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Abstract. Machine Learning can be divided into two schools of thought:
generative model learning and discriminative model learning. While the
MCS community has been focused mainly on the latter, our paper is
concerned with questions that arise from ensembles of generative models.
Generative models provide us with neat ways of thinking about two
interesting learning issues: model selection and semi-supervised learning.
Preliminary results show that for semi-supervised low-variance genera-
tive models, traditional MCS techniques like Bagging and Random Sub-
space Method (RSM) do not outperform the single classifier approach.
However, RSM introduces diversity between base classifiers. This start-
ing point suggests that diversity between base components has to lie
within the structure of the base classifier, and not in the dataset, and it
highlights the need for novel generative ensemble learning techniques.

1 Introduction

In the past few years, the MCS community has mainly focused on supervised
problems, that is, learning scenarios where classifiers are trained on labelled ex-
amples. Nevertheless, many real applications are nowadays characterised by two
contrasting factors, namely the need for large quantities of labelled data to design
supervised classifiers with high accuracy, and the difficulty and cost of collecting
such data.

A possible answer to this accuracy/labelling dilemma is to consider semi-
supervised algorithms, that is, techniques which are able to learn from a small
amount of labelled data together with a large amount of unlabelled data [?]. The
majority of the work done so far has been concerned with ensembles of semi-
supervised discriminative models, where some external procedure is responsible
for labelling the unlabelled data before base classifiers can learn from them
[?,?,?,?,?].

Generative models are algorithms that can learn from labelled and unlabelled
data [?]. There are very few examples of semi-supervised generative ensembles
[?,?], and so far there is still no common understanding of the way unlabelled
data affects ensembles of generative models.

This paper is an attempt to further investigate semi-supervised ensembles
of generative models. Generative and discriminative approaches are two ways of
solving the same problem (Sec. 2). A comparison of ensemble techniques shows



that the way they make use of unlabelled data is different (Sec. 3); moreover they
provide different levels of understanding in terms of model mismatch (Sec. 4). As
generative models have not been explored in the MCS community, we present
a preliminary experimental analysis (Sec.5). Our results show that for semi-
supervised low-variance generative models, diversity between base classifiers has
to be structurally imposed.

2 Discriminative or Generative Models?

The generative/discriminative dilemma seems to divide Machine Learning into
two separate communities.

In a statistical approach a classification problem is modelled by the joint
distribution p(X,Y ), where X and Y denote the data and the class random
variables, respectively. Because we want to solve a classification problem, our
goal is to find the optimal estimate of the class posterior p(Y |X). This can be
determined via Bayes’ rule:

p(Y |X) =
p(X|Y )p(Y )

p(X)
.

Discriminative classifiers directly model the class posterior distribution p(Y |X).
In practical terms, this corresponds to modelling our problem as decision regions
between classes. Typical example of discriminative models are neural networks,
where we try to learn decision boundaries by minimising some error function. In
a generative approach we make explicit assumptions about the form of the class
conditional distributions p(X|Y ) and class priors p(Y ). Therefore, a generative
model in practice models the data distribution rather than the decision regions.
An example of a generative model is a Näıve Bayes network, which is based
on the assumption that all the features are conditionally independent given the
class:

p(X|Y ) =
D∏

f=1

p(Xf |Y ), (1)

as depicted in Fig. 1. If all features are discrete, we can estimate Eq. (1) by
frequency counts.

In terms of problem applicability, generative models can naturally incorpo-
rate unlabelled data because they learn the way data is distributed. On the other
hand, discriminative models have no knowledge at all about the data distribu-
tions and therefore, their major drawback is that they cannot naturally handle
unlabelled data. This implies that in semi-supervised problems there must exist
an external mechanism that labels the unlabelled data before a discriminative
classifier can incorporate them into the learning process, as in Co-training [?]
and Tri-Training [?].

In terms of performance, when only few labelled data are available, there
is strong evidence [?] that generative models outperform discriminative models.
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Fig. 1. A Näıve Bayes network. Each arc represent a inter-variable dependency, while
the absence of an arc is an indication of independence between random variables.

Moreover, while discriminative models can achieve better performance, genera-
tive models have a faster speed of convergence. The main reason discriminative
models are usually preferred to generative models is that the latter rely on strong
assumptions. The choice of the right assumption in generative models is crucial,
for studies have shown that when there is model mismatch, unlabelled data can
degrade classification performance [?].

3 Semi-Supervised Learning

3.1 Discriminative Ensembles for Semi-Supervised Problems

The MCS community has traditionally focused on discriminative base classifiers,
and most of the work done so far about semi-supervised learning has been con-
cerned with techniques that let discriminative classifiers exploit unlabelled data
[?,?,?,?]. As a discriminative model cannot make use of data without labels, an
external mechanism has to assign “pseudo-labels” to the unlabelled data before
a classifier can effectively process them. We now describe the main principles
of how discriminative models can learn from unlabelled data. A full review of
semi-supervised ensemble techniques is out of the scope of this paper; the reader
might refer to [?,?] for a more extensive survey.

Decision-directed ensemble approaches [?] are based on the idea that a clas-
sifier can iteratively self-teach itself. Within this framework a single classifier is
initially trained on the labelled data. Afterwards, the same classifier is used to
classify unlabelled data and the most confident predicted patterns are selected
and added along with their “pseudo label” to the labelled patterns; the process
iterates until a stopping criterion is reached. In an ensemble approach the en-
semble prediction could be used to assign pseudo labels to the unlabelled data.
Co-Training [?] can be considered the first attempt to apply ensemble learning
to semi-supervised problems. This approach is based on the assumption that the
feature space can be split into two disjoint subsets called views, and that each
one of these is sufficient for correct classification. Therefore, a single classifier
is trained on each of these views. Initially, both classifiers are trained only on
labelled data. Each classifier is then asked to classify a small amount of unla-
belled data. The most confident predictions are added to the labelled training
set of the other classifier; then the process re-iterates for a given amount of



times. The basic idea behind co-training is that whenever classifiers disagree,
the mistaken one can be “taught” by the other one, for each view is sufficient
to make a correct prediction. In other words, co-training is an ensemble method
that enforces agreement on unlabelled data [?]. An interesting extension is given
by tri-training [?], where three classifiers use majority voting to label unlabelled
data. If two classifiers agree, then the unlabelled pattern is labelled accordingly.

These “pseudo labels” are used only with discriminative classifiers. Although
this mechanism might succeed, it seems somewhat ad-hoc. In contrast, generative
models can lead to more elegant ensemble approaches.

3.2 Generative Ensembles for Semi-Supervised Problems

The reason why we should be interested in generative models is that unlabelled
data can be incorporated into their learning process without need of “pseudo la-
bels”. Once we have made our assumptions about the form of our joint distribu-
tion p(X,Y ) = p(X,Y, θ), the learning process consists of finding the parameters
θ that most likely fit our data1.

For instance, let us consider a C class problem in a D dimensional space.
In a semi-supervised problem, our data can be split into a finite set of labelled
patterns DL = {XL,YL} = {(xi, yi) | i = 1, . . . ,N} and a finite set of unlabelled
data DU = {XU} = {(xj) | j = N + 1, . . . ,M}, D = {DL,DU}. We assume
that labelled and unlabelled patterns are independent and identically distributed
samples drawn from the same joint probability distribution p(X, Y ). A semi-
supervised Maximum Likelihood approach seeks to find the set of parameters θ
that maximize the log-likelihood log p(D|θ) = log p(X L,YL,X U |θ):

log p(X L,YL,X U |θ) =
= log p(X L,YL|θ) + log p(X U |θ)

=
N∑

i=1

log p(yi|θ)p(xi|yi, θ) +
M∑

j=N+1

log
C∑

k=1

p(yk|θ)p(xj |yk, θ)
(2)

From (2) it is easy to observe that the log-likelihood is made of two terms, the
first one depending on the labelled data, and the second one depending on the
unlabelled data. It follows that in a generative ensemble approach each base
classifier can learn from labelled and unlabelled data, and in addition ensemble
techniques could be used to improve classification accuracy.

4 Model Selection

Model selection is the process of choosing a specific class of models according
to our knowledge of the problem. Whenever a generative model does not match
the problem data distribution, we call this model mismatch.
1 Alternatively we can use a full Bayesian Learning approach, which consists of inte-

grating out parameters via approximation methods such as Variational Inference.



In generative models, we make assumptions about the form of probability
distributions and about the inter-variable dependencies within these distribu-
tions. For instance we might assume that our data is Normally distributed, and
we might also assume a Näıve Bayes approach, by making any feature condi-
tioned on the class label statistically independent from any other, as depicted in
Fig. 1. A model mismatch indicates our model does not represent the problem
correctly because these independence assumption are violated in practice.

Similarly to generative models, discriminative classifiers are based on model
assumptions, and therefore they are not always able to model boundaries between
decision regions. A “model mismatch” in this case would correspond to selecting
a linear perceptron to solve an XOR problem, or not using enough hidden nodes
in our neural network.

The main difference between generative and discriminative approaches is that
a mismatch is explicit for generative models, whereas it is hidden and more subtle
for discriminative models: can the correspondence between the number of hidden
nodes and decision boundaries be quantified in terms of model mismatch?

At a more abstract level, any learning algorithm can be thought of as a
search in the space of representable models H. The model mismatch problem
then corresponds to asking the question: What happens when the true model f
does not belong to this search space H? This situation, which is depicted in Fig.
2, is known as the “representational problem” [?] in the MCS community.

f

h1

h2

h3

H

Fig. 2. An ensemble approach can deal with a representational problem by approxi-
mating the true hypothesis with a combination of wrong ones [?].

Discriminative ensemble learning tries to overcome this model limitation by
replacing the single classifier approach with a combination of accurate and dif-
ferent models: if enough data are available, a combination of different models
h1, h2, . . . , hM in the search space can lead to a better approximation of the true
model f even if this does not belong to H [?].

In theory the same ensemble principle could be applied to generative models.
Moreover, we could exploit the property of generative models of explicitly select-
ing the model bias to define the boundaries of the hypothesis space. If the search
space is then large enough, it might possible to combine diverse generative base
models to achieve better performance than the single base classifier, and solve



not only the representational problem but also the semi-supervised problem. We
now illustrate some studies we have carried out on generative model ensembles.

5 Empirical Analysis

Very few experiments have been carried out on semi-supervised ensembles of
generative models [?,?]. The aim of this study is to further investigate how
unlabelled data can affect ensemble learning when we combine generative base
classifiers.

The base model we chose for this analysis was a Gaussian Näıve Bayes net-
work, i.e. a Näıve Bayes with Normally distributed continuous features and iden-
tity covariance matrix N (x|µ, I). We adopted a MAP approach and we used a
scaled conjugate gradient descent algorithm to learn our model parameters. We
applied three different ensemble methods: RSM [?] and two different variants of
Bagging [?]: BaggingL– which samples with replacement from labelled data, and
BaggingLU– which samples with replacement from labelled and unlabelled data.
We used simple mean as a combination rule. Each technique has been evaluated
according to a 5 times 2 statistical test. We tested our model on three different
datasets, two of which were artificial datasets, the other was a real dataset:

Ringnorm Artificial dataset that implements Breiman’s ringnorm example. It
is a 2 class problem with 20 features and it has 7400 patterns. This dataset
is a model mismatch for our model, as one class has not been generated by
N (x|µ, I).

Uniringnorm Artificial dataset that represents a 2 class problem with 20 fea-
tures and it has 1000 patterns. This dataset is a model match for our model,
being the data generated from N (0, I) or N (µ2, I), where µ2 = (a, a, ..., a),
with a = 2√

20
.

Feltwell We also applied our model on a real dataset by selecting 5124 patterns
from Feltwell dataset. This is a 5 class problem with 15 features.

Following some experiments in [?], we studied how supervised and semi-supervised
ensembles of generative models perform in comparison with the respective sin-
gle classifier counterparts, as we increase the amount of labelled data. Our aim
was to identify any specific situation where semi-supervised ensemble learning
is more beneficial than the semi-supervised single approach and the supervised
ensemble. Our results can be summarised as follow:

– Data acts as a variance reducing factor. Both semi-supervised ensembles
and semi-supervised single classifiers show less variance than the supervised
counterparts. This is unsurprising, as Näıve Bayes are low variance classifiers.

– BaggingLU
• Model match: the semi-supervised ensemble performs exactly like the

semi-supervised single classifier, and it always outperforms the super-
vised counterpart for any amount of labelled data.



• Model mismatch: semi-supervised BaggingLU performs slightly worse
than the semi-supervised single classifier, and in general semi-supervised
learning outperforms the supervised one only when few labelled data are
available (i.e. less than 40 labelled patterns).

– BaggingL
• There is no difference between the semi-supervised ensemble and the

semi-supervised single base classifier accuracy. This implies that bagging
the unlabelled data is effectively worsening the ensemble classification
performance.

– RSM
• Model match: semi-supervised learning usually outperforms supervised

learning for any amount of labelled data.
• Model mismatch: In general semi-supervised learning outperforms super-

vised learning only when few labelled data are available (i.e. less than
50 labelled patterns). However, the ensemble techniques perform slightly
and much (nearly 6%) worse, respectively, than the single counterparts
for both supervised and semi-supervised learning.

We found similar results for Feltwell, where the semi-supervised ensemble tech-
niques achieves almost the same accuracy as the semi-supervised respective single
classifiers.

We conclude that Bagging and RSM techniques do not work well with semi-
supervised low variance generative models, as data resampling or data random
projections do not seem to increase the ensemble accuracy over the single clas-
sifier.

6 Discussion

Both semi-supervised Bagging and RSM ensemble techniques seem not to im-
prove classification accuracy over the single classifier approach – but why?

Let us focus on a typical semi-supervised scenario, where a large amount
of unlabelled data and only few labelled data are available. We fix the amount
of labelled data to be 30 patterns and we look at the ensemble behavior as we
increase the number of base classifiers from 1 to 10. Results are shown in Figures
3 and 4 for a match problem and a mismatch problem, respectively. If we look
at the leftmost part of both figures, we can observe the ensemble behavior of
BaggingL as we increase the number of components in the ensemble. In both a
model match and mismatch the semi-supervised ensemble error does not change
as we increase the number of base classifiers, but at the same time this ensemble
performs exactly like the semi-supervised single classifier. This is true for any
amount of labelled data, and not only for 30 labelled patterns. A similar behavior
has been observed for BaggingLU. It seems that when enough data are available,
data resampling does not infer any kind of diversity on low variance generative
base classifiers.

The rightmost part of both figures shows the ensembles created according to
RSM. Whereas semi-supervised RSM fails for a model mismatch, Fig. 3 shows an
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Fig. 3. Classification error for a model match (Uniringnorm) with 30 labelled data.
semi-supervised BaggingL does not create different base classifiers, whereas semi-
supervised RSM does.
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Fig. 4. Classification error for a model mismatch (Ringnorm) with 30 labelled data.
semi-supervised BaggingL does not create different base classifiers, but the model mis-
match cannot be model by the semi-supervised RSM.

unexpected behavior: the semi-supervised ensemble error has very low variance
and the error decreases as we increase the number of classifiers. In other words,
base classifiers are diverse. Increasing the amount of labelled data does not alter
this behavior. However this semi-supervised ensemble does not perform better
than the semi-supervised single classifier. A possible reason for this could be
that each base classifier is a projection of the feature space, and therefore it is
missing information about the full data distribution, whereas the single classifier
can model the data completely. From a representational problem perspective,
this corresponds to the space of hypotheses being so small that it is not possible
to find hypotheses that, if combined, can lead to a good approximation of the
true function that represents our problem.

To sum up, our analysis of Bagging and RSM techniques shows how genera-
tive models cannot be learnt like their discriminative siblings:

– Resampling techniques like Bagging do not work well with low variance gen-
erative models, as the amount of training data acts like a variance reduction
factor.



– RSM techniques introduce some diversity between base classifier compo-
nents, but they do not outperform the single classifier. A reason for that
might be that the search space of the base classifier is not powerful enough
to solve a representational problem.

Nevertheless this pattern of behavior looks promising and might indicate the
need for novel generative ensemble techniques.

7 Conclusion and Future Work

How to Combine Generative Models?
While discriminative ensembles have the benefit of generating diverse base classi-
fiers, base components require an external mechanism to make use of unlabelled
data. On the other hand, generative model ensembles naturally gain the ability of
learning from unlabelled data but at the same time they lose in terms of diversity
that can be generated by traditional ensemble techniques.

Nevertheless, our results point towards the design of semi-supervised gener-
ative ensemble techniques that seek diversity in other ways than the traditional
ones in MCS. It might be the case that generative model transparency can be
exploited to build base classifiers that are structurally diverse and therefore ex-
tend the hypothesis search space. For instance, we could combine generative
models that are characterised by different inter-model dependencies. An exam-
ple is given by Super Parent One Dependency Estimator (SPODE) ensembles
[?], where each base classifier feature depends not only on the class but also on
another feature called superparent, as depicted in Fig. 5.

Y 1
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Fig. 5. An ensemble as a combination of all possible SPODEs.

Generative models are the only systematic way we can explore hybrid en-
sembles because we can actually choose the structural difference between mod-
els. This is not possible with discriminative models, where it is not clear which
boundaries might arise by combining different classifiers (for instance SVMs with
neural networks). Instead, with generative models not only can we systemati-
cally place models in the search space but we can also decide how big the search
space is.



A natural way to quantify diversity between generative models is given by
the KL divergence [?], a non-commutative measure of the difference between
probability distributions. Multivariate Mutual Information measures this KL
divergence for multidimensional probability distributions. In practical terms it
gives us an indication of how correlated, i.e. how diverse, random variables are
[?]. The focus of our future work will be to use Multivariate Mutual Information
to rank and select diverse generative base classifiers from the hypothesis space.
This might allow us to solve both the representational and the semi-supervised
problems in an ensemble fashion.
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