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1 Introduction

Propositional dynamic logic (PDL for short) [5] is an expressive, powerful and
convenient logical tool to reason about programs or actions. It has found ap-
plications in various fields of computer science, which range from program
verification to multi-agent systems. In computer science applications, the
modal logic S5 is generally accepted as an adequate representation of the no-
tion of knowledge. For example, in agent based applications the S5 formula
e can be read to mean ‘the agent knows ¢’. Thus, combinations of PDL and
S5 are meaningful when we want to reason about dynamic and epistemic in-
formation. In modal logic different forms of combinations of logics have been
investigated. The simplest form of combination of two (or more) logics is
their fusion, or independent join. It is well-known [9, 6] that fusions of logics
inherit many of the good properties of the individual logics, including sound-
ness, completeness, the finite model property and decidability. Another form
of combination of two logics is their product. With products the situation is
more varied and complicated than with fusions. First of all, products can be
defined in two ways: axiomatically and semantically [3]. Whereas in fusions
there is no interdependence between the operators of the different modal di-
mensions, in products the modal operators are commuting. This complicates
matters, so that for products there is no preservation theorem of the gener-
ality as for fusions. In fact, the particular type of interaction between the
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modal opertors in products makes it much more difficult to obtain positive
results regarding completeness, the finite model property and decidability for
products. However advanced technique to deal with products have been de-
veloped [3], see also [8]. These are techniques for investigating the properties
of products of modal logics. The product of PDL and S5 is a combination of
a dynamic logic and a modal logic. Therefore, the techniques developed for
standard modal logics need to be elaborated and can be applied to products
involving PDL only with a lot of care.

An issue we look at in this paper concerns the uncertainty as to how
substitutivity should be defined in the product of PDL and S5. Because PDL
has a two-sorted language over actions and propositions, a key question is the
following. In axiom schemata, do we allow substitution of all action terms
into action variables, or do be allow only substitution of atomic action terms
into action variables? If the answer is ‘yes’ we speak of full substitutivity,
whereas if the answer is ‘no” we speak of weak substitutivity. For PDL we
can prove that

(1) weak substitutivity implies full substitutivity.

We regard this as a good property, because it allows us to reason about all
actions in a uniform way.

In this paper we focus on axiomatically defined products of PDL and
S5. In particular, we explore all possible definitions of axiomatic products
of PDL and S5 with respect to full and weak substitutivity. For each defi-
nition we consider the problems of completeness, the small model property,
decidability and the admissibility of the full substitution rule (Sections 3
and 4). In tackling these problems we use a filtration method which is es-
sentially a combination of the filtration method for products of S5 in [3] and
the Fisher-Ladner filtration technique developed for PDL [2] but with slight
modifications. We prove that under full substitutivity the S5 operator in the
product of PDL and S5 is vacuous, which implies the product of PDL and
S5 fails to satisfy the property (1). As a remedy we propose and discuss a
new definition for the PDL test operator which allows us to satisfy all the
properties desirable in an axiomatic product of PDL and S5, namely com-
pleteness, the small model property, decidability and the admissibility of full
substitutivity (Section 6). We also analyse the product of test-free PDL and
S5 (Section 5).



2 Main definitions

In the product of PDL and S5 one dimension is represented by dynamic logic
operators and the other dimension by the epistemic modality of S5. Thus,
the language £ we consider is an extension of the language of PDL [5] with a
new modal operator [J representing knowledge. Formally, the language L is
defined over the following primitive types: a countable set Var = {p, ¢,,...}
of propositional variables and a countable set AtAc = {a,b,¢,...} of atomic
action variables. The connectives in £ are the Boolean connectives, — and
1, the dynamic logic connectives, U (non-deterministic choice), ; (sequential
execution), * (repetition), ? (test) and the modal operators [_] and [J. The
set For of formulae and the set Ac of action terms in £ are the smallest sets
that satisfy the following conditions.

o AtAc C Ac, VarU {L} C For.

e If ¢ and v are formulae in For and a and (3 are action terms in Ac then
@7, o, a U (3, o are action terms in Ac, and ¢ — v, 0o, oo, are
formulae in For.

As usual we use the following abbreviations: —¢ for ¢ — 1, ¢V for ¢ — 1,
6 A for =(=¢ v ), (a)é for —[a]~¢, and ¢ < ¢ for (¢ — &) A (¢ — 9).
By definition, an atomic action is an action variable, and a semi-atomic
action is an atomic action or a test action ¢?.
By a theory in £ we understand any subset of For which is closed under
the following standard rules:

¢, 0= PP ¢+ [al¢ ¢+ 0o

Generally axioms and theorems of a logic are assumed true for all instanti-
ations for the atomic symbols. However, in this paper we distinguish between
two variants of the substitution rule. The weak substitution rule allows the
substitution of arbitrary formulae for the atomic propositional symbols but
does not allow substitution for atomic action symbols. By contrast, the full
substitution rule allows both kinds of substitutions, i.e. both propositional
substitutions and action substitutions.

A logic in L is a theory which is closed under the full substitution rule
and a weak logic in L is a theory closed under the weak substitution rule.
Weak logics are notationally discerned by a subscript .



Let I' and A be any subsets of For. By I' & A (resp. (' & A),) we
denote the least logic (resp. the least weak logic) which contains both T’
and A. According to this notation, the fusion of PDL and S5 is denoted by
PDL@® S5. For an axiomatisation of PDL we refer to [5], and axiomatisations
of S5 can be found in [1, 9].

Proposition 1 PDL @& S5 = (PDL & S5),, i.e. the full substitution rule is
admissible in (PDL & S5),,.

PDL® S5 models are combinations of the familiar Kripke models for PDL
and S5, that is, a PDL@® S5 model is a tuple (S, @, R, |=) such that (S, Q, =)
is a PDL model [5] and (S, R, =) is an S5 model [1]. Here, S is a non-empty
set of states, R is an equivalence relation on S, |= is the usual truth relation
on the Kripke model and @ is a mapping from the set of actions to the set
of binary relations on S which satisfies the following conditions.

QlaUp) =Q(a)UR(H) Q) = Q(a) 0 Q(B)
Q") = Qa)’ Q(97) = {(s,5) € §? | s |= ¢}

(o denotes relational composition, and * is the reflexive and transitive closure
operator on relations.)

The products of PDL and S5 we consider in this paper are extensions of
(test-free) PDL & S5 with the following axioms.

(NL) [a)0p — Ofa]p
(PR) Olalp — [a]Op

(NL is short for no learning, and PR for perfect recall.) These axioms are
Sahlqvist formulae and their first-order equivalents are:

(com") Right commutativity: RoQ(a) CQ(a)o R
(com!) Left commutativity: Q(a)o RC RoQ(a)

Note, that in the case of logics with full substitution a ranges over all the
actions, whereas for weak logics a ranges over the set of atomic actions only
and in this case we refer to these properties as com’, and com!
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We consider the logics:

[PDL, S5 =% PDL & S5® {NL, PR}
[PDL, S5],, =% (PDL @ S5® {NL, PR}),,
test-free PDL, S5] =% test-free PDL & S5® {NL, PR}
[test-free PDL, S5],, =9 (test-free PDL & S5 @ {NL, PR}),,

This class contains all possible definitions of axiomatic products of (test-free)
PDL and S5.

By definition, a [PDL, S5] model (resp. [test-free PDL, S5] model) is a

PDL @ S5 model (resp. test-free PDL @ S5 model) which satisfies properties
com” and com'. Similarly, a [PDL, S5, model (resp. [test-free PDL, S5,
model) is a PDL & S5 model (resp. test-free PDL & S5 model) which satisfies
properties com”, and com’, .
Note 1 Completeness for the logics under consideration with respect to the
corresponding classes of models is not a straightforward consequence of the
Sahlqvist theorem because the canonical models for these logics do not satisfy
the property Q(a*) = Q(«)*. To get this property we need to modify the
canonical models by the method of Fischer and Ladner [2, 5], and, moreover,
take care that left and right commutativity are preserved.

3 [PDL, S5

We say that a modal logic L admits the elimination of U, if the formula
p < [p belongs to L.

Lemma 2 Let L be a normal modal logic with reflexive modality [J satis-
fying one of the axiom schemata O(p — ¢q) — (p — Og) or (p — Og) —
O(p — ¢). Then, L admits the elimination of [J.

Proof. Assume the first axiom schema hold for L. As L is closed under the
substitution rule, the formula O(p — p) — (p — Op) belongs to L. The
left side of the implication is always true. Thus, this formula is classically
equivalent to p — Up. Because [ is reflexive, the logic contains the formula
Op — p. Consequently, (p < p is true. If the second axiom schema holds
in L then substitute =g for p. So, (-qg — Oq) — O(—~¢ — ¢q) is in L.



This formula is equivalent to (—g — Og) — Og. The following equivalences
complete the proof of the lemma. ((—¢ — Og) — Oq) < (—(¢vOq)vq) <
((mg A —=0q) vOq) < ((—gVOqg) A (-0OqVvq)) < (¢g— qg). 0]

Lemma 3 If an extension L of PDL & S5 contains any of the axioms NL
or PR and the full substitution rule is admissible in L, then L admits the
elimination of the [J operator.

Proof. Consider, for instance, the axiom NL, [a]0dp — O[a|p, and substitute
a test expression ¢? for a. This gives [¢?]0p — O[q?]p. Since [¢?]p <« (¢ —
p) belongs to PDL, (¢ — Op) — O(¢ — p) is in L. In the case of PR,
(¢ — p) — (¢ — Op) is in L. Finally, apply Lemma 2. O

The previous lemma implies that [PDL, S5] admits the elimination of OJ.
Hence:

Theorem 4 [PDL, S5] is deductively equivalent to PDL.

Theorem 5 (Complexity) [PDL, S5] is EXPTIME-complete.

Moreover, it also follows that the class of all [PDL, S5] models is just a class of
all PDL&@® S5 models in which the relation R corresponding to the [(J-operator
is a congruence relation on the set of states. Then the following theorems
hold.

Theorem 6 (Completeness) [PDL, S| is complete with respect to the
class of all [PDL, S5 models.

Theorem 7 (Small Model Theorem) Let ¢ be a formula of £ and n be
the number of symbols in ¢. If ¢ is satisfiable in some [PDL, S5] model then
it is satisfiable in [PDL, S5] model with no more than 2" states.

4 [PDL,S5,
Theorem 8 [PDL, S5],, # [PDL, S5].

Proof. Let My be a model (S,Q, R, =) with S = {0,1}, Q(a) = 0 for any
atomic action a, R is the universal relation on S, 0 = p and 1 = —p. It is
easy to see that NL and PR are true in M, for all atomic actions. But the
both [=p?|0p — O[—p?]p and O[—p?|p — [-p?]0p are false in the state 0. O
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By the way we note that the example in the proof is also suitable for
proving that the full substitution rule is not admissible in the semantical
product of PDL and S5, if is defined as in [§].

Combining the filtration method described in [3] for products of K and
S5 with the method of Fisher-Ladner for PDL (see [2, 5]) we obtain the
following theorems.

Theorem 9 (Completeness) [PDL, S5],, is complete with respect to the
class of all [PDL, S5|,, models.

Theorem 10 (Small Model Theorem) Let ¢ be a formula of £ and n be
the number of symbols in ¢. If ¢ is satisfiable in some [PDL, S5],, model then
it is satisfiable in some [PDL, S5,, model with no more than 2" - 22" states.

Theorem 11 (Decidability) [PDL, S5|,, is decidable.

5 Test-free products

Lemma 12 Let M be a PDL @ S5 model which satisfies com],. Then, com”
is true in M for all test-free actions.

Proof. By induction on the length of an action term a. The base case holds
by the assumptions of the lemma. We skip the easy case where o = fU~. For
the case a = 3}y, by taking into account the induction hypothesis, we obtain

Q(Byy)eR = Q(B)eQ(7)oR € Q(B)oRoQ(7y) € RoQ(B)oQ(7) = RoQ(f:7).

For a = 3* the argument is similar. 0
The following lemma can be proved in a similar way.

Lemma 13 Let M be an PDL@® S5 model which satisfies com!,. Then, com’
is true in M for all test-free actions.

As a consequence:

Theorem 14 [test-free PDL, S5],, = [test-free PDL, S5].

This result together with those from the previous section give us:

Theorem 15 (Completeness) [test-free PDL, S5] is complete with respect
to the class of all [test-free PDL, S5] models.
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Theorem 16 (Small Model Theorem) Let ¢ be a test-free formula of £
and n be the number of symbols in ¢. If ¢ is satisfiable in some [test-free PDL, S5
model then it is satisfiable in some [test-free PDL, S5 model with no more
than 2" - 22" states.

Theorem 17 (Decidability) [test-free PDL, S5] is decidable.

6 A new definition and semantics for test

From a logical perspective the trivial elimination of the S5 operator in the
product [PDL, S5] is unsatisfactory. The reason for the elimination of the S5
operator is the implicit connection between the test operator and [J in the
commutativity axioms under full substitutivity. This suggests the problem
may be twofold. (i) Assuming full substitutivity is inappropriate for the
commutativity axioms. But, the full substitution rule gives us the possibility
to reason uniformly about all actions, in the same way as we reason about
all propositions in any logic. PDL is closed under the full substitution rule
and, thus, fits this paradigm. So, perhaps, the problem is rather that, (ii) the
semantics of the test operator is not defined well enough when test interacts
with [J. A solution we propose here is to define an alternative semantics for
test such that in the resulting logic, [J and test interact in a way so that
weak substitutivity implies full substitutivity.

Therefore, we introduce a new operator, denoted by 7, as replacement
for the standard test operator. This is intended to remedy the problem
with standard test in the presence of an epistemic modal operator. The new
operator can be interpreted as an epistemic test operator. The intuition of
p? is an action which can be succesfully accomplished only if p is known in
the current state. The result of this action is an arbitary state within the
same knowledge cluster. Thus, p? is the action of confirming the agents’s
own knowledge. In contrast, with the usual test operator the agent has the
capability to confirm truths rather than knowledge. Philosophically, this
is a strong property of an agent; we believe, too strong. In agent based
applications the new interpretation of test is more suitable than the usual
test operator.

The logical apparatus is the same as previously with the obvious changes.
The symbol ? is used in the superscript to indicate a replacement of the op-
erator ? by ?. Let [PDL,S5]* and [PDL, S5]* be the logics in £L* obtained



from [PDL, S5] and [PDL, S5],, respectively, by replacing the usual test ax-
iom with:
[pP?]q < O(p — q).

In accordance with this axiom, the formula [p?]q can be read as ‘g is known
with respect to p being known’. Thus, we think of the modal operator [_7]
as the operator of relative knowledge.

Using the elimination of second-order quantifiers [4, 7] it is easy to find the
corresponding semantic definition for the new operator. Thus, a (PDL® S5)”
model is a tuple (S, @, R, |=) satisfying all the properties of PDL@® S5 model,
except the meaning of ? is specified by:

Q(@7) =" {(s,t) € R| t = 0o}

This induces the notions of [PDL, S5]* and [PDL, S5]* models as expected.
The definition of ? still allows the elimination of O but this time the
elimination is not trivial.

Proposition 18 [p < [T?]p € (PDL @ S5)*.

Proposition 19 The formulae [p?]Cq — O[p?|q and O[p?]q — [p?]Cq be-
long to (PDL @ S5)*, and, consequently, [PDL, S5]* and [PDL, S5]*.

Applying the filtration technique and using Results 12, 13 and 19 we can
prove the next theorem, and obtain the usual consequences of filtration.

Theorem 20 [PDL, S5)* = [PDL, S5]*.

Theorem 21 (Completeness) [PDL, S5]” is complete with respect to the
class of all [PDL, S5]* models.

Theorem 22 (Small Model Theorem) Let ¢ be a formula of £* and n
be the number of symbols in ¢. If ¢ is satisfiable in some [PDL, S5]* model
then it is satisfiable in [PDL, S5]* model with no more than 2" - 22" states.

Theorem 23 (Decidability) [PDL, S5]” is decidable.

How does the standard test operator of PDL relate to the new one? It
turns out that there is a simulation of PDL in (PDL & S5)*. Define the



translation o from formulae of PDL to For” by the following:

op="[Up ol =1 oa=a
cW?) = (09)?  o(aUB) =oaUof o(a;8) = oaio 3
o(a”) = (ca)"  o(¢p > ) =0(0¢ —oy)  o([aly) =Lloaloy

Theorem 24 For any O-free formula ¢ in £, ¢ € PDLiff 0 € (PDL®S5)*.
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