A Decidable Dynamic Logic for Agents with Motivational
Attitudes*

Renate A. Schmidt and Dmitry Tishkovsky

Department of Computer Science, University of Manchester
Manchester M13 9PL, United Kingdom, {schmidt,dmitry}@cs.man.ac.uk

Abstract. The present paper defines a multi-modal logic for modelling and verifying the be-
haviour of intelligent and rational agents. The agents can perform actions, can reason about
their own knowledge and their motivational attitudes. We give a Hilbert-style axiomatisation
which is proved sound and complete with respect to a Kripke-style semantics. We also show the
small model property, decidability, and give lower and upper bounds for the complexity of the
satisfiability problem in the logic.

1 Introduction

Modal and temporal logics are popular for modelling agent systems. Among the more well-
known agent formalisms with a modal or temporal flavour are the BDI model [18,20], the
KARO framework [13, 22], and temporal logics of knowledge and belief [7—9]. Examples of more
recent work includes the proposal of a modal logic framework of belief and change in [12], and
an epistemic dynamic logic in [11]. Such theories are meant to formalise the representation
and reasoning about various aspects of the behaviour and mental attitudes of agents as well
as the state of the environment the agents live in.

The present paper is very much based on the work of Meyer, van der Hoek and van
Linder [13,22] who have proposed a powerful agent theory, called the KARO framework. This
framework develops an approach based on propositional dynamic logic for describing and
reasoning about the actions of agents. Enriched by additional modal operators for the agents’
knowledge, their wishes and goals, and operators for the agents’ abilities and commitments,
KARO provides a very expressive framework in which the informational and motivational
attitudes of agents can be modelled. The informational attitudes include the agents’ knowledge
and beliefs. An agent’s motivational attitudes determine her willingness or unwillingness to
commit to actions in order to fulfil her wishes and goals. Commitments can be considered as
representations of the agents’ duties, that is, actions which agents must perform sooner or
later. The formalisation of the motivational attitudes of agents has been a main contribution
of the KARO framework [13, 22].

KARO is a purely semantic framework. Although it can be seen to incorporate deter-
ministic propositional dynamic logic, at this moment it not known whether the whole of
KARO can be formalised as a logical systems. This paper is an attempt to address this issue.
Because KARO contains some sophisticated operators for managing the agents’ goals and
commitments, KARO is not directly expressible in (propositional) modal logic. This prevents
us from using the powerful techniques developed in the field of modal logic. Our approach has
been to omit some operators from KARO and try to give a modal logic axiomatisation which

* The authors thank Clare Dixon, Michael Fisher, Ullrich Hustadt and Wiebe van der Hoek for valuable
discussions, and the referees for useful remarks. This research is supported by EPSRC Research Grant
GR/MS88761.

characterises the properties of the remaining operators. Although this necessarily reduces the
expressivity of the logic, we obtain a logic with a sound and complete axiomatisation, and
some other nice properties. For example, the logic is shown to be decidable, which is obviously
an important property for an agent logic if it is to be used in practice. Moreover, we believe
the logic remains expressive enough to be useful in applications. From a technical point of
view, as our results suggest, the logic is at least as expressive and complex as propositional
dynamic logic and also converse propositional dynamic logic.

The logic introduced in this paper is called agent dynamic logic (ADL). As in the KARO
framework, in ADL the dynamic activities of agents are formulated in a propositional dynamic
logic (PDL). This formalises the specification of the results of the agents’ actions. For example,
[a],¢ says property ¢ holds always after agent i has performed the action a. ADL also allows
for the definition of the opportunity ((c);T) and ability to perform actions (A;«). In order
to describe formally the commitments of an agent the ADL logic has a static commitment
constructor which states the commitment of an agent to an action (Comm;«), and two
dynamic constructors which represent the actions of committing or undoing a commitment
(ca and ua).

To illustrate the capabilities of the ADL-operators consider the scenario of an examination
situation for two agents, a teacher ¢ and a student s.

— A,give_task represents that ‘the teacher is able to give a task to the student’.
(give_task), T represents that ‘the teacher has an opportunity to give a task’.

— (perform_task) T represents that ‘the student has an opportunity to perform the task’.
[give_task|, K ;Comm,perform task represents that ‘the student knows he is committed
to performing the task whenever it is given by the teacher’.

The last formula gives an example of a contract agreement between the two agents, which
suggests a potential area of application for ADL. Although this example is rather primitive,
we believe that it is possible to formally describe legal contracts in terms of the ADL language,
and then to use the logic for analysis and verification purposes.

The specification of teamwork might be another use for ADL. In the development of a
complex project, for instance, the duties of the individual developers are usually fixed at
the outset. So, if we can formally represent the duties and abilities of the developers in the
team, as well as the goals of the project then we can reason about the stages during project
development and their interdependencies. (In the setting of this paper the wishes of agents
may be regarded as first approximations of the goals of agents.) On the other hand, as soon as
an optimal sequence of development has been determined one can assign tasks to developers
and fix conditions of teamwork such that the optimum can be realised. Further examples
and discussion of the fundamental nature of commitments, abilities and wishes can be found
in [13,22].

The ADL logic and the KARO framework are similar in many respects but there are some
important differences. First, in order to reason about actions KARO extends the strictly de-
terministic version of PDL with deterministic ‘while’ and ‘if’ action constructors while ADL
uses non-deterministic PDL with the test operator. We did not want to constrain ourselves
to the more narrow language if decidability or other good properties are not lost in the non-
deterministic case. Non-determinism is a natural property in real world applications as it
allows the exploration of alternative paths of execution of actions. Therefore, ADL cannot be
reduced to KARQO, at least, not in a straightforward way. Second, some of the KARO-operators
are not included in ADL. This concerns the operators for representing goals, making choices,

and an implementability operator. Although the first two operators could be added to ADL
in future, it is not clear how best to handle the planning element of the implementability op-
erator which involves quantifying over atomic actions. This shows there is no straightforward
translation of KARO into ADL. Third, as mentioned above, full KARO is defined only by its
semantics whereas ADL is a logic with both semantics and Hilbert-style axiomatisation. This
means, because ADL has a purely relational semantics, almost all what is known in modal logic
can be applied to ADL. Finally, one of the main features of ADL, distinguishing it from KARO,
is the treatment of the abilities and commitments with respect to non-determinism. Our def-
inition is an attempt to merge the ‘internal’ (angelic) and ‘external’ (demonic) approaches
considered by [21] for the ability operator, which can be seen from comparing the defining
axioms and the desirable properties identified in [21, Theorems 4 and 9]. Our approach does
not lead to inconsistency because we establish ADL is sound.

Despite the many difference, ADL and KARO have some common properties. In construct-
ing ADL, it was our intention to keep most of the important properties of agents which are
discussed and formalised in the KARO framework, possibly, slightly modifying them. For
example, the following properties of KARO are also true in ADL.

(ca),T < (ca);,Comm;a Comm,;while(¢, a) A K;¢p — Comm;(¢7;a;while(¢, o))

The structure of the paper is as follows. Sections 2 and 3 give an axiomatisation and define
a Kripke-style semantics for the logic ADL. Soundness is proved in Section 3. In Section 4
we analyse the properties of ADL and show completeness with respect to standard and non-
standard models, the small model property, decidability and discuss the complexity of ADL.

2 Axiomatisation of ADL

The language L of the logic ADL considered in this paper is defined over the following primitive
types: a countable set Var = {p, ¢,r,...} of propositional variables, a countable set AtAc =
{a,b,c,...} of atomic action variables, and a finite set Ag of agents. £ is constructed over
the usual Boolean connectives, — and L, the standard PDL connectives, U, ;, *, ? and [_],,
where i denotes any agent, and modal connectives K; (for knowledge) and W; (for wishes).
In addition, there are four unary operations on actions, A; (for ‘has the ability to perform’),
Comm); (for ‘committed to’), ¢ (for ‘commit to’) and u (for ‘uncommit’). The former two
are formula forming, and the latter two are action forming. The set For of formulae and the
set Ac of actions in £ are the smallest sets that satisfy the following conditions (i € Ag).

— AtAc C Ac, VarU {1} C For.
— If ¢ € For and «, 8 € Ac then ¢7,a*, ca,ua,a U [, ;0 € Ac.
— If ¢,9 € For, o € Ac then ¢ — 9, K;¢0, W;0, [a],¢, A;or, Comm;o € For.

As usual we use the following abbreviations: —¢ for ¢ — 1L, ¢ V ¢ for =¢ — 9, ¢ A ¢ for
(= V), (a);6 for —[a];~¢, and ¢ < ¢ for (¢ —) A (b — ¢).

By definition, an atomic action is an action variable, and a semi-atomic action is an
atomic action or a test ¢7 action.

ADL is a combination of PDL, S5, and K with some extra axioms for the ability and
commitment operators. Formally, the axioms of ADL are:

Al. All classical tautologies over £

A2. The PDL axioms (see [14]) for each [a], (o € Ac, i € Ag):

i

L [a]i(¢ = ¢) = (la];¢ — [a;9) 5. [a*],¢ — [al;[a*];¢
2. [aU ;¢ < [o;0 A [B;0 6. oA [a*],(¢ — [a,0) — [a*];¢
3. ;0] < [o];[8li¢ 7. [07) = (9 —)
4. [a"];0 — ¢ A a];0
A3. The S5 axioms for each K; (i € Ag):
L Ki(¢ —) — (Ki¢p — Kiv)) 3. Kip — ¢
2. Ki¢ — KiKio 4. K¢ — K;-K;o

A4. The K axiom for each W; (i € Ag):
Wi(¢ — ¢) = (Wip — Wiy))
A5. The following axioms for each A; (i € Ag):
1. AjaUpB «— AaV AL 3. Aja* — Aja A [a A0
2. Aja;f = Aja N o, A8 4. Aja AN [a*];(Ajo — [of ;A

i iOé) — AZ'Oé*
The first axiom of the last group expresses the fact that to be able to perform a non-
deterministic choice of two actions is exactly the same as to be able to do the first action or
to be able to do the second one. The other three axioms of this group express the persistence
and sequential behaviour of the agents’ abilities.

A similar group of axioms for the static commitment operators, Comm,; (i € Ag), are:

A6. 1. Comm;a U («— Comm;a vV Comm;[
2. Comm;q; «— Comm,;a A [o),Comm;[3
3. Comm;a* — Comm;a A [o),Comm;a*
4. Comm;a A [@*],(Comm;a — [a],Comm;a) — Comm;a*

The axioms for the dynamic commit and uncommit operators, ¢ and u, are:

A7. 1. [ca),Comm;a 4. Aua
2. [ua],~Comm,;a 5. Comm,;ca +— Comm;«
3. Ajca 6. Comm;ua +— ~Comm;«

The first two axioms express that an agent cannot be uncommitted after committing to an
action and, vice versa, cannot be committed just after uncommitting. The axioms 3 and 4 say
that any agent is always able to perform actions of committing and uncommitting. The last
two axioms are forms of simplification to being committed. They say that to be committed
to (un)committing to an action is exactly the same as to be (un)committed to this action.

The inference rules of ADL are modus ponens for formulae, ¢,¢ — 1 F %, and the
necessitation rules for the modal connectives,

ot la,6, oFK;p, and ¢F W;p, for any action o and agent 1.

Let L be any logic in the language £ and I' U {¢} is a set of formulae. We will write
I' b ¢ if ¢ is deducible (in usual sense) by modus ponens and the above necessitation rules
from I" and substitution instances of the axioms of L. We will also write L F ¢ if () -7, ¢.

3 Semantics

The semantics of our agent dynamic logic is defined in the familiar Kripke-style where models
are defined over relational structures called frames. We define an ADL-frame to be a tuple

= <S7 Qi7R7,1<)R?}V’Ai)commi)vaQy%GAg?

of a non-empty set S of states, families of functions @; from the set AtAc into 52, families
of binary relations RYY on S, families of equivalence relations R¥ on S, families of functions
A; and Comm,; from the set of semi-atomic action into the set of subsets of S, and families
of functions Q) and Q7' from the set of all actions into the set of binary relations on S.

For any set S, by Idg we denote the identity relation on S, i.e. the relation {(s,s) | s € S}.
R o R’ denotes the relational composition of two relations R and R’, and R* denotes the
reflexive transitive closure of R.

Definition 1. For some action terms a and [let the relations Q;(«), Q;(3) and sets A;(«),
Ai(B), Commj(a), Comm;(3) be given. Define the @Q;, A;, and Comm; on complex terms
by:

= Comm,(a) N {s |Vt € S(sQi(a)t =t € Comm;(3))}
= Comm;(a) N{s | Vt,u € S (sQ;(a”)t & t € Comm;(a) =
(tQi(a)u = u € Comm;(a)))}
Commi(ca) = Comm;(a) Comm;(ua) = S\ Comm,(c)
Qi(ua) = Q'(a) o Ids\ comm; () Qi(ca) = Qf (@) o ldcomm;(a)

An example of a frame is a tuple Fy in which S = {s}, Q;(a) = RK = RV = {(s,5)},
Ai(a) = Comm;(a) = S, and Qf (o) = Q¥ () =0

Comm;(c;3

Qi(aU B) = Qi(a) UQi(B) Qi(a;8) = Qi(a) 0 Qi()
Qi(a”) = (Qi(a))" Ai(au B) = Ai(a) U 4i(B)
Ai(a;f) = Ai(a) N{s |Vt € S(sQi(a)t =t € Ai(B))}
Ai(a”) = Ai(a) N{s | Vt,u € S (sQi(a*)t &t € A;(a) = (tQi(a)u = u € A;j(a)))}
Ai(ca) = S Aij(ua) = S
Comm;(a U B) = Comm;(a) U Comm; ()

)
)

Comm;(a*

Definition 2. An ADL-model M is any tuple (F, V), where F'is a frame and V' is a function,
mapping each propositional variable p to some subset V' (p) of the set of states of F. V extends
to the set of all formulae in the expected way, namely, using induction on the structure of a
formula ¢ define V(¢) by:

V(L V(o —=¢) = (S\V(9) UV(¢)

)=

V(K;¢p) = {5 | Vi(sREt =t € V(¢))}
V(Wig) = {5 | ¥H(sRt =t € V(9))}
V(led;¢) = {s | Vi(sQi(a)t =t € V())}
V(Aia) = Ai(a) V(Comm;a) = Comm,(a)
Q;(«) is defined by induction on the structure of a: 1. If &« € AtAc then Q;(a) = Q;(a). If
a = 97 for some formula 9, then Q;(¥?) = {(t,t) |t € V(¢)}. 2. f « = BU~, a = By,
a =% a=cfor a=uf then Q;(3), Qi(7), Comm;(3), Comm;(vy) are defined, and Q;(«)
is as given in Definition 1.

A;(a) and Comm;(«) are defined by induction on the structure of a:: For any semi-atomic
action «, A;(a) and Comm;(«) are defined in the frame, or otherwise, the specification is as
in Definition 1.

As usual, we write M,s |= ¢ (or just s = ¢) iff s € V(¢) in M, and M = ¢ iff M,s = ¢
for all s in M. For any class of models K and any set of formulae I" U {¢} we write I" Fx ¢
ifvM e K (Vyel M E~) = M E ¢). Alogic L is sound with respect to some class K
of models if for any formula ¢ L F ¢ implies that M |= ¢ for any model M from K. L is
complete with respect to class K of models if the backward implication holds, i.e. if M |= ¢
for any model M from K then L F ¢. L is strongly complete with respect to K if I' g ¢
implies I' b1, ¢ for any set of formulae I" U {¢}.

Consider My = (Fp, V), where Fj is the frame defined above, and Vj(p) = {s} for any
propositional variable p. It is not difficult to check that M, is an ADL-model.

From the above definition each model M can be viewed as a tuple

<S7 in RF: R7,VV7):>iEAg7

where S, Q);, RZK and RZW are defined as above, and = is a truth relation on S x For.
As usual the following soundness theorem can be shown.

Theorem 3 (Soundness). ADL is sound with respect to the class of all ADL-models.

4 Properties of ADL

In this section, we apply standard techniques of modal logic for constructing canonical models
and filtrations (cf. e.g. [2, 10]) to prove completeness and decidability results for ADL. We skip
all the standard details and state only definitions and results.

4.1 Completeness with respect to non-standard models

To begin with, recall canonical models are built from maximally consistent sets of formulae.
A mazimal consistent set (MCS) is a consistent set I" of formulae such that I" includes all
theorems of ADL, and any superset of I is inconsistent. Any consistent set of ADL-formulae
can be extended to a MCS in a standard way.

Let S be the set of all MCSs. We define the appropriate relations on S by the following
equivalences:

sREt iff VK;pes, pet SRVt iff VW;pes, pet
sQi(a)t iff V[a|,p€s, gt sEo¢ iff pes
The model M = (S, Q;, RX, RV, =) thus obtained is the canonical model of ADL.

Lemma 4 (Existence Lemma). For any state s € S and any formula ¢

1. if -K;—¢ € s then 3t € S (sREXt & ¢ € 1)
2. if “W;—¢ € s then 3t € S (sRWVt & ¢ € 1)
3. if (a),¢ € s then 3t € S (sQ;(a)t & ¢ € 1)

Lemma 5.

RX is an equivalence relation
s = Comm;a whenever tQ;(ca)s for some t € S
s = Comm;a whenever tQ;(ua)s for some t € S

- Qi(aUf) = Qi(a) UQi(B)

Ll

Qi(:B) = Qi(a) 0 Qi(f)

s = [a"];0iff s = ¢ A o] [0"];0

s la"];0iff s = o A fa*] (¢ — [a];0),

s E Comm;a U S iff s = Comm;a V Comm,;/[3
9. s = Comm,;o;f3 iff s = Comm;a A [a],Comm,;[3

10. s = Comm;a* iff s = Comm;a A [a*],(Comm;a — [o],Comm;a)

11. s F Comm;ca iff s = Comm;«

12. s = Comm;u iff s = Comm;a

13. sEAjaUupiff s = AjaV AB

14. s = A B iff s |= Aja A [a] ;A8

15. s |= A iff s = Aja A [of];(Aja — [a],A0)

16. s = Ajcaforall se S

17. s = Ajua for all s € S

Sl B

Unfortunately, the canonical model does not satisfy the property Q;(a*) = (Q;(«))*, and
is thus not a standard model for ADL in the sense of Definition 2. Any model which satisfies
all the properties of Lemma 5 will be called a non-standard model.

Using Lemmas 4 and 5 we can prove that the truth relation in the canonical model
is defined correctly in the sense of Definition 2. Thus, as for standard modal logics, the
completeness of ADL with respect to M follows from the definition of M.

Theorem 6. ADL is complete with respect to its canonical model.

Theorem 7. ADL is strongly complete with respect to the class of all non-standard ADL-
models.

It is worth remarking that strong completeness of ADL without the % operator can be
obtained by an analogous argument, because the canonical model M is a standard model in
this restricted language.

Theorem 8. The *-free fragment of ADL is strongly complete with respect to the class of
all ADL-models.

4.2 Decidability and completeness with respect to standard models

For simplicity, we will consider ADL without operators K; and W;, because if we obtain a
completeness theorem and the finite model property for this fragment, then the full ADL will
possess these properties because of a well-known preservation property of fusions of modal
logics [23, Theorem 2.6].

Definition 9. A set X of formulae is FL-closed if it satisfies the following properties for any
1 € Ag:

FL1) if ¢ — ¥ € X then ¢,¢ € X
if

(

(FL2) if [0 U 5];¢ € X then [a];, [f];0 € X
(FL3) if [0;0];¢ € X then [a];[f];0 € X
(FL4) if [a*];¢ € X then [a],[a*],¢p € X
(FL5) if [¢7],40 € X then ¢ — ¢ € X

(FL6) if [cal,¢ € X then Comm,o € X
(FL7) if [ua;¢ € X then Comm;a € X

(FL8) if [a],¢ € X then ¢ € X

(FL9) if Comm;a U € X then Comm;a, Comm;5 € X
(FL10) if Comm;a;5 € X then Comm;a, [o),Comm;f € X
(FL11) if Comm;a* € X then [o*],Comm;a € X

(FL12) if Comm;ca € X then Comm;a € X

(FL13) if Comm;ua € X then Comm;a € X

(FL14) if AjaU S € X then Ao, A;f € X

(FL15) if Aja;8 € X then Ao, [a],A;3 € X

(FL16) if A;a* € X then [o*];A;a € X

Let X be a set of formulae. The Fischer-Ladner closure (or, FL-closure for short) of X' is the
smallest FL-closed set which contains Y. We denote it by FL(X).

Definition 10. For any ADL-formula ¢, we define the set F'L(¢) using induction on the
structure of ¢.

1. FL(L) = {Ll} and FL(p) = {p} for any atomic proposition p
2. FL(¢ —) = {6 — ¥} UFL($) UFL()
3. FL([o],6) = FIP(a]6) U FL($)
4. FLD([l;6) = {la];¢} for any atomic action a
5. FLY([¢?];9) = {[¢7);¢} U FL(¢)
6. FLZ(la U g, ¢) = {laL 8,6}V FLP([o];0) U FLY([5);0)
7. FL([asf],6) = {laf], 0} U FLI([al,[8],6) U FLO(8];6)
8. FL9(a*),0) = {[0*];6} U FLI([al;[0"];0)
9. FLY([cal;¢) = {[ca];¢} U FL(Comm;x)
10. FLD([ua] ¢) = {[ua];¢} U FL(Comm;)
11. FL(Comm;a) = {Comm;a} for any atomic action a
12. FL(Comm;¢?) = {Comm;¢?} U FL(¢)
13. FL(Comm;a U) = {Comm;a U F} U FL(Comm;a)U FL(Comm,;/[)
14. FL(Comm;a;3) = {Comm;a;f} U FL(Comm;a) U FL([o),Comm;(3)
15. FL(Comm;a*) = {Comm;o*} U FL([o*];Comm;«)
16. FL(Comm;ca) = {Comm;ca}U FL(Comm;a)
17. F (Commzua) = {Commjua} U FL(Comm;«)
18. FL(A;a) = {Aja} for any atomic action a
19. FL(A?) = {A?}UFL(9)
20. FL(A;aUpB) = {A;aUB}UFL(Aa)UFL(A;f)
21. FL(A,; a,ﬁ = {Aja;f}UFL(A;a) UFL([o);AiB)
22. FL(Aja*) = {Aja*}UFL([a"];Aa)
23. F (A ca) = {Ajca}
24. FL(Ajua) = {Ajua}

Lemma 11. FL(¢) = FL({¢}), i.e. FL(¢) is the FL-closure of the formula ¢.

It is easy to see that F'L(XY) is finite whenever X is finite. The following lemma allows us
to find an upper bound for the cardinality of F'L(X) in terms of the lengths of formulae from
X.

We denote by |¢| and |a| the length (as number of the symbols excluding parentheses) of
¢ and «, respectively. By #¢ we denote a maximal number of occurrences of the symbols ;
and * below the operators Comm,, A;, c and u in ¢.

Lemma 12.
1. Card(FL(¢)) < |[2#? 3. Card(FL(Comm;a)) < |a|27Commia
2. Card(FLP([a);0)) < |a2#[0d? 4. Card(FL(A;q)) < |af2Aie

Definition 13. Let M = (S,Q,) be a (non-standard) model for ADL and X a set of

formulae. Define a relation ~x on S by:
s~xt iff Vo€ FL(Y), s =¢ifft = ¢.

It is in fact an equivalence relation and is used to define a filtration M* = (S*, Q% |=) of
M through X', where

|s|| = {t|s~xt}and S* = {||s]| | s € S}.
Furthermore, for any atomic action a,
Isl1Q" () l¢]l iff V[a];¢ € FL(X), if s | [a];¢ then ¢ | ¢,
for any propositional variable p,
Isll k= p iff s = pand p e FL(X),
for any semi-atomic action «,

IIs|| E Comm;a iff s = Comm;a and Comm;a € FL(X)
IIs]| E A iff s = Aja and Ao € FL(Y),

for any action «,

IsIQ (@)l iff Vlcal,6 € FL(E), it s = [cal,6 then t |- ¢
IsIQ (@Il it ¥ual,é € FL(Z), if s |- [ual,¢ then t = 6,

The definition of the truth relation is extended to all formulae and all relations Q; using

Definitions 1 and 2. This completes the definition of M.

Lemma 14. Let M be a (non-standard) model. Then:

1. M = Comm;a* < [o*],Comm;«n 2. M = A0 < [of], A

We need Lemma 14 to prove the following Filtration Lemma.
Lemma 15 (Filtration Lemma). Let X' be a finite set of formulae.

1. For all ¢ € FL(X), |Is|| E ¢ iff s = ¢
2. For all [a],n € FL(X),

(a) if sQi()t then [|s[| Q7" ()]

(b) if [|s]|Q; (e)[[t]| and s |= [a];n then t =1

As in the case of standard modal logics the Filtration Lemma has a few useful conse-
quences.

Theorem 16 (Small Model Theorem). Let ¢ be a formula, n = |¢[2%?, and m be a
number of different knowledge modalities in ¢. If ¢ is satisfiable in some ADL-model then it
is satisfiable in some finite ADL-model with no more than 2" - (22")™ states.

Theorem 17 (Completeness). ADL is complete with respect to the class of all ADL-models.
Theorem 18 (Decidability). ADL is decidable.

4.3 Embedding into CPDL

In order to establish an upper bound for the complexity of ADL we will now exhibit an
embedding of ADL into converse propositional dynamic logic (CPDL).

The key to reducing ADL-(un)satisfiability to CPDL-(un)satisfiability is to find a suitable
renaming of certain subformula occurrences. In our reduction there is a unique association
between each pair (i, a) (where a is an atomic action) and an atomic action a;. Now, associate
with any ¢ from Ag unique atomic actions sz and bZW which differ from all the a; above.
Also, associate with any pair (i,), where « is an arbitrary action, unique atomic actions ¢
and df*.

Now a suitable reduction is a mapping o of formulae, which uses an auxiliary mapping
o; of actions (i € Ag), and is defined to satisfy the following conditions (using simultaneous
induction on the structure of formulae and actions).

cl=1 op=1p o(lp =) =0¢p — o)

Wi = [0]oo oKip = (b U (b)))]og

ola];¢ = [oia)od oia = a;
oiaUpB = o,aUo;f o0 = o;050;0

oi(a) = (o;0)" oi(¢?) = (0¢)?

oi(ca) = ¢;(cComm;a)? oi(ua) = df';(mcComm;a)?

cA;a = pf cComm;a = ¢’

oA 0?7 = pf? ocComm;¢? = qj)?

cAica=T cComm;ca = cComm,;«

cAua=T ocComm;ua = —cComm;«

oA = [0, |0 A ocComm;a* = [0;a"]cComm;«

cAjaUpB=0A,aVoA;(ocComm;a U S = cComm;a V cComm,;(

oA = ocAja A ola]; A cComm; ;3 = cComm;a A oa],Comm;[3

Taking into account the completeness theorems for CPDL and ADL, and the model corre-
spondence for these logics we obtain the following result.

Theorem 19. Let ¢ be any ADL-formula. Then: 1. ADL F ¢ iff CPDL F o¢, and 2. 0¢ can
be computed in exponential time.

It is well-known that the satisfiability problem for CPDL and PDL are EXPTIME-complete [10].
Because ADL contains PDL as a sublogic, we have:

Theorem 20. ADL is EXPTIME-hard.
By Theorem 19:
Theorem 21. The satisfiability problem for ADL-formulae is in 2EXPTIME.

It is interesting to note that the above translation of ADL into CPDL can also be used to
give a syntactic proof of the soundness and completeness of ADL.

5 Conclusion

In this paper we applied logical tools from modal logic to develop a sound, complete and
decidable formalisation of the informational and motivational attitudes of dynamic agents.
Despite the decidability result for ADL, the standard decision procedure which follows from
small model theorem is very expensive and thus useless as a practical reasoning method for
this logic. Therefore, a primary task of future research is the development of effective proof
methods for ADL.

As we have a translation ADL into CPDL one could exploit existing decision procedures
for CPDL. Recently, a tableaux calculus was proposed for CPDL [5], on the basis of which a
decision procedure can be developed. Unfortunately, as yet no implementation is available for
this calculus. Until an implementation is available, it is possible to use existing PDL provers
by using an encoding [4] of CPDL-satisfiability in PDL. Although this translation has only
polynomial complexity, the increase in complexity is too high with respect to the length of the
given formula so that this method is impractical for large formulae. If we find an improved
method for encoding CPDL in PDL then it seems possible to use for ADL the decision methods
developed for PDL by [16,17]. However we do not know of any implementation of a prover
for PDL with the test operator. In an application where we could make do without the test
operator it is possible to apply available implementations of decision procedures developed
for expressive description logics [1], for example, the DLP prover [15] would be a suitable
candidate. It may be possible to extend the language and implementations of description
logic provers that already include operators corresponding to the action forming operators U,
; and * with the test operator.

The *-free fragment of ADL can also be embedded into CPDL, which means decision
procedures for PDL are applicable in this case, too. More interestingly, the x-free fragment of
ADL can be translated into first order logic (along the lines as discussed in [6], for example)
and, hence, powerful automated proof methods developed for first order logic can be applied
to the satisfiability problem in this fragment.

This shows there are many ways of going about the future development of an implemented
reasoning system for ADL. First of all, it will be useful to provide an implementation of the
CPDL tableaux method of [5]. Second, it might be useful to develop inference calculi for ADL
directly. For instance, it may be more practical to extend decision procedures for PDL with
rules for the additional operators of ADL, thereby avoiding the overhead of the translation
via CPDL into PDL. In this respect it seems also useful to develop tableaux methods and pure
Gentzen-type cut-free calculi for ADL.

A question left unanswered in this paper is the exact complexity of the satisfiability
problem for ADL. Our lower and upper bounds for the complexity leave a wide gap. In
particular, the question is, does ADL have the same complexity as PDL and CPDL, is it
NEXPTIME-complete, is it EXPSPACE-complete, or does it belong to 2EXPTIME?

Further, it is of interest how far ADL can be enhanced as a modal logic (or otherwise)
without loosing the properties of soundness, completeness and decidability. Of particular
interest is what happens if interaction axioms like the following are added.

Comm;a — K;Comm;a [a];K;¢ — K;[a],¢ Kila];¢ — [a]Ki¢

These axioms are natural and important in applications. The first axiom expresses that an
agent always knows her commitments, while the second axiom says that an agent knows the
result of her action in advance if it is contained in her knowledge base, in other words, there

is no learning. The last axiom expresses persistence of knowledge after the execution of an
action, that is, perfect recall. Ultimately one would like to accommodate more features of
real agents, for example, the notions of goals and the implementability of actions from the
KARO framework [13, 22], or also notions like belief and intentions from other formalisations
of motivational attitudes [3,19]. It should be noted that adding beliefs, which are commonly
modelled by KD45 modalities, poses no technical problems. It is not difficult to extend the
results of this paper to hold also for ADL with KD45 modalities.

References

10.
11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

F. Baader and U. Sattler. Tableau algorithms for description logics. In Proc. TABLEAUX’ 2000, vol. 1847
of LNAI pp. 1-18. Springer, 2000.

P. Blackburn, M. de Rijke, and V. Venema. Modal Logic. Cambridge Univ. Press, 2001.

P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial Intelligence, 42:213-261,
1990.

G. de Giacomo. Eliminating “converse” from converse PDL. J. Logic, Language and Inform., 5:193-208,
1996.

G. de Giacomo and F. Massacci. Combining deduction and model checking into tableaux and algorithms
for converse-PDL. Inform. and Computat., 162:117-137, 2000.

H. de Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-based methods for modal logics. Logic J. IGPL,
8(3):265-292, 2000.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about knowledge. MIT Press, 1995.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of knowledge and
belief. Artificial Intelligence, 54:319-379, 1992.

J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowledge and time. I lower bounds.
J. Computer and System Sci., 38:195-237, 1989.

D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

A. Herzig, J. Lang, D. Longin, and T. Polacsek. A logic for planning under partial observability. In Proc.
AAAI’2000, 2000.

A. Herzig and D. Longin. Belief dynamics in cooperative dialogues. J. Semantics, 17(2), 2001. To appear.
J.-J. C. Meyer, W. van der Hoek, and B. van Linder. A logical approach to the dynamics of commitments.
Artificial Intelligence, 113(1-2):1-40, 1999.

R. Parikh. Propositional dynamic logics of programs: A survey. In Proc. of the 1st Work. on Logic of
Programs, vol. 125, pp. 102-144. LNCS, Springer, 1981.

P. Patel-Schneider. System description: DLP. In Proc. CADE-17, vol. 1831 of LNAI pp. 297-301. Springer,
2000.

V. R. Pratt. A practical decision method for propositional dynamic logic: Preliminary report. In Proc.
STOC’78, pp. 326-337. ACM, 1978.

V. R. Pratt. A near optimal method for reasoning about action. J. Computer and System Sci., 20:231-254,
1980.

A. S. Rao. Decision procedures for propositional linear-time belief-desire-intention logics. In Proc.
ATAL’95, vol. 1037 of LNAI, pp. 102-118. Springer, 1996.

A. S. Rao and M. P. Georgeff. Asymmetry thesis and side-effect problems in linear time and branching
time intention logics. In Proc. IJCAI-91, pp. 498-504. Morgan Kaufmann, 1991.

A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In Proc. KR’91, pp.
473-484. Morgan Kaufmann, 1991.

W. van der Hoek, B. van Linder, and J.-J. Meyer. On agents that have the ability to choose. Studia
Logica, 65:79-119, 2000.

B. van Linder, W. van der Hoek, and J.-J. C. Meyer. Formalizing abilities and opportunities of agents.
Fundamenta Informaticae, 34(1, 2):53-101, 1998.

M. Zakharyaschev, F. Wolter, and A. Chagrov. Advanced Modal Logic. Kluwer, 1998.

