property, decidability, and give lower and upper bounds for the complexity of the
satisfiability problem in the logic.

1 Introduction

Modal and temporal logics are popular for modelling agent systems. Among the more well-
known agent formalisms with a modal or temporal flavour are the BDI model [20, 22], the
KARO framework [15, 24], and temporal logics of knowledge and belief [7, 10, 11]. Examples
of more recent work includes the proposal of a modal logic framework of belief and change
in [14], and an epistemic dynamic logic in [13]. Such theories are meant to formalise the
representation and reasoning about various aspects of the behaviour and mental attitudes of
agents as well as the state of the environment the agents live in.

The present paper is very much based on the work of Meyer, van der Hoek and van
Linder [15, 24] who have proposed a powerful agent theory, called the KARO framework. This
framework develops an approach based on propositional dynamic logic for describing and
reasoning about the actions of agents. Enriched by additional modal operators for the agents’
knowledge, their wishes and goals, and operators for the agents’ abilities and commitments,
KARO provides a very expressive framework in which the informational and motivational
attitudes of agents can be modelled. The informational attitudes include the agents’ knowledge
and beliefs. An agent’s motivational attitudes determine her willingness or unwillingness to
commit to actions in order to fulfil her wishes and goals. Commitments can be considered as
representations of the agents’ duties, that is, actions which agents must perform sooner or
later. The formalisation of the motivational attitudes of agents has been a main contribution
of the KARO framework [15, 24].

KARO is a purely semantic framework. Although it can be seen to incorporate deter-
ministic propositional dynamic logic, at this moment it not known whether the whole of
KARO can be formalised as a logical systems. This paper is an attempt to address this issue.
Because KARO contains some sophisticated operators for managing the agents’ goals and
commitments, KARO is not directly expressible in (propositional) modal logic. This prevents
us from using the powerful techniques developed in the field of modal logic. Our approach has
been to omit some operators from KARO and try to give a modal logic axiomatisation which
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characterises the properties of the remaining operators. Although this necessarily reduces the
expressivity of the logic, we obtain a logic with a sound and complete axiomatisation, and
some other nice properties. For example, the logic is shown to be decidable, which is obviously
an important property for an agent logic if it is to be used in practice. Moreover, we believe
the logic remains expressive enough to be useful in applications. From a technical point of
view, as our results suggest, the logic is at least as expressive and complex as propositional
dynamic logic and also converse propositional dynamic logic.

The logic introduced in this paper is called agent dynamic logic (ADL). As in the KARO
framework, in ADL the dynamic activities of agents are formulated in a propositional dynamic
logic (PDL). This formalises the specification of the results of the agents’ actions. For example,
[α]iφ says property φ holds always after agent i has performed the action α. ADL also allows
for the definition of the opportunity (〈α〉i>) and ability to perform actions (Aiα). In order
to describe formally the commitments of an agent the ADL logic has a static commitment
constructor which states the commitment of an agent to an action (Commiα), and two
dynamic constructors which represent the actions of committing or undoing a commitment
(cα and uα).

To illustrate the capabilities of the ADL-operators consider the scenario of an examination
situation for two agents, a teacher t and a student s.

– Atgive task represents that ‘the teacher is able to give a task to the student’.
– 〈give task〉t> represents that ‘the teacher has an opportunity to give a task’.
– 〈perform task〉s> represents that ‘the student has an opportunity to perform the task’.
– [give task]tKsCommsperform task represents that ‘the student knows he is committed

to performing the task whenever it is given by the teacher’.

The last formula gives an example of a contract agreement between the two agents, which
suggests a potential area of application for ADL. Although this example is rather primitive,
we believe that it is possible to formally describe legal contracts in terms of the ADL language,
and then to use the logic for analysis and verification purposes.

The specification of teamwork might be another use for ADL. In the development of a
complex project, for instance, the duties of the individual developers are usually fixed at
the outset. So, if we can formally represent the duties and abilities of the developers in the
team, as well as the goals of the project then we can reason about the stages during project
development and their interdependencies. (In the setting of this paper the wishes of agents
may be regarded as first approximations of the goals of agents.) On the other hand, as soon as
an optimal sequence of development has been determined one can assign tasks to developers
and fix conditions of teamwork such that the optimum can be realised. Further examples
and discussion of the fundamental nature of commitments, abilities and wishes can be found
in [15, 24].

The ADL logic and the KARO framework are similar in many respects but there are some
important differences. First, in order to reason about actions KARO extends the strictly de-
terministic version of PDL with deterministic ‘while’ and ‘if’ action constructors while ADL
uses non-deterministic PDL with the test operator. We did not want to constrain ourselves
to the more narrow language if decidability or other good properties are not lost in the non-
deterministic case. Non-determinism is a natural property in real world applications as it
allows the exploration of alternative paths of execution of actions. Therefore, ADL cannot be
reduced to KARO, at least, not in a straightforward way. Second, some of the KARO-operators
are not included in ADL. This concerns the operators for representing goals, making choices,



and an implementability operator. Although the first two operators could be added to ADL
in future, it is not clear how best to handle the planning element of the implementability op-
erator which involves quantifying over atomic actions. This shows there is no straightforward
translation of KARO into ADL. Third, as mentioned above, full KARO is defined only by its
semantics whereas ADL is a logic with both semantics and Hilbert-style axiomatisation. This
means, because ADL has a purely relational semantics, almost all what is known in modal logic
can be applied to ADL. Finally, one of the main features of ADL, distinguishing it from KARO,
is the treatment of the abilities and commitments with respect to non-determinism. Our def-
inition is an attempt to merge the ‘internal’ (angelic) and ‘external’ (demonic) approaches
considered by [23] for the ability operator, which can be seen from comparing the defining
axioms and the desirable properties identified in [23, Theorems 4 and 9]. Our approach does
not lead to inconsistency because we establish ADL is sound.

Despite the many difference, ADL and KARO have some common properties. In construct-
ing ADL, it was our intention to keep most of the important properties of agents which are
discussed and formalised in the KARO framework, possibly, slightly modifying them. For
example, the following properties of KARO are also true in ADL.

〈cα〉i> ↔ 〈cα〉iCommiα Commiwhile(φ, α) ∧Kiφ→ Commi(φ?;α;while(φ, α))

The structure of the paper is as follows. Sections 2 and 3 give an axiomatisation and define
a Kripke-style semantics for the logic ADL. Soundness is proved in Section 3. In Section 4
we analyse the properties of ADL and show completeness with respect to standard and non-
standard models, the small model property, decidability and discuss the complexity of ADL.

2 Axiomatisation of ADL

The language L of the logic ADL considered in this paper is defined over the following primitive
types: a countable set Var = {p, q, r, . . .} of propositional variables, a countable set AtAc =
{a, b, c, . . .} of atomic action variables, and a finite set Ag of agents. L is constructed over
the usual Boolean connectives, → and ⊥, the standard PDL connectives, ∪, ;, ∗, ? and [ ]i,
where i denotes any agent, and modal connectives Ki (for knowledge) and Wi (for wishes).
In addition, there are four unary operations on actions, Ai (for ‘has the ability to perform’),
Commi (for ‘committed to’), c (for ‘commit to’) and u (for ‘uncommit’). The former two
are formula forming, and the latter two are action forming. The set For of formulae and the
set Ac of actions in L are the smallest sets that satisfy the following conditions (i ∈ Ag).

– AtAc ⊆ Ac, Var ∪ {⊥} ⊆ For.
– If φ ∈ For and α, β ∈ Ac then φ?, α∗, cα,uα, α ∪ β, α;β ∈ Ac.
– If φ, ψ ∈ For, α ∈ Ac then φ→ ψ,Kiφ,Wiφ, [α]iφ,Aiα,Commiα ∈ For.

As usual we use the following abbreviations: ¬φ for φ → ⊥, φ ∨ ψ for ¬φ → ψ, φ ∧ ψ for
¬(¬φ ∨ ¬ψ), 〈α〉iφ for ¬[α]i¬φ, and φ↔ ψ for (φ→ ψ) ∧ (ψ → φ).

By definition, an atomic action is an action variable, and a semi-atomic action is an
atomic action or a test φ? action.

ADL is a combination of PDL, S5, and K with some extra axioms for the ability and
commitment operators. Formally, the axioms of ADL are:

A1. All classical tautologies over L



A2. The PDL axioms (see [16]) for each [α]i (α ∈ Ac, i ∈ Ag):
1. [α]i(φ→ ψ)→ ([α]iφ→ [α]iψ)
2. [α ∪ β]iφ↔ [α]iφ ∧ [β]iφ
3. [α;β]iφ↔ [α]i[β]iφ
4. [α∗]iφ→ φ ∧ [α]iφ

5. [α∗]iφ→ [α]i[α
∗]iφ

6. φ ∧ [α∗]i(φ→ [α]iφ)→ [α∗]iφ
7. [φ?]iψ ↔ (φ→ ψ)

A3. The S5 axioms for each Ki (i ∈ Ag):
1. Ki(φ→ ψ)→ (Kiφ→ Kiψ)
2. Kiφ→ KiKiφ

3. Kiφ→ φ
4. ¬Kiφ→ Ki¬Kiφ

A4. The K axiom for each Wi (i ∈ Ag):
Wi(φ→ ψ)→ (Wiφ→Wiψ)

A5. The following axioms for each Ai (i ∈ Ag):
1. Aiα ∪ β ↔ Aiα ∨Aiβ
2. Aiα;β ↔ Aiα ∧ [α]iAiβ

3. Aiα
∗ → Aiα ∧ [α]iAiα

∗

4. Aiα ∧ [α∗]i(Aiα→ [α]iAiα)→ Aiα
∗

The first axiom of the last group expresses the fact that to be able to perform a non-
deterministic choice of two actions is exactly the same as to be able to do the first action or
to be able to do the second one. The other three axioms of this group express the persistence
and sequential behaviour of the agents’ abilities.

A similar group of axioms for the static commitment operators, Commi (i ∈ Ag), are:

A6. 1. Commiα ∪ β ↔ Commiα ∨Commiβ
2. Commiα;β ↔ Commiα ∧ [α]iCommiβ
3. Commiα

∗ → Commiα ∧ [α]iCommiα
∗

4. Commiα ∧ [α∗]i(Commiα→ [α]iCommiα)→ Commiα
∗

The axioms for the dynamic commit and uncommit operators, c and u, are:

A7. 1. [cα]iCommiα
2. [uα]i¬Commiα
3. Aicα

4. Aiuα
5. Commicα↔ Commiα
6. Commiuα↔ ¬Commiα

The first two axioms express that an agent cannot be uncommitted after committing to an
action and, vice versa, cannot be committed just after uncommitting. The axioms 3 and 4 say
that any agent is always able to perform actions of committing and uncommitting. The last
two axioms are forms of simplification to being committed. They say that to be committed
to (un)committing to an action is exactly the same as to be (un)committed to this action.

The inference rules of ADL are modus ponens for formulae, φ, φ → ψ ` ψ, and the
necessitation rules for the modal connectives,

φ ` [α]iφ, φ ` Kiφ, and φ `Wiφ, for any action α and agent i.

Let L be any logic in the language L and Γ ∪ {φ} is a set of formulae. We will write
Γ `L φ if φ is deducible (in usual sense) by modus ponens and the above necessitation rules
from Γ and substitution instances of the axioms of L. We will also write L ` φ if ∅ `L φ.

3 Semantics

The semantics of our agent dynamic logic is defined in the familiar Kripke-style where models
are defined over relational structures called frames. We define an ADL-frame to be a tuple

F = 〈S,Qi, RK
i , R

W
i , Ai, Commi, Q

c
i , Q

u
i 〉i∈Ag,



of a non-empty set S of states, families of functions Qi from the set AtAc into S2, families
of binary relations RW

i on S, families of equivalence relations RK
i on S, families of functions

Ai and Commi from the set of semi-atomic action into the set of subsets of S, and families
of functions Qc

i and Qu
i from the set of all actions into the set of binary relations on S.

For any set S, by IdS we denote the identity relation on S, i.e. the relation {(s, s) | s ∈ S}.
R ◦ R′ denotes the relational composition of two relations R and R′, and R∗ denotes the
reflexive transitive closure of R.

Definition 1. For some action terms α and β let the relations Qi(α), Qi(β) and sets Ai(α),
Ai(β), Commi(α), Commi(β) be given. Define the Qi, Ai, and Commi on complex terms
by:

Qi(α ∪ β)
 Qi(α) ∪Qi(β) Qi(α;β)
 Qi(α) ◦Qi(β)
Qi(α∗)
 (Qi(α))∗ Ai(α ∪ β)
 Ai(α) ∪Ai(β)
Ai(α;β)
 Ai(α) ∩ {s | ∀t ∈ S (sQi(α)t⇒ t ∈ Ai(β))}
Ai(α∗)
 Ai(α) ∩ {s | ∀t, u ∈ S (sQi(α∗)t & t ∈ Ai(α)⇒ (tQi(α)u⇒ u ∈ Ai(α)) )}
Ai(cα)
 S Ai(uα)
 S

Commi(α ∪ β)
 Commi(α) ∪ Commi(β)
Commi(α;β)
 Commi(α) ∩ {s | ∀t ∈ S (sQi(α)t⇒ t ∈ Commi(β))}
Commi(α∗)
 Commi(α) ∩ {s | ∀t, u ∈ S ( sQi(α∗)t & t ∈ Commi(α)⇒

(tQi(α)u⇒ u ∈ Commi(α)) )}
Commi(cα)
 Commi(α) Commi(uα)
 S \ Commi(α)

Qi(uα)
 Qu
i (α) ◦ IdS\Commi(α) Qi(cα)
 Qc

i (α) ◦ IdCommi(α)

An example of a frame is a tuple F0 in which S = {s}, Qi(a) = RK
i = RW

i = {(s, s)},
Ai(a) = Commi(a) = S, and Qc

i (α) = Qu
i (α) = ∅.

Definition 2. An ADL-model M is any tuple 〈F, V 〉, where F is a frame and V is a function,
mapping each propositional variable p to some subset V (p) of the set of states of F . V extends
to the set of all formulae in the expected way, namely, using induction on the structure of a
formula φ define V (φ) by:

V (⊥)
 ∅ V (φ→ ψ)
 (S \ V (φ)) ∪ V (ψ)

V (Kiφ)
 {s | ∀t(sRK
i t⇒ t ∈ V (φ))}

V (Wiφ)
 {s | ∀t(sRW
i t⇒ t ∈ V (φ))}

V ([α]iφ)
 {s | ∀t(sQi(α)t⇒ t ∈ V (φ))}
V (Aiα)
 Ai(α) V (Commiα)
 Commi(α)

Qi(α) is defined by induction on the structure of α: 1. If α ∈ AtAc then Qi(α) 
 Qi(a). If
α = ψ? for some formula ψ, then Qi(ψ?) 
 {(t, t) | t ∈ V (ψ)}. 2. If α = β ∪ γ, α = β;γ,
α = β∗, α = cβ or α = uβ then Qi(β), Qi(γ), Commi(β), Commi(γ) are defined, and Qi(α)
is as given in Definition 1.

Ai(α) and Commi(α) are defined by induction on the structure of α: For any semi-atomic
action α, Ai(α) and Commi(α) are defined in the frame, or otherwise, the specification is as
in Definition 1.



As usual, we write M, s |= φ (or just s |= φ) iff s ∈ V (φ) in M , and M |= φ iff M, s |= φ
for all s in M . For any class of models K and any set of formulae Γ ∪ {φ} we write Γ |=K φ
if ∀M ∈ K ((∀γ ∈ Γ M |= γ) ⇒ M |= φ). A logic L is sound with respect to some class K
of models if for any formula φ L ` φ implies that M |= φ for any model M from K. L is
complete with respect to class K of models if the backward implication holds, i.e. if M |= φ
for any model M from K then L ` φ. L is strongly complete with respect to K if Γ |=K φ
implies Γ `L φ for any set of formulae Γ ∪ {φ}.

Consider M0 
 〈F0, V0〉, where F0 is the frame defined above, and V0(p) = {s} for any
propositional variable p. It is not difficult to check that M0 is an ADL-model.

From the above definition each model M can be viewed as a tuple

〈S,Qi, RK
i , R

W
i , |=〉i∈Ag,

where S, Qi, RK
i and RW

i are defined as above, and |= is a truth relation on S × For.
As usual the following soundness theorem can be shown.

Theorem 3 (Soundness). ADL is sound with respect to the class of all ADL-models.

4 Properties of ADL

In this section, we apply standard techniques of modal logic for constructing canonical models
and filtrations (cf. e.g. [2, 12]) to prove completeness and decidability results for ADL. We skip
all the standard details and state only definitions and results.

4.1 Completeness with respect to non-standard models

To begin with, recall canonical models are built from maximally consistent sets of formulae.
A maximal consistent set (MCS) is a consistent set Γ of formulae such that Γ includes all
theorems of ADL, and any superset of Γ is inconsistent. Any consistent set of ADL-formulae
can be extended to a MCS in a standard way.

Let S be the set of all MCSs. We define the appropriate relations on S by the following
equivalences:

sRK
i t iff ∀Kiφ ∈ s, φ ∈ t sRW

i t iff ∀Wiφ ∈ s, φ ∈ t
sQi(α)t iff ∀[α]iφ ∈ s, φ ∈ t s |= φ iff φ ∈ s

The model M = 〈S,Qi, RK
i , R

W
i , |=〉 thus obtained is the canonical model of ADL.

Lemma 4 (Existence Lemma). For any state s ∈ S and any formula φ

1. if ¬Ki¬φ ∈ s then ∃t ∈ S (sRK
i t & φ ∈ t)

2. if ¬Wi¬φ ∈ s then ∃t ∈ S (sRW
i t & φ ∈ t)

3. if 〈α〉iφ ∈ s then ∃t ∈ S (sQi(α)t & φ ∈ t)

Lemma 5.

1. RK
i is an equivalence relation

2. s |= Commiα whenever tQi(cα)s for some t ∈ S
3. s 6|= Commiα whenever tQi(uα)s for some t ∈ S
4. Qi(α ∪ β) = Qi(α) ∪Qi(β)



5. Qi(α;β) = Qi(α) ◦Qi(β)
6. s |= [α∗]iφ iff s |= φ ∧ [α]i[α

∗]iφ
7. s |= [α∗]iφ iff s |= φ ∧ [α∗]i(φ→ [α]iφ),
8. s |= Commiα ∪ β iff s |= Commiα ∨Commiβ
9. s |= Commiα;β iff s |= Commiα ∧ [α]iCommiβ

10. s |= Commiα
∗ iff s |= Commiα ∧ [α∗]i(Commiα→ [α]iCommiα)

11. s |= Commicα iff s |= Commiα
12. s |= Commiuα iff s 6|= Commiα
13. s |= Aiα ∪ β iff s |= Aiα ∨Aiβ
14. s |= Aiα;β iff s |= Aiα ∧ [α]iAiβ
15. s |= Aiα

∗ iff s |= Aiα ∧ [α∗]i(Aiα→ [α]iAiα)
16. s |= Aicα for all s ∈ S
17. s |= Aiuα for all s ∈ S

Unfortunately, the canonical model does not satisfy the property Qi(α∗) = (Qi(α))∗, and
is thus not a standard model for ADL in the sense of Definition 2. Any model which satisfies
all the properties of Lemma 5 will be called a non-standard model.

Using Lemmas 4 and 5 we can prove that the truth relation in the canonical model
is defined correctly in the sense of Definition 2. Thus, as for standard modal logics, the
completeness of ADL with respect to M follows from the definition of M .

Theorem 6. ADL is complete with respect to its canonical model.

Theorem 7. ADL is strongly complete with respect to the class of all non-standard ADL-
models.

It is worth remarking that strong completeness of ADL without the ∗ operator can be
obtained by an analogous argument, because the canonical model M is a standard model in
this restricted language.

Theorem 8. The ∗-free fragment of ADL is strongly complete with respect to the class of
all ADL-models.

4.2 Decidability and completeness with respect to standard models

For simplicity, we will consider ADL without operators Ki and Wi, because if we obtain a
completeness theorem and the finite model property for this fragment, then the full ADL will
possess these properties because of a well-known preservation property of fusions of modal
logics [25, Theorem 2.6].

Definition 9. A set X of formulae is FL-closed if it satisfies the following properties for any
i ∈ Ag:

(FL1) if φ→ ψ ∈ X then φ, ψ ∈ X
(FL2) if [α ∪ β]iφ ∈ X then [α]iφ, [β]iφ ∈ X
(FL3) if [α;β]iφ ∈ X then [α]i[β]iφ ∈ X
(FL4) if [α∗]iφ ∈ X then [α]i[α

∗]iφ ∈ X
(FL5) if [φ?]iψ ∈ X then φ→ ψ ∈ X
(FL6) if [cα]iφ ∈ X then Commiα ∈ X
(FL7) if [uα]iφ ∈ X then Commiα ∈ X



(FL8) if [α]iφ ∈ X then φ ∈ X
(FL9) if Commiα ∪ β ∈ X then Commiα,Commiβ ∈ X
(FL10) if Commiα;β ∈ X then Commiα, [α]iCommiβ ∈ X
(FL11) if Commiα

∗ ∈ X then [α∗]iCommiα ∈ X
(FL12) if Commicα ∈ X then Commiα ∈ X
(FL13) if Commiuα ∈ X then Commiα ∈ X
(FL14) if Aiα ∪ β ∈ X then Aiα,Aiβ ∈ X
(FL15) if Aiα;β ∈ X then Aiα, [α]iAiβ ∈ X
(FL16) if Aiα

∗ ∈ X then [α∗]iAiα ∈ X

Let Σ be a set of formulae. The Fischer-Ladner closure (or, FL-closure for short) of Σ is the
smallest FL-closed set which contains Σ. We denote it by FL(Σ).

Definition 10. For any ADL-formula φ, we define the set FL(φ) using induction on the
structure of φ.

1. FL(⊥) 
 {⊥} and FL(p) 
 {p} for any atomic proposition p
2. FL(φ→ ψ) 
 {φ→ ψ} ∪ FL(φ) ∪ FL(ψ)
3. FL([α]iφ) 
 FL�([α]iφ) ∪ FL(φ)
4. FL�([a]iφ) 
 {[a]iφ} for any atomic action a
5. FL�([φ?]iψ) 
 {[φ?]iψ} ∪ FL(φ)
6. FL�([α ∪ β]iφ) 
 {[α ∪ β]iφ} ∪ FL�([α]iφ) ∪ FL�([β]iφ)
7. FL�([α;β]iφ) 
 {[α;β]iφ} ∪ FL�([α]i[β]iφ) ∪ FL�([β]iφ)
8. FL�([α∗]iφ) 
 {[α∗]iφ} ∪ FL�([α]i[α

∗]iφ)
9. FL�([cα]iφ) 
 {[cα]iφ} ∪ FL(Commiα)

10. FL�([uα]iφ) 
 {[uα]iφ} ∪ FL(Commiα)
11. FL(Commia) 
 {Commia} for any atomic action a
12. FL(Commiφ?) 
 {Commiφ?} ∪ FL(φ)
13. FL(Commiα ∪ β) 
 {Commiα ∪ β} ∪ FL(Commiα) ∪ FL(Commiβ)
14. FL(Commiα;β) 
 {Commiα;β} ∪ FL(Commiα) ∪ FL([α]iCommiβ)
15. FL(Commiα

∗) 
 {Commiα
∗} ∪ FL([α∗]iCommiα)

16. FL(Commicα) 
 {Commicα} ∪ FL(Commiα)
17. FL(Commiuα) 
 {Commiuα} ∪ FL(Commiα)
18. FL(Aia) 
 {Aia} for any atomic action a
19. FL(Aiφ?) 
 {Aiφ?} ∪ FL(φ)
20. FL(Aiα ∪ β) 
 {Aiα ∪ β} ∪ FL(Aiα) ∪ FL(Aiβ)
21. FL(Aiα;β) 
 {Aiα;β} ∪ FL(Aiα) ∪ FL([α]iAiβ)
22. FL(Aiα

∗) 
 {Aiα
∗} ∪ FL([α∗]iAiα)

23. FL(Aicα) 
 {Aicα}
24. FL(Aiuα) 
 {Aiuα}

Lemma 11. FL(φ) = FL({φ}), i.e. FL(φ) is the FL-closure of the formula φ.

It is easy to see that FL(Σ) is finite whenever Σ is finite. The following lemma allows us
to find an upper bound for the cardinality of FL(Σ) in terms of the lengths of formulae from
Σ.

We denote by |φ| and |α| the length (as number of the symbols excluding parentheses) of
φ and α, respectively. By #φ we denote a maximal number of occurrences of the symbols ;
and ∗ below the operators Commi, Ai, c and u in φ.



Lemma 12.
1. Card(FL(φ)) ≤ |φ|2#φ

2. Card(FL�([α]iφ)) ≤ |α|2#[α]iφ
3. Card(FL(Commiα)) ≤ |α|2#Commiα

4. Card(FL(Aiα)) ≤ |α|2#Aiα

Proof. All properties can be proved by simultaneous induction on the length of φ and the
length of α (cf. [12, Lemma 6.1]). First, we prove (i).

The cases φ = ⊥, p are easy.

Card(FL(ξ → η)) ≤ Card(FL(ξ)) + Card(FL(η)) ≤
≤ |ξ|2#ξ + |η|2#η ≤
≤ (|ξ|+ |η|)2#φ = |φ|2#φ

Card(FL([α]iψ)) ≤ Card(FL�(φ)) + Card(FL(ψ)) ≤
≤ |α|2#φ + |ψ|2#ψ ≤
≤ (|α|+ |ψ|)2#φ = |φ|2#φ

Card(FL(Commiα)) ≤ |α|2#Commiα ≤ |Commiα|2#Commiα

Card(FL(Aiα)) ≤ |α|2#Aiα ≤ |Aiα|2#Aiα

Using induction on α we will prove (ii), (iii) and (iv) simultaneously. By the induction hy-
pothesis we have (i) for all φ′ with length strictly less then φ, and (ii), (iii), (iv) for all α′ with
length strictly less then α. The following inequalities make the induction step for different
formulae.

Card(FL�([a]iψ)) = 1 ≤ |a|2#[a]iψ

Card(FL�([ξ?]iψ)) = 1 + Card(FL(ξ)) ≤
≤ 1 + |ξ|2#ξ ≤ |ξ?|2#[ξ?]iψ

Card(FL�([β ∪ γ]iψ)) ≤ 1 + Card(FL�([β]iψ)) + Card(FL�([γ]iψ)) ≤
≤ 1 + |β|2#[β]iψ + |γ|2#[γ]iψ ≤
≤ (1 + |β|+ |γ|)2#[β∪γ]iψ = |β ∪ γ|2#[β∪γ]iψ

Card(FL�([β;γ]iψ)) ≤ 1 + Card(FL�([β]i[γ]iψ)) + Card(FL�([γ]iψ)) ≤
≤ 1 + |β|2#[β]i[γ]iψ + |γ|2#[γ]iψ ≤
≤ (1 + |β|+ |γ|)2#[β;γ]iψ = |β;γ|2#[β;γ]iψ

Card(FL�([β∗]iψ)) ≤ 1 + Card(FL�([β]i[β
∗]iψ)) ≤

≤ 1 + |β|2#[β]i[β
∗]iψ ≤

≤ (1 + |β|)2#[β∗]iψ = |β∗|2#[β∗]iψ

Card(FL�([cβ]iψ)) = Card(FL�([uβ]iψ)) =
≤ 1 + Card(FL(Commiβ)) ≤
≤ 1 + |β|2#Commiβ ≤
≤ (1 + |β|)2#[cβ]iψ = (1 + |β|)2#[uβ]iψ =

= |cβ|2#[cβ]iψ = |uβ|2#[uβ]iψ

Card(FL(Commia)) = 1 ≤ |a|2#Commia



Card(FL(Commiξ?)) = 1 + Card(FL(ξ)) ≤
≤ 1 + |ξ|2#ξ ≤ |ξ?|2#Commiξ?

Card(FL(Commiβ ∪ γ)) ≤ 1 + Card(FL(Commiβ))+
+ Card(FL(Commiγ)) ≤
≤ 1 + |β|2#Commiβ + |γ|2#Commiγ ≤
≤ (1 + |β|+ |γ|)2#Commiβ∪γ = |β ∪ γ|2#Commiβ∪γ

Card(FL(Commiβ;γ)) ≤ 1 + Card(FL([β]iCommiγ))+
+ Card(FL(Commiβ)) ≤
≤ 1 + Card(FL�([β]iCommiγ))+
+ Card(FL(Commiγ)) + Card(FL(Commiβ)) ≤
≤ 1 + |β|2#[β]iCommiγ+

+ |γ|2#Commiγ + |β|2#Commiβ ≤
≤ (1 + |β|+ |γ|)2#Commiβ;γ = |β;γ|2#Commiβ;γ

Card(FL(Commiβ
∗)) ≤ 1 + Card(FL([β∗]iCommiβ)) ≤
≤ 1 + Card(FL�([β∗]iCommiβ))+
+ Card(FL(Commiβ)) ≤
≤ 1 + |β∗|2#[β∗]iCommiβ+

+ |β|2#Commiβ ≤
≤ (1 + |β|)2#Commiβ

∗
= |β∗|2#Commiβ

∗

Card(FL(Commicβ)) = Card(FL(Commiuβ)) =
≤ 1 + Card(FL(Commiβ)) ≤
≤ 1 + |β|2#Commiβ ≤
≤ (1 + |β|)2#Commicβ = (1 + |β|)2#Commiuβ

The last inequation can be proved similarly.

Definition 13. Let M = 〈S,Q, |=〉 be a (non-standard) model for ADL and Σ a set of
formulae. Define a relation ∼Σ on S by:

s ∼Σ t iff ∀φ ∈ FL(Σ), s |= φ iff t |= φ.

It is in fact an equivalence relation and is used to define a filtration MΣ 
 〈SΣ , QΣ , |=〉 of
M through Σ, where

‖s‖
 {t | s ∼Σ t} and SΣ 
 {‖s‖ | s ∈ S}.

Furthermore, for any atomic action a,

‖s‖QΣi (a)‖t‖ iff ∀[a]iφ ∈ FL(Σ), if s |= [a]iφ then t |= φ,

for any propositional variable p,

‖s‖ |= p iff s |= p and p ∈ FL(Σ),



for any semi-atomic action α,

‖s‖ |= Commiα iff s |= Commiα and Commiα ∈ FL(Σ)
‖s‖ |= Aiα iff s |= Aiα and Aiα ∈ FL(Σ),

for any action α,

‖s‖Qc
i (α)‖t‖ iff ∀[cα]iφ ∈ FL(Σ), if s |= [cα]iφ then t |= φ

‖s‖Qu
i (α)‖t‖ iff ∀[uα]iφ ∈ FL(Σ), if s |= [uα]iφ then t |= φ.

The definition of the truth relation is extended to all formulae and all relations QΣi using
Definitions 1 and 2. This completes the definition of MΣ .

Lemma 14. Let M be a (non-standard) model. Then:
1. M |= Commiα

∗ ↔ [α∗]iCommiα 2. M |= Aiα
∗ ↔ [α∗]iAiα

We need Lemma 14 to prove the following Filtration Lemma.

Lemma 15 (Filtration Lemma). Let Σ be a finite set of formulae.

1. For all φ ∈ FL(Σ), ‖s‖ |= φ iff s |= φ
2. For all [α]iη ∈ FL(Σ),

(a) if sQi(α)t then ‖s‖QΣi (α)‖t‖
(b) if ‖s‖QΣi (α)‖t‖ and s |= [α]iη then t |= η

Proof. We use simultaneous induction on the structure of formulae and actions [12].

φ = ⊥. By the definition of models s 6|= ⊥ and ‖s‖ 6|= ⊥.
φ = p. ‖s‖ |= p iff s |= p by the construction of MΣ .
φ = ξ → η. φ is in FL(Σ), hence, by the properties of FL(Σ), ξ and η belong FL(Σ) too.

Therefore, by the definition of MΣ and the induction hypothesis we have the following
equivalences.

‖s‖ |= ξ → η iff
(‖s‖ |= ξ ⇒ ‖s‖ |= η) iff

(s |= ξ ⇒ s |= η) iff s |= ξ → η

φ = Commiα. In this case we use induction on the structure of α.
α = a. By the definition of MΣ , ‖s‖ |= Commia iff s |= Commia.
α = ξ?. Again, the statement follows from the definition of MΣ .
α = β;γ. By the properties of FL(Σ) we have that Commiβ ∈ FL(Σ) and [β]iCommiγ ∈

FL(Σ). By the induction hypothesis, 1 holds for Commiβ and 2 holds for [β]iCommiγ.
Let ‖s‖ |= Commiα. By the definition ‖s‖ |= Commiβ and ‖s‖ |= [β]iCommiγ.
Hence, by 1, s |= Commiβ. By 2b

s |= [β]iCommiγ ⇒ ∀t(‖s‖QΣi ‖t‖ ⇒ t |= Commiγ)

Let sQi(β)t. Then, by 2a ‖s‖QΣi ‖t‖. Therefore, ‖t‖ |= Commiγ and, by the induction,
t |= Commiγ. Hence, s |= [β]iCommiγ and, therefore, s |= Commiα.
Conversely, let s |= Commiα. Therefore, s |= Commiβ and s |= [β]iCommiγ. By 1
we have ‖s‖ |= Commiβ. Let ‖s‖QΣi ‖t‖. By 2b we have t |= Commiγ and by 1
‖t‖ |= Commiγ, that is ‖s‖ |= [β]iCommiγ.



α = β ∪ γ. By the properties of FL(Σ) we have that Commiβ ∈ FL(Σ) and Commiγ ∈
FL(Σ). By the induction hypothesis, 1 holds for Commiβ and for Commiγ and, in
this case, we get what we want quite easily:

‖s‖ |= Commiα iff
(‖s‖ |= Commiβ or ‖s‖ |= Commiγ) iff

(s |= Commiβ or s |= Commiγ) iff s |= Commiα

α = β∗. By the properties of FL(Σ) we have that [β∗]iCommiβ ∈ FL(Σ). By the in-
duction hypothesis, clause 1 holds for Commiβ and clause 2 holds for [β∗]iCommiβ.
Let ‖s‖ |= Commiα. Then by Lemma 14 ‖s‖ |= [β∗]iCommiβ. Assume sQi(β∗)t,
where t is arbitrary. By clause 2a we have ‖s‖QΣi (β∗)‖t‖. So, ‖t‖ |= Commiβ.
By clause 1, t |= Commiβ. Thus, s |= [β∗]iCommiβ which is equivalent to s |=
Commiβ

∗ by Lemma 14.
Conversely, suppose s |= Commiα. By Lemma 14 we have s |= [β∗]Commiβ. Let
‖s‖QΣi (β∗)‖t‖. By clause 2b, t |= Commiβ. Finally, by clause 2a ‖t‖ |= Commiβ.
Hence ‖s‖ |= [β∗]iCommiβ which is equivalent to ‖s‖ |= Commiβ

∗ by Lemma 14.
α = cβ. By the construction of MΣ (see Definition 2), ‖s‖ |= Commicβ iff ‖s‖ |=

Commiβ which is equivalent to s |= Commiβ by the induction hypothesis. Finally,
s |= Commicβ iff s |= Commiβ by the properties of nonstandard models.

α = uβ. Again, by the construction of MΣ (see Definition 2), ‖s‖ |= Commiuβ iff ‖s‖ 6|=
Commiβ which is equivalent to s 6|= Commiβ by the induction hypothesis. The latter
is equivalent to s |= Commiuβ.

φ = Aiα. In this case we again use induction on the length of action α. Cases α = a, α = ξ?,
α = β ∪ γ, α = β;γ, α = β∗ can be proved as in the case φ = Commiα.
The rest cases α = cβ and α = uβ are obvious because M |= Aicβ and M |= Aiuβ in
any (nonstandard) model M .

φ = [α]iη. For the proof of 1 refer to e.g. [8, 12]. We use the induction hypothesis for α and
η. By the properties of FL(Σ), η ∈ FL(Σ). By the induction hypothesis, 1 holds for η
and 2 holds for [α]iη. Thus, we have

s |= [α]iη ⇒ ∀t(‖s‖Q
Σ
i (α)‖t‖ ⇒ t |= η)

Conversely,

∀t(‖s‖QΣi (α)‖t‖ ⇒ t |= η)⇒
∀t(sQi(α)t⇒ t |= η)⇒ s |= [α]iη

Thus, using induction hypothesis ‖t‖ |= η iff t |= η, we get

‖s‖ |= [α]i iff

∀t(‖s‖QΣi (α)‖t‖ ⇒ ‖t‖ |= η) iff

∀t(‖s‖QΣi (α)‖t‖ ⇒ t |= η) iff s |= [α]iη

To prove 2 we use the induction on the structure of α.
α = a. First, we prove 2a. Let sQi(a)t. Fix arbitrary [a]iξ from FL(Σ) such that s |= [a]iξ.

By the properties of (nonstandard) models, we have t |= ξ. Hence, by the definition of
QΣi (a), ‖s‖QΣi (a)‖t‖.
To prove 2b suppose that ‖s‖QΣi ‖t‖. By the definition of Qσi , it means that for all [a]iξ
from FL(Σ) if s |= [a]iξ then t |= ξ. Therefore, this also holds for [a]iη.



α = ξ?. As we have ξ ∈ FL(Σ), 1 holds for ξ. We obtain:

sQi(ξ?)s iff s |= ξ iff ‖s‖ |= ξ iff ‖s‖QΣi (ξ?)‖s‖

Thus, 2 trivially holds for [ξ?]iη.
α = β;γ. By the properties of FL(Σ) we have [β]i[γ]iη ∈ FL(Σ) and [γ]iη ∈ FL(Σ).

Thus, 2a holds for β and γ. Then 2a follows immediately:

sQi(β;γ)t iff
∃u sQi(β)uQi(γ)t⇒

∃‖u‖ ‖s‖QΣi (β)‖u‖QΣi (γ)‖t‖ iff ‖s‖QΣi (β;γ)‖t‖

Further, by the induction hypothesis 2b holds for [β]i[γ]iη and [γ]iη. Suppose that
‖s‖QΣi (β;γ)‖t‖ and s |= [β;γ]iη. Then there exists ‖u‖ from SΣ such that ‖s‖QΣi (β)‖u‖QΣi (γ)‖t‖
and s |= [β]i[γ]iη. Therefore, by 2b for β we have ‖u‖QΣi (γ)‖t‖ and u |= [γ]iη, and,
finally, by 2b for γ, t |= η.

α = β ∪ γ. By the properties of FL(Σ) we have [β]iη ∈ FL(Σ) and [γ]iη ∈ FL(Σ).
Thus, 2a holds for β and γ. Then

sQi(β ∪ γ)t iff
sQi(β)t or sQi(γ)t⇒

‖s‖QΣi (β)‖t‖ or ‖s‖QΣi (γ)‖t‖ iff ‖s‖QΣi (β ∪ γ)‖t‖

By the induction hypothesis 2b holds for [β]iη and [γ]iη. Suppose that ‖s‖QΣi (β∪γ)‖t‖
and s |= [β ∪ γ]iη. From the first assumption we have ‖s‖QΣi (β)‖t‖ or ‖s‖QΣi (γ)‖t‖,
and from the second one s |= [β]iη and s |= [γ]iη. Therefore, by 2b we have t |= η.

α = β∗. Suppose sQ(β∗)t. Let

E 
 {u ∈ S | ‖s‖QΣi (β)‖u‖}.

Then ‖s‖QΣi (β)‖t‖ is equivalent to t ∈ E.
Each equivalence class ‖u‖ can be completely defined by a set Ψ(‖u‖) of formulae from
FL(Σ) which are true in each state from this class. Thus, because FL(Σ) is finite each
‖u‖ can be defined by a formula ψ(‖u‖) which is the conjunction of formulae from
Ψ(‖u‖) and negotiations of formulae from FL(Σ) \ Ψ(‖u‖). That is, ψ(‖u‖) is true in
all states from ‖u‖ and false in all other states of M . Therefore, there is a formula
ψ(E) defining E in M because E is a union of equivalence classes. The formula ψ(E)
is a disjunction of formulae ψ(‖u‖) for each ‖u‖ ⊆ E.
By the definition of Qi(β∗), ‖s‖QΣi (β∗)‖s‖, and, therefore, s ∈ E.
Let u ∈ E and uQi(β)v. Then, we have ‖s‖QΣi (β)‖u‖ by the definition of E and
‖u‖QΣi (β)‖v‖ by the induction hypothesis. Therefore, ‖s‖QΣi (β)‖v‖, that is v ∈ E.
Thus, u ∈ E and uQi(β)v implies v ∈ E. Because E is formula definable this is
equivalent to

M |= ψ(E)→ [β]iψ(E).

By the loop invariance rule (which is easily derivable in ADL using the axiom A2.6)

M |= ψ(E)→ [β∗]iψ(E).



By assumption sQ(β∗)t, and s ∈ E, therefore, t ∈ E, that is ‖s‖QΣi (β)‖t‖. This
completes the induction step for 2a in this case.
For 2b suppose ‖s‖QΣi (β∗)‖t‖ and s |= [β∗]iη. Then there exists t0, . . . , tn such that
s = t0, t = tn and ‖ti‖QΣi (β)‖ti+1‖ for 0 ≤ i < n. We have t0 = s |= [β∗]iη by
assumption. Then, t0 |= [β]i[β

∗]iη. The formula [β]i[β
∗]iη is in FL(Σ), so by the

induction for it we have t1 |= [β∗]iη. Continuing for n steps, we get t = tn |= [β∗]iη.
Thus, t |= η.

α = cβ. Taking into account M |= [cβ]iCommiβ we have

sQi(cβ)t⇒
∀[β]iη(s |= [cβ]iη ⇒ t |= η) & t |= Commiβ ⇒

∀[β]iη ∈ FL(Σ) (s |= [cβ]iη ⇒ t |= η) & t |= Commiβ iff
‖s‖Qc

i (β)‖t‖ & t |= Commiβ iff

‖s‖Qc
i (β)‖t‖ & ‖t‖ |= Commiβ iff ‖s‖QΣi (cβ)‖t‖

Now we prove 2b. Let s |= [cβ]iη and ‖s‖QΣi (cβ)‖t‖.

‖s‖QΣi (cβ)‖t‖ iff
‖s‖Qc

i (β)‖t‖ & ‖t‖ |= Commiβ ⇒
∀[cβ]iη ∈ FL(Σ)(s |= [cβ]iη ⇒ t |= η)

Thus, t |= η.
α = uβ. The proof is similar to that of the previous item.

As in the case of standard modal logics the Filtration Lemma has a few useful conse-
quences.

Theorem 16 (Small Model Theorem). Let φ be a formula, n = |φ|2#φ, and m be a
number of different knowledge modalities in φ. If φ is satisfiable in some ADL-model then it
is satisfiable in some finite ADL-model with no more than 2n · (22n)m states.

Proof. To proof the theorem we modify the definition of the filtrated model.
Let Σ be a finite set of formulae and Ki1 , . . . ,Kim be all knowledge modalities occurred

in formulae from FL(Σ). For any s in M we denote by Σ(s) [9] the set {φ ∈ FL(Σ) | s |= φ}.
First, we add the following conditions to the definition of FL-closed set X:

(FL17) if Kiφ ∈ X then φ ∈ X;
(FL18) if Wiφ ∈ X then φ ∈ X.

Second, we restrict equivalence relation ∼Σ in the following way:

s ∼Σ t iff Σ(s) = Σ(t) and ∀j = 1, . . . ,m {Σ(u) | sRK
ij u} = {Σ(u) | tRK

ij u}.

It is easy to see that any equivalence class ‖s‖ is uniquely determined by the tuple of sets

〈Σ(s), {Σ(u) | sRK
i1u}, . . . , {Σ(u) | sRK

imu}〉.

If n = CardFL(Σ), then we have 2n possibilities for Σ(s) and 22n possibilities for {Σ(u) |
sRK

ij
u}. Thus, we obtain CardSΣ ≤ 2n · (22n)m. Therefore, if Σ = {φ}, then CardSΣ ≤

2N · (22N )m by Lemma 12.



Third, we use the least filtration of M that is the relations on the MΣ are defined by the
following.

For any atomic action a,

QΣi (a) 
 {(‖s‖, ‖t‖) | ∃s′ ∈ ‖s‖ ∃t′ ∈ ‖t‖ (s′Qit′)},

(RK
i )Σ 


{
{(‖s‖, ‖t‖) | ∃s′ ∈ ‖s‖ ∃t′ ∈ ‖t‖ (s′RK

i t
′)}, if i ∈ {i1, . . . , im}

IdSΣ , otherwise,

(RW
i )Σ 
 {(‖s‖, ‖t‖) | ∃s′ ∈ ‖s‖ ∃t′ ∈ ‖t‖ (s′RW

i t′)},

for any action α,

Qc
i (α) 
 {(‖s‖, ‖t‖) | ∃s′ ∈ ‖s‖ ∃t′ ∈ ‖t‖ (s′Qi(cα)t′)},

Qu
i (α) 
 {(‖s‖, ‖t‖) | ∃s′ ∈ ‖s‖ ∃t′ ∈ ‖t‖ (s′Qi(uα)t′)}.

Next, it is now possible to prove Filtration Lemma within these definitions using the
induction on the length of formulae as usual. The new is the case φ = Kiψ which can be
proved as follows.

Let Kiψ ∈ FL(Σ). Therefore, Ki is one of the Ki1 , . . . ,Kim and ψ ∈ FL(Σ). Let ‖s‖ |=
Kiψ and sRK

i t. By the construction of the model, ‖s‖(RK
i )Σ‖t‖ and, thus, ‖t‖ |= ψ. By the

induction hypothesis, t |= ψ that means s |= Kiψ.
For the converse assume that s |= Kiψ and ‖s‖(RK

i )Σ‖t‖. Hence, s′RK
i t
′ for some s′ ∈ ‖s‖

and t′ ∈ ‖t‖. By the definition of ∼Σ , there exists t′′ such that sKit
′′ and

∀φ ∈ FL(Σ) t′′ |= φ iff t′ |= φ.

Therefore, t′′ |= ψ and, consequently, t′ |= ψ. By the induction hypothesis we obtain ‖t‖ |= ψ
and, therefore, ‖s‖ |= Kiψ by the definition of the model.

The following lemma completes the proof of the theorem.

Lemma 1. All (RK
i )Σ are equivalence relations on SΣ.

Proof. The trivial case is when Ki does not occur in any formula of FL(Σ). For the otherwise
we refer to the proof of Proposition 12.5 in [9].

Theorem 17 (Completeness). ADL is complete with respect to the class of all ADL-models.

Proof. Suppose φ is not derivable in ADL. Then the set {¬φ} is ADL-consistent. Thus, ¬φ is
satisfiable in some non-standard model by Theorem 7. By the Filtration Lemma (Lemma 15),
¬φ is satisfiable in the model filtrated through FL(¬φ). This filtrated model is standard by
construction.

Theorem 18 (Decidability). ADL is decidable.

Proof. Applying the Small Model Theorem, we can test the satisfiability of a formula φ by
enumerating all ADL-models with no more than 2|φ|2

#φ
states (there are only finitely many)

and test the satisfiability of φ in each of these.



4.3 Embedding into CPDL

In order to establish an upper bound for the complexity of ADL we will now exhibit an
embedding of ADL into converse propositional dynamic logic (CPDL).

The key to reducing ADL-(un)satisfiability to CPDL-(un)satisfiability is to find a suitable
renaming of certain subformula occurrences. In our reduction there is a unique association
between each pair 〈i, a〉 (where a is an atomic action) and an atomic action ai. Now, associate
with any i from Ag unique atomic actions bKi and bWi which differ from all the ai above.
Also, associate with any pair 〈i, α〉, where α is an arbitrary action, unique atomic actions cαi
and dαi .

Now a suitable reduction is a mapping σ of formulae, which uses an auxiliary mapping
σi of actions (i ∈ Ag), and is defined to satisfy the following conditions (using simultaneous
induction on the structure of formulae and actions).

σ⊥
 ⊥ σp
 p σ(φ→ ψ)
 σφ→ σψ

σWiφ
 [bWi ]σφ σKiφ
 [(bKi ∪ (bKi )−1)∗]σφ
σ[α]iφ
 [σiα]σφ σia
 ai

σiα ∪ β 
 σiα ∪ σiβ σiα;β 
 σiα;σiβ
σi(α∗)
 (σiα)∗ σi(φ?)
 (σφ)?
σi(cα)
 cαi ;(σCommiα)? σi(uα)
 dαi ;(¬σCommiα)?
σAia
 pai σCommia
 qai

σAiφ?
 pφ?
i σCommiφ?
 qφ?

i

σAicα
 > σCommicα
 σCommiα

σAiuα
 > σCommiuα
 ¬σCommiα

σAiα
∗ 
 [σiα∗]σAiα σCommiα

∗ 
 [σiα∗]σCommiα

σAiα ∪ β 
 σAiα ∨ σAiβ σCommiα ∪ β 
 σCommiα ∨ σCommiβ

σAiα;β 
 σAiα ∧ σ[α]iAiβ σCommiα;β 
 σCommiα ∧ σ[α]iCommiβ

Taking into account the completeness theorems for CPDL and ADL, and the model corre-
spondence for these logics we obtain the following result.

Theorem 19. Let φ be any ADL-formula. Then: 1. ADL ` φ iff CPDL ` σφ, and 2. σφ can
be computed in exponential time.

It is well-known that the satisfiability problem for CPDL and PDL are EXPTIME-complete [12].
Because ADL contains PDL as a sublogic, we have:

Theorem 20. ADL is EXPTIME-hard.

By Theorem 19:

Theorem 21. The satisfiability problem for ADL-formulae is in 2EXPTIME.

It is interesting to note that the above translation of ADL into CPDL can also be used to
give a syntactic proof of the soundness and completeness of ADL.



5 Conclusion

In this paper we applied logical tools from modal logic to develop a sound, complete and
decidable formalisation of the informational and motivational attitudes of dynamic agents.
Despite the decidability result for ADL, the standard decision procedure which follows from
small model theorem is very expensive and thus useless as a practical reasoning method for
this logic. Therefore, a primary task of future research is the development of effective proof
methods for ADL.

As we have a translation ADL into CPDL one could exploit existing decision procedures
for CPDL. Recently, a tableaux calculus was proposed for CPDL [5], on the basis of which a
decision procedure can be developed. Unfortunately, as yet no implementation is available for
this calculus. Until an implementation is available, it is possible to use existing PDL provers
by using an encoding [4] of CPDL-satisfiability in PDL. Although this translation has only
polynomial complexity, the increase in complexity is too high with respect to the length of the
given formula so that this method is impractical for large formulae. If we find an improved
method for encoding CPDL in PDL then it seems possible to use for ADL the decision methods
developed for PDL by [18, 19]. However we do not know of any implementation of a prover
for PDL with the test operator. In an application where we could make do without the test
operator it is possible to apply available implementations of decision procedures developed
for expressive description logics [1], for example, the DLP prover [17] would be a suitable
candidate. It may be possible to extend the language and implementations of description
logic provers that already include operators corresponding to the action forming operators ∪,
; and ∗ with the test operator.

The ∗-free fragment of ADL can also be embedded into CPDL, which means decision
procedures for PDL are applicable in this case, too. More interestingly, the ∗-free fragment of
ADL can be translated into first order logic (along the lines as discussed in [6], for example)
and, hence, powerful automated proof methods developed for first order logic can be applied
to the satisfiability problem in this fragment.

This shows there are many ways of going about the future development of an implemented
reasoning system for ADL. First of all, it will be useful to provide an implementation of the
CPDL tableaux method of [5]. Second, it might be useful to develop inference calculi for ADL
directly. For instance, it may be more practical to extend decision procedures for PDL with
rules for the additional operators of ADL, thereby avoiding the overhead of the translation
via CPDL into PDL. In this respect it seems also useful to develop tableaux methods and pure
Gentzen-type cut-free calculi for ADL.

A question left unanswered in this paper is the exact complexity of the satisfiability
problem for ADL. Our lower and upper bounds for the complexity leave a wide gap. In
particular, the question is, does ADL have the same complexity as PDL and CPDL, is it
NEXPTIME-complete, is it EXPSPACE-complete, or does it belong to 2EXPTIME?

Further, it is of interest how far ADL can be enhanced as a modal logic (or otherwise)
without loosing the properties of soundness, completeness and decidability. Of particular
interest is what happens if interaction axioms like the following are added.

Commiα→ KiCommiα [α]iKiφ→ Ki[α]iφ Ki[α]iφ→ [α]iKiφ

These axioms are natural and important in applications. The first axiom expresses that an
agent always knows her commitments, while the second axiom says that an agent knows the
result of her action in advance if it is contained in her knowledge base, in other words, there



is no learning. The last axiom expresses persistence of knowledge after the execution of an
action, that is, perfect recall. Ultimately one would like to accommodate more features of
real agents, for example, the notions of goals and the implementability of actions from the
KARO framework [15, 24], or also notions like belief and intentions from other formalisations
of motivational attitudes [3, 21]. It should be noted that adding beliefs, which are commonly
modelled by KD45 modalities, poses no technical problems. It is not difficult to extend the
results of this paper to hold also for ADL with KD45 modalities.
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