
An Intensional Approach to the Specification of Test Cases
for Database Applications

David Willmor
School of Computer Science

University of Manchester
Oxford Road, Manchester, UK

d.willmor@cs.manchester.ac.uk

Suzanne M. Embury
School of Computer Science

University of Manchester
Oxford Road, Manchester, UK

s.m.embury@cs.manchester.ac.uk

ABSTRACT
When testing database applications, in addition to creating
in-memory fixtures it is also necessary to create an initial
database state that is appropriate for each test case. Cur-
rent approaches either require exact database states to be
specified in advance, or else generate a single initial state
(under guidance from the user) that is intended to be suit-
able for execution of all test cases. The first method allows
large test suites to be executed in batch, but requires con-
siderable programmer effort to create the test cases (and
to maintain them). The second method requires less pro-
grammer effort, but increases the likelihood that test cases
will fail in non-fault situations, due to unexpected changes
to the content of the database. In this paper, we propose a
new approach in which the database states required for test-
ing are specified intensionally, as constrained queries, that
can be used to prepare the database for testing automati-
cally. This technique overcomes the limitations of the other
approaches, and does not appear to impose significant per-
formance overheads.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Experimentation, Verification

Keywords
databases, software testing, database testing

1. INTRODUCTION
Modern information systems are typically organised as

collections of independent application programs that com-
municate with one another by means of a central database.
The database records the state of the organisation that the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

information system supports, while the application programs
implement the business processes that manipulate the state.
To take a simple but ubiquitous example, a database sys-
tem might record details of customers, products and sales,
while the application programs associated with it handle op-
erations such as new product purchases and update of the
product catalogue, as well as supporting decision making
by generating reports regarding the most profitable product
lines, names and addresses of loss-making customers, etc.

In order to test such application programs, it is necessary
to create test fixtures that simulate the presence of the rest
of the information system. Fixtures for traditional test cases
typically consist of in-memory objects and data structures
that provide the inputs to the program being tested. This
kind of fixture is also needed when testing database appli-
cations (especially when performing unit testing); however,
since it is unrealistic (and often incorrect) to execute test
cases against an empty database, we need to create addi-
tional fixture elements within the database itself.

Current practice in the software industry is to maintain
one or more test databases that can be used for testing in-
dividual programs. These databases can be artificially gen-
erated (e.g., using tools such as DBMonster1 and DataFac-
tory2) or they may be subsets of the live database, taken
as a snapshot at some recent point in time. Copies of the
live data sets have the advantage that they are more likely
to be representative of the patterns of data encountered in
practice, while artificial data sets have the advantage that
they can be made to embody specific characteristics (such
as particular data skew patterns or volumes), which may be
useful for load and stress testing.

Both approaches, however, suffer from several disadvan-
tages. The most significant problem occurs when none of
the available test databases are suitable starting points for a
particular test case. For example, suppose a particular test
case executes a program which purges inactive customers,
with the aim of verifying that the business rule forbidding
deletion of customers with negative balances is correctly en-
forced. If none of the test databases contains any inactive
customers with negative balances, then the test case can-
not be executed successfully. For a one-off test run, testing
personnel can choose a database that is close to what is re-
quired, and manually update it so that it is suitable for use
with the test case. But if a complete test suite is to be exe-
cuted (possibly including test cases which themselves make
modifications to the database state) then in the worst case

1http://DBMonster.kernelpanic.pl
2http://www.quest.com/datafactory

this manual intervention will be required in between every
test case execution. This is clearly undesirable if test suites
are large or time-consuming to execute, or if the test suite
is to be run in batch (as in the case of overnight regression
testing, for example).

Current research in testing for database systems proposes
two approaches to this problem. One of these is to include
within the test case description a full (extensional) specifica-
tion of the database state against which it is to be run (and
of the database state that should be produced if the test has
executed successfully) [13, 14]. This solution is exemplified
by DBUnit3, an extension of the JUnit testing framework4

that is designed for testing database applications written in
Java. Each DBUnit test case is accompanied by an XML
file describing the data set required for the test. Before each
test run, DBUnit clears the database state and inserts the
data described by the XML file.

This approach has the advantage of simplicity, but it places
a considerable burden on testing personnel, especially when
complex database states are required. It is also inefficient,
since the database must be continually destroyed and recre-
ated between tests, even when significant parts of the database
might have been reused by the succeeding tests. Moreover,
maintenance of a large suite of such tests is extremely chal-
lenging, since any small change to the database schema may
require corresponding changes to many test cases.

The second approach that has been explored in the liter-
ature is more efficient in that it requires the creation of only
one database state per test suite (rather than one per test
case). It is exemplified by the AGENDA database testing
toolkit [6, 7], which can automatically generate a database
state given information about the schema, some data gen-
eration functions for individual attributes and some user-
selected heuristics describing the kind of database state re-
quired. The AGENDA tool also generates test cases from a
simple analysis of the program being verified. The user must
then add preconditions to each test case that are checked
just before it is executed and that will prevent a case from
being executed against an inappropriate database state. This
approach successfully relieves the user of the need to specify
complete database states in full detail, but at a cost. The
user must accept that some of the test cases may not be
executed because the database state fails the precondition,
even when it would require only a small change to bring the
database into a suitable state for the test. Since only one
database state is created per test suite, this problem of failed
tests is likely to become more severe as the size of the test
suite grows. There is also a potential inefficiency involved
in generating test descriptions and inputs, and in creating
the additional log tables and constraints/triggers needed by
the AGENDA tool, for test cases that are not in fact going
to be executed.

Ideally, we would prefer to be able to combine the advan-
tages of both these approaches, to give a form of database
test case that is quick and natural to specify, and which
maximises the number of cases within the suite that can be
executed while minimising the number of full test databases
that need to be maintained. Our thesis is that this can
be achieved by allowing testing personnel to describe the
database states involved in their test cases intensionally, in

3http://www.dbunit.org
4http://www.junit.org

the form of declarative conditions that the input database
must satisfy, and by providing a testing harness that can
automatically adjust the input database so that the test
conditions are satisfied [19].

In this paper, we present a language for specifying such
intensional database tests, and describe its semantics and
operational behaviour (Section 2). We present an algorithm
for automatically modifying database states so that test pre-
conditions are satisfied (Section 3), thus ensuring that all
test cases can be executed without requiring any human
intervention. We further describe how we have extended the
JUnit testing framework to allow intensional database tests
to be specified and executed in practice (Section 4). Finally,
we present the results of an evaluation of the performance
of the techniques (Section 5) and conclude (Section 6).

2. SPECIFYING INTENSIONAL TESTS
A conventional test case is typically modelled as a triple

< p, i, o >, which denotes a test that executes program p
with inputs (e.g., parameters) denoted by i. If no faults are
encountered during the test execution, the output that will
be produced is o. In the case of test cases for database ap-
plications, we must add two further elements—the specifica-
tion of the database state against which p is to be executed,
and some statement of the database state that should result
from the execution of p if it is operating correctly according
to its specification.

For example, consider the example program mentioned
in Section 1 that prunes inactive customer details from the
database. For this test case, we require a database state that
contains at least one inactive customer. This could easily
be stated as a predicate logic condition over the database,
assuming the obvious mapping between stored relations and
predicates, e.g.:

(∃custNo, lastOrderOn, a, b, c)

customer(custNo, a, b, c, lastOrderOn) ∧
lastOrderOn < today − 90

The program in question does not access any parts of the
database other than the customer table. Therefore, we do
not care what values the other tables contain and need not
mention them in the intensional specification of the test.

This approach works equally well for observing the results
of the test. For example, when testing the customer pruning
behaviour, we might require that no inactive customer with
a non-negative balance should exist in the database after
the test:

¬((∃custNum, lastOrderDate, a, b, c)

customer(custNum, a, bal , c, lastOrderDate) ∧
lastOrderDate < today − 90 ∧ bal > 0)

Effectively, the test case describes a set of valid (i.e., fault-
free) state transition for the database, as a classic pre/post-
condition pair.

This first-order-logic style of database specification does
not work so well when we consider the testing problem in
more depth, however. The problem is that we need to do
more than test the input database for compliance with the
requirements of the test case; we also need to extract in-
formation from it to be used to instantiate other elements

of the test case. For example, suppose we wish to test a
program that deletes details of individual customers. Such
programs typically require some input from the user, identi-
fying the specific customer record that is to be deleted (e.g.,
by supplying the relevant customer code as a parameter).
This could be achieved by requiring the tester to embed the
customer code into the test case elements, as literal values.
Alternatively, we could search for a suitable customer that
already exists in the database, using a standard database
query, and use the values from that in specifying the inputs
for the test case. This would minimise the amount of work
required to prepare the database for test execution (since we
would be using data already present in the database), and it
would also mean that test cases can be written very quickly,
since the user does not need to specify every last detail of
the data to be used.

Under this approach, the specification of the input database
state now has a dual role: it must state the condition that
determines whether the database state is suitable for execu-
tion of the test case and it must also return bindings for the
free variables that appear in the remaining components of
the test case. For the latter purpose, we would prefer to use
a straightforward query language, while for the former we
require the ability to place conditions on the data. With a
simple extension of a standard query language such as SQL,
we can combine both these purposes in a single statement.
For example, the following statement:

ANY :cn GENERATED BY
SELECT custNo FROM customer
WHERE lastOrderDate < today() - 90
AND balance < 0

retrieves the customer code of some record that meets the
given conditions (an inactive customer with negative bal-
ance) from the database, and binds it to the variable :cn.
It also places a cardinality constraint on the result of the
query, that at least one such binding must exist (implied by
the use of the keyword ANY).

The variable :cn can then be used to specify other ele-
ments of the test case. The obvious usage in this example is
in specifying the inputs to the program being tested, but it
can also be used in describing the expected outputs of the
program. In this example test case, the correct behaviour
of the DeleteCustomer program is to reject the deletion
of :cn, since customers with a negative balance cannot be
purged from the database. We might therefore give the fol-
lowing specification of the desired output database state:

AT LEAST 1 :cn2 GENERATED BY
SELECT custNo FROM customer
WHERE custNo = :cn

Of course, not all test cases are best specified in terms of
values retrieved from the database. For example, suppose
that we wish to write test cases for a program that adds new
customers to the database. The inputs to this program are
the details of the new customer, and the precondition for one
particular test case states that no customer should exist that
has the same customer code as that of the customer being
created. We cannot retrieve the customer details from the
database in this case, as they have not yet been stored in it.
Again, we could force the user to include the required values
as literals in the test case, but ideally we would like to give

<CONDITION> ::= <TYPE> <BINDINGLIST>
GENERATED BY <SELECT>

<TYPE> ::= ANY | NO | AT LEAST <i> |
AT MOST <i> | EXACTLY <i> |
ALL | FIRST

<i> ::= {0-9}
<BINDINGLIST>

::= <BINDING> { ‘,’ <BINDINGLIST> }
<BINDING> ::= {A-Z | a-z}
<SELECT> ::= ...

Figure 1: Simplified BNF Grammar for SQL Exten-
sions

more support to the process of test case generation. One
way to achieve this is to allow user-defined data generator
functions to be incorporated within queries as though they
were relations. For example, the following expression states
our requirements for this test case, while also binding the
variables needed for input to the program:

ANY :cn, :name, :addr, :bal GENERATED BY
SELECT gc.custno, gc.name, gc.addr, 0
FROM genCustomerDetails() AS gc
WHERE gc.custno NOT IN (

SELECT custno
FROM customer
WHERE balance > 0)

Here, the data generator function getCustomerDetails()
is used as if it were a normal relation, whereas in fact the
results it returns are computed on the fly. In fact, several
of the main commercial database management systems al-
ready allow user-defined functions to be embedded in queries
in this way, so this does not require a further extension of
SQL. Figure 1 shows the minimal extensions that are needed
to support all the kinds of constrained query shown above
using the SQL99 standard [17].

2.1 Test Case Semantics
Clearly, the semantics of these intensional database test

cases is more complex than for traditional extensional tests.
However, we can define their semantics formally in terms
of a mapping from intensional tests to sets of equivalent
extensional database test cases. We first present a formal
definition of the structure of our intensional test cases:

Definition 1. An intensional database test case is a quin-
tuple < p, i, DBi, o, DBo >, where:

• p is the program to be executed in the test,

• i is a tuple of n variables and literals that describes the
inputs to be given to program p, where n is the number
of parameters expected by p,

• DBi is a set of constrained queries that together specify
the initial database state.

• o is a tuple of m variables and literal that describes the
expected outputs from the program p.

• DBo is a set of constrained queries that together specify
the conditions that must hold in the database state after
execution of p if no fault has been encountered.

A constrained query has the form < Q,min,max , vars >,
where Q is a standard relational algebra query, min and
max describe the constraints on the cardinality of the query
result set, and vars is the list of variables bound by the
query result.

A database test case is well-formed for use with a partic-
ular database schema Σ iff:

• for every variable v that occurs free in i, DBi, o and
DBo, there exists a query in DBi that provides a bind-
ing for v,

• for every query < q, n, m, vs > in DBi ∪ DBo, q is a
well-formed query over Σ that returns k-tuples, where
|vs| = k, and

• there are no circular variable dependencies amongst
the queries in DBi.

We can now define a semantics for the intensional database
test cases as follows. Every intensional test case is equivalent
to a set of extensional test cases. An extensional test case
defines a specific test run, in terms of actual inputs and
outputs, rather than expressions denoting sets of inputs and
outputs. The set of all possible extensional test cases is
given by:

P × Ln ×DB × L×DB

where P is the set of all programs, L is the set of all lit-
erals, Ln is the set of all n-tuples formed from L and DB
is the set of all database states (relative to all schemas)5.
The components of each extensional test are the program
to be tested, the input values, the initial database state,
the expected output and the expected final database state,
respectively.

An intensional test case is effectively a shorthand expres-
sion for a set of extensional test cases that are all derived
from the same equivalence partition of the test case inputs.
An intensional database test < p, i,DB i, o, DBo >, where
DB i = {< qi, ni, mi, vi >} and DBo = {< qo, no, mo, vo >},
is equivalent to the following set of extensional tests:

{< p, i[vi/v], dbi, o[vi/v], dbo > |
dbi ∈ DB ∧

(ni ≤ |qi(dbi)| ≤ mi) ∧
v ∈ qi(dbi) ∧
dbo ∈ DB ∧

(no ≤ |(qo[vi/v])(dbo)| ≤ mo)}

We use the notation exp[θ1/θ2] to express the substitution of
the values in θ1 by the corresponding values in θ2 whereever
they occur in exp. Therefore, this expression denotes the set
of extensional tests where the input database satisfies the
constraints imposed by the initial constrained query, and
where the bindings from execution of that query (here ex-
pressed as the tuple of variables v) are substituted into the

5For simplicity of presentation, we assume that all programs
require the same number of inputs (n). In practice, n can
be the largest number of inputs required by any program,
and the unused values can be filled with nulls.

expressions defining the inputs, expected output and ex-
pected final database state before they too are evaluated6.

The idea underlying this notion of an intensional test is
that when any of its corresponding extensional sets are ex-
ecuted, the intensional test is itself deemed to have been
executed. Thus, the use of intensional tests allows much
greater freedom at test execution time, since we may choose
any of the possible extensional tests, depending on which is
closest to our starting environment. In the next section, we
will consider the practical ramifications of this approach to
testing, and describe how the semantics just described can
be implemented in practice.

3. DATABASE PREPARATION
The execution of an intensional database test case con-

sists of three distinct phases: 1) preparation of the environ-
ment for test execution; 2) execution of the test with the
prepared inputs; and 3) capture and storage of the results,
for later analysis. Since all the work of finding bindings
for the variables in the test case specification is done in the
preparation phase, the final two phases are straightforward
and differ little from standard testing procedures. When
program execution is complete, the constrained query that
determines whether the test has been successful or not is
evaluated against the database, and the output from the
program is checked against what is expected. In the case
of test failure, the details of the actual extensional test that
was executed are recorded, for diagnosis purposes.

The first phase, however, is more complex. If we were
content to execute only those test cases which happen to
be suitable for use with the initial database state, then the
preparation phase would simply be a matter of executing
the input constrained queries against the database and, if
they are all successful, using the bindings thus produced
to instantiate the remaining components of the test case.
However, thanks to the declarative nature of our test case
specifications, the testing framework can be pro-active in
cases where the given database is not suitable for use by
the test case, and can automatically generate a sequence of
updates that will cause the constrained queries to produce
the required number of bindings.

In fact, this problem is similar (though not identical) to
one that has been studied by the database and artificial in-
telligence communities for many years. It is known variously
as the view update problem [9], the knowledge base update
problem [12], and the transaction repair problem [10]. Many
database systems have the capability to define views on top
of the basic database. A view is a kind of virtual relation.
To the user, it appears to be a normal relation, but it con-
tains no stored data. Instead, the contents of the view are
defined by a expression over other relations, and attempts
to retrieve data from the view are converted into queries
over these relations. To take a simple example for illustra-
tion, we might create a view called Debtors which appears
to be a relation of the same name containing all customers
with a negative balance. Attempts to retrieve Debtors is

6For simplicity of presentation, we assume here that there
is only one query in each of DB i and DBo. In practice,
it may be necessary to include several queries, each pro-
ducing different bindings and imposing different cardinality
constraints. In this case, the constraints must be conjoined,
and the full set of bindings can be retrieved by performing
a natural join of all the queries, with join condition true.

converted into a query against the customer table with an
added constraint on the balance.

If views are truly to act as normal relations then it should
be possible to update them as well query them. But what
does it mean to update a virtual relation? In this case, the
view update must be converted into a sequence of updates
on the stored relations that will cause the desired change in
the contents of the view itself. This is a non-trivial problem
for realistic view languages, and becomes even more difficult
when we move into the context of knowledge bases, where
virtual relations can be defined using rules over other rela-
tions, and when we add integrity constraints that must be
maintained by all updates [1, 2, 3, 4, 5, 8, 11].

Only in very narrow circumstances does a view update
have a single translation into real updates [15, 18]. Various
heuristics for selecting from amongst the possible transla-
tions have been proposed (of which the most common is to
choose the update that results in the smallest change to the
existing data set [2]), but in real applications user input is
needed in order to identify the translation that corresponds
most closely to the real world state that the database should
reflect [10].

In the case of intensional database tests, we have a query
(the constrained query that describes our requirements for
the test) that does not produce the correct number of an-
swers when executed against the test database. We need to
find a sequence of updates to the base data that will cause
our query to produce the number of answers we need. How-
ever, in this case, there is no requirement to find the set of
updates that matches the state of reality — any sensible up-
date that satisfies the query conditions will be acceptable.
This simplifies the problem considerably, removing the need
for complex search procedures and for any user input.

3.1 The Preparation Algorithm
One of the advantages of using a query-based language

for test specification (as opposed to a predicate calculus-
based language) is that we can make use of a very common
and easy-to-analyse internal form for (relational) database
queries, called relational algebra. This form provides a small
number of operations on relations that can be combined to
form complex queries. For example, the three most basic
(and useful) relational algebra operators are:

• The projection operator, πAttsR, which creates a re-
lation from R by deleting all attributes not in Atts.
For example, π[Country]Customer produces a relation
that contains just the countries that appear in the
Customer relation.

• The selection operator, σcR, which creates a relation
that contains all the rows from relation R that satisfy
the condition c. For example, σbal<0Customer returns
a relation containing details of all customers with neg-
ative balances.

• The join operator, R 1c S, which creates a relation
containing rows from the cross product of R and S that
satisfy the join condition c. The query Debtor 1dNo=iNo

Inactive returns details of all debtors who are also in-
active.

Since the result of each relational algebra operator is itself
a relation, together they form a closed algebra. This means

that we can form arbitrarily complex queries by applying
operators to the results of other operators. For example, a
query which retrieves the customer number of all customers
with a negative balance would be written as:

π[custNo](σbalance<0Customer)

A common way to visualise such expressions is as a tree of
operators. The tree for the above query is shown in Figure 2.

Figure 2: Relational Algebra Tree for Negative Bal-
ance Query.

Our algorithm for preparing a database for testing is based
around this notion of a relational algebra tree. We take the
cardinality constraints from the test specification, and push
them down through the nodes of the input database query
tree, collecting up additional conditions as we go. When we
reach a leaf node (i.e. a base relation), we make updates
to the database so that the pushed-down constraints are
satisfied for that relation.

At each stage, we collect up the different kinds of con-
straint and push them further down into the tree. These
constraint types are:

• Min and Max, the upper and lower bounds on the de-
sired cardinality of the result set.

• SelC, the selection conditions on the relations that we
are interested in.

• UAtts, the collection of attributes that are used in the
constrained query, and that must be populated in any
new data that we insert.

We also build up a collection of queries that describe the
data that has been prepared for testing so far, as we progress
through the tree. We call these queries “bindings” (Bgs),
since they give us values for the variables that occur within
the selection and join conditions. At each stage, the bindings
should contain one query for each leaf node that has so far
been prepared.

It is easiest to see how this works by considering a simple
example, such as that shown in Figure 2. Let us assume we
have a constrained query that requires at least one customer
with negative balance to exist, and that our database does
not currently contain any such customers. We begin at the
root node of the tree, with only the cardinality constraints
extracted from the test specification:

Min = 1, Max = null, SelC = true,
UAtts = ∅, Bgs = ∅

The top node is a projection operator. Projection does not
affect the cardinality of the result set, nor impose any condi-
tions, but it does tell us something about the attributes used

Figure 3: Relational Algebra Tree Showing Multiple
Joins

by the query. We therefore add the projection attributes to
UAtts and push the constraints down to the next node:

Min = 1, Max = null, SelC = true,
UAtts = {custNo}, Bgs = ∅

Next we must deal with the selection node. Selection nodes
reduce the cardinality of their input, so we need to push
down the selection conditions to ensure that any updates
we may make affect the correct tuples. We also need to add
any attributes appearing in the selection condition to UAtts:

Min = 1, Max = null, SelC = balance < 0,
UAtts = {custNo, balance}, Bgs = ∅

The final node is the leaf node, representing the Customer
relation. We construct a query from the conditions on that
relation and execute it, to find out how many answers are
currently in the database. In this case, there are none, so
we need to insert a new Customer record with at least
the custNo and balance attributes populated, and with
a negative balance. If there are any integrity constraints
on this relation, then we need to make sure they are also
satisfied by the new data.

We use the DBMonster data generator mentioned earlier
to create the new data. It allows generation functions to
be specified for attributes, and additional constraints to be
placed on them. It will also maintain primary key, foreign
key, non-null and domain constraints if configured appro-
priately using the information present in the pushed-down
constraints.

Of course, this is a very simple example. In general, we
can expect to have to deal with more complicated queries
involving several joins, such as that shown in Figure 3. This
relational algebra tree is equivalent to the following con-
strained query:

ANY :orderNo, :productNo GENERATED BY
SELECT o.orderno, p.productno
FROM Order o, Orderdetail d, Product p
WHERE o.orderno = d.orderno AND

d.productno = p.productno AND
p.price > 50

which requires that at least one order must exist that in-
volves the purchase of at least one product that costs more

than £50. Joins complicate the process of preparing the
database, because they introduce dependencies between the
updates that take place at different leaf nodes. For example,
imagine that we have processed the tree shown in Figure 3 as
far as the leaf node representing the OrderDetail relation.
Join operators further constrain the selection condition (by
conjoining in their join condition), but add no other con-
straints. So, by the time we reach this leaf node, SelC will
have been set to:

o.orderno = d.orderno ∧ d.productno = p.productno

We need to find out whether a suitable OrderDetail record
exists within the database. However, in order to do this,
we need to know something about what preparation actions
were performed when the Product leaf node was processed.
Maybe there were already plenty of £50-plus products in
the catalogue, or maybe there were none and one had to
be created. How is this information passed through to the
OrderDetail node so that the correct tuple can be identi-
fied or created?

In the current version of our algorithm, we have chosen
to use the database itself to communicate these values. If
there are many suitable Product records, then we can find
one by querying the database directly once again. If a new
product had to be created, then it will now be present in
the database, so we can still retrieve it by querying. The
information needed to construct these queries is present in
the selection conditions that have been considered during
the processing of the relational algebra tree up to this point.
For example, in order to search for an OrderDetail tuple
that is connected to a suitable Product, we need to issue
the following query:

SELECT d.* FROM OrderDetail d, Product p
WHERE d.productno = p.productno AND

p.price > 50

This query cannot be constructed from only the constraints
pushed-down from the parent nodes of the leaf node; instead,
we need to collect up the constraints imposed by all nodes
visited before the current node, so that they are available for
query formation. This is done using the Bgs data structure
mentioned earlier.

Figure 4 presents the complete algorithm, showing the be-
haviour required for each different type of operator. The al-
gorithm is presented as a side-effecting function which takes
the constrained query that is to be satisfied by the database,
and a set of initial conditions that state the required cardi-
nality bounds and initialise SelC to true, UAtts to ∅ and Bgs
to ∅. The function returns a set of bindings, but these are
discarded. The main task of the algorithm is carried out
by the side-effecting updates that occur when leaf nodes are
processed.

4. DOT-UNIT TESTING FRAMEWORK
The intensional database test language and accompanying

preparation algorithm have been implemented within a test-
ing tool, called DOT-Unit. This tool is part of a larger Data-
Oriented Testing7 framework that is under development at
the University of Manchester [20]. DOT-Unit has been im-
plemented as an extension to the JUnit testing framework

7http://www.cs.man.ac.uk/∼willmord/dot/

Projection operator

prepare(πAttsQ, Min, Max, UAtts, SelC, Bgs)
= prepare(Q, Min, Max, UAtts ∪ Atts, SelC, Bgs)

Selection operator

prepare(σcQ, Min, Max, UAtts, SelC, Bgs)
= prepare(Q, Min, Max, UAtts, SelC ∧ c, Bgs)

Join operator

prepare(Q1 1jc Q2, Min, Max, UAtts, SelC, Bgs)
= prepare(Q2, Min, Max, UAtts, SelC ∧ jc,

prepare(Q1, Min, Max, UAtts, SelC, Bgs))

Relation (leaf node)

prepare(Rasv , Min, Max, UAtts, SelC, Bgs)
Q = bindingQuery(v, SelC, Bgs)

Execute Q to produce result set RS

if |RS| < Min then
Invoke DBMonster to create (Min - |RS|) more
instances of R that satisfy the conditions in Q

else if |RS| > Max then
Delete the first (|RS| - Max) tuples in RS

else
No preparation updates needed

return (Bgs ∪ binding(v, Q))

Figure 4: The Database Preparation Algorithm

for the unit testing of Java applications [16]. We have sub-
classed the standard JUnit TestCase class, to create a ded-
icated DatabaseTestCase class for specifying and man-
aging intensional database tests. DatabaseTestCase pro-
vides facilities for specifying pre-conditions on database state,
generating and manipulating the bindings that are produced
by such pre-conditions, and evaluating post-conditions on
the database state after the test has been completed. The
standard JUnit methods for determining the results of test
execution on the in-memory fixture can also be used.

Figure 5 shows an example DatabaseTestCase that in-
cludes two individual tests. The first verifies that when a
customer with a non-negative balance is deleted, all cus-
tomers with that customer number really do disappear from
the database. The second uses a data generation function to
propose attribute values for a new customer record (includ-
ing a unique customer number), and checks that after the
program has executed only one customer with the generated
customer number exists.

We use a prefixed colon to indicate variables that are
shared amongst the test components — a notation that will
be familiar to many database programmers, since it is com-
monly used in various forms of embedded SQL. The shared
variables acquire their values when the test harness evalu-
ates the precondition (and performs any necessary database
preparation steps). These values can then be accessed us-
ing the binding method, and can be used in arbitrarily
complex assert conditions, as well as in instantiating the
post-condition query.

One of the main advantages of using the JUnit framework
as the basis for the implementation of DOT-Unit is that it
allows us to integrate our tool seamlessly into existing de-
velopment environments, such as Eclipse8. Thus, DOT-Unit
tests are executed in exactly the same way as a standard JU-
nit test case, and the results are displayed using the same
interface components. This allows testing of database and
non-database components to be interleaved in a convenient
and natural manner.

8http://www.eclipse.org

5. EVALUATION
The practicality of this intensional test case approach de-

pends largely on the performance overhead imposed by the
database preparation algorithm. If the time required to ex-
ecute each individual test case is significantly higher using
our approach than with DBUnit, say, then fewer tests will
be able to be executed in the time available and the benefits
of faster test development and fewer spurious test failures
will be negated.

To gain a handle on the degree of performance overhead
to be expected from DOT-Unit, we made use of an exist-
ing extensional DB test suite that we created for earlier
work [20]. This suite was designed for mp3cd browser9, an
open-source Java/JDBC program that stories information
about mp3 files in a MySQL 5.0 database10. The schema
of the database consists of 6 relations with 22 attributes, 7
primary key constraints and 6 foreign key constraints. We
created an equivalent intensional test suite, consisting of 20
test cases, from the extensional suite by converting each test
case into DOT-Unit pre- and post-conditions. We also re-
placed each hard-coded test parameter in the original tests
into constrained query bindings.

We wanted to investigate two specific aspects of the per-
formance of DOT-Unit. First, we wanted to compare its
performance with that of DBUnit over the equivalent test
cases as the database size grows. Second, we wanted to gain
some idea of what aspects of DB preparation and testing
were dominating the performance of DOT-Unit. The re-
sults of the experiments we performed are presented below.
All experiments were run on a Pentium-M 2.0GHz machine,
with 1Gb RAM, running Ubuntu Linux.

5.1 Comparison with DBUnit
At first sight, the extensional approach, as exemplified

by DBUnit, would seem to be the more efficient method
of the two, as the testing harness does not need to spend
any time figuring out what updates need to be made prior
to each test—it only needs to execute them. This does

9http://mp3cdbrowser.sourceforge.net/mp3cd/
10http://www.mysql.com

public class ProgramTest extends DatabaseTestCase {
public void testDeleteCustomer() {

preCondition("ANY :cn GENERATED BY SELECT custNo FROM customer WHERE balance > 0;");
Program p = new Program();
p.deleteCustomer(binding(":cn"));
postCondition("NO :cn2 GENERATED BY SELECT custno FROM customer WHERE custNo = :cn;");

}
public void testNewCustomer() {

preCondition("ANY :cn, :name, :addr GENERATED BY SELECT gc.custNo, gc.name, gc.addr FROM
genCustomerDetails() AS gc WHERE gc.custNo NOT IN (SELECT custNo FROM customer);");

Program p = new Program();
boolean b = p.newCustomer(binding(":cn"), binding(":name"), binding(":addr"));
assertTrue(b);
postCondition("EXACTLY 1 :cn, :name, :addr GENERATED BY SELECT custno, name, addr

FROM customer;");
}

}

Figure 5: Example DOT-Unit Test Case

not happen by accident, but because a human programmer
has spent time earlier, deciding exactly what the database
should look like for each test case. However, when writing
DBUnit tests, it is common to try to reuse database de-
scriptions for multiple test cases where possible, to reduce
the amount of programming and maintenance time. In this
case, some redundant updates will be made before each test
case - updates that our extensional approach will not bother
to make. It is also the case that DBUnit makes its updates
blindly, whether they are needed or not, whereas the inten-
sional approach will be able to reuse much of the existing
database state for each new test case.

Given this, it seems likely that the performance of DBUnit
will be better when the database state required for each
test case is relatively small, but that the situation will be
reversed when the database state grows much larger. In
order to gauge the point at which this change occurs, we
ran our two test suites (extensional and intensional) with
databases of varying sizes, and measured the execution time
taken to execute the whole test suite.

In each case, we generated initial database states of vary-
ing sizes at random - either populating the database directly
(for the intensional test cases) or generating XML descrip-
tions of the required state (for the extensional test cases).
The results are shown in Figure 6.

Figure 6: Comparison of Approaches as DB Size
Increases

To our surprise, although the performance of DOT-Unit was
initially worse than that of DBUnit, it overtook its com-
petitor at a comparatively small database size of around 20
tuples per relation. Obviously, this experiment is a little
unfair to DBUnit, since programmers are unlikely to create
database descriptions consisting of 1000s of tuples per re-
lation. However, tests of this scale will be needed at some
point in the development cycle, in order to verify the be-
haviour of the system on more realistic data sets.

In order to assess the behaviour of DOT-Unit more pre-
cisely, consider the graph in Figure 7, which shows the re-
sults at small databases sizes in more detail. It can be ob-
served that the performance of DOT-Unit first improves and
then begins to degrade again at a database size of around
50 tuples per relation.

Figure 7: Detailed Comparison of Approaches

One possible explanation for this initial improvement in per-
formance is that, as the database size rises, so does the
probability that the data needed for the test case is al-
ready present in the database. For the very small states,
a lot of preparation work is required to create the needed
data, whereas less work is needed for a more fully populated
database. As the database size increases further, however,
the costs of making the queries needed to test the precondi-
tions and formulate the preparation updates rises, pushing
up the time required for the entire preparation step. This

behaviour may be a peculiarity of the particular test suite
used, of course, and further, more extensive studies will be
required in order to completely characterise the performance
of the DOT-Unit test harness.

From these initial results, however, DOT-Unit appears to
scale well relative to database size, and the execution times
are of the same order of magnitude as those resulting from
DBUnit. This suggests that the intensional approach may
provide a good compromise between saving expensive pro-
grammer time in developing new test cases and expenditure
of cheaper processing time in executing the test cases.

5.2 Effect of Constraint Complexity
A further concern was the effect of increasing constraint

complexity on the performance of DOT-Unit test cases. How
much additional overhead is added for conditions involving
a higher number of selection conditions and (most impor-
tantly) joins? In order to assess this, we grouped the test
cases into three groups, according to their complexity:

• A: queries with one or more selections and no joins,

• B: queries with one or more selections and a join be-
tween two relations,

• C: queries with one or more selections and joins be-
tween three relations.

This gave a test suite with 5 test cases in each of these
categories, which we executed against a randomly generated
database state with 500 tuples per relation that does not
satisfy any of the test case pre-conditions. Figure 8 shows
the results obtained for the three complexity categories. We
measured the average time taken to execute the test cases
in each category, including a breakdown of where the time
is spent in each case:

• Test: the time required to execute the procedural as-
pects of the test case;

• Query: the time required to execute the query aspect
of the test case condition;

• Prepare the time required to execute the preparation
aspect of the test case condition.

While the overall time required to execute the test cases rises
as the complexity rises (unsurprisingly), the relative propor-
tions of time spent in the various phases remains roughly the
same. The preparation phase seems to account for slightly
more than half of the time in each case, indicating that sig-
nificant improvements could be achieved with a less-naive
preparation algorithm.

6. CONCLUSIONS
We have presented a new approach to the specification

of test cases for database systems that attempts to reduce
the amount of manual intervention required in between test
case runs while also minimising the number of spurious test
failures due to inappropriate input database states. The ap-
proach has the further advantage that it sits naturally on top
of test data sets taken from live databases, and this allows
testing to be carried out using realistic data sets without re-
quiring significant programmer effort to tailor the data set to
the test cases. In effect, the intensional approach we have

Figure 8: The Affect of Changing Constraint Com-
plexity

described allows software developers to trade programmer
time for test execution time

Our experience has indicated that intensional test cases
are quick and natural to write for anyone who is familiar
with SQL and database programming, although a study
with an independent testing team would be necessary be-
fore we can make any strong claims in this regard. How-
ever, compared with what is involved in writing pure JDBC
database test cases and DBUnit test cases, we found that
the self-contained nature of the intensional test cases was a
definite advantage. Writing DBUnit test cases requires the
programmer to continually check that the test case is com-
patible with the database description. Moreover, since it is
common to try to reuse database descriptions for multiple
test cases by combining their requirements into one database
state, it becomes very easy to break one test case by chang-
ing the database description in order to ready it for another.
These problems do not arise with intensional testing, since
all the information about the test case is present in a single
file (the Java class file).

We designed this first version of the preparation algorithm
for simplicity and correctness rather than efficiency, and as
such it performs rather stupidly in many cases. We are cur-
rently exploring options for improving the algorithm, includ-
ing more intelligent selection of the order in which the rela-
tional algebra tree is traversed, alternating between passing
query bindings and passing literal value bindings as is most
efficient, and making use of modifications to existing tuples
as well as simply adding and deleting tuples (both of which
are comparatively expensive operations). The complexity of
the conditions we can handle is at present limited by the
capabilities of DBMonster, and can be expanded by devel-
opment of a custom data generation facility. We also need
to expand the range of queries that can be handled, beyond
simple select-project-join queries. For example, standard
SQL also allows aggregation and ordering within queries—
both of which offer challenges in terms of automatic prepa-
ration.

A further problem with our current algorithm is that it
may sometimes fail to find a solution to the database prepa-
ration problem, even though one exists. This is due to the
fact that updates are made at leaf nodes before the full set of
constraints on those nodes has been encountered. It should

be possible to address the problem with more sophisticated
querying techniques (this is an example of a fairly standard
constrained search problem, after all), although this will add
to the performance overhead. A thorough study of the trade-
offs between spurious failures and more intelligent searching
will need to be carried out before any concrete recommen-
dations can be made.

Finally, we note that where it is important to test large
numbers of frame constraints (i.e. aspects of the original
database state that are not affected by the execution of the
program under test), it may be easier to express the test case
using DBUnit, rather than cluttering up the intensional test
with many such constraints.

Our work presents a number of possible avenues for future
work beyond the improvements mentioned above, of which
the most urgent is the question of ordering of test cases
within suites. This ordering can be in terms of reducing the
cost of the modifications to database state or to maximise
fault coverage. There is also the question of whether the
modifications to database state should always persist be-
tween test cases or under certain conditions discarded. For
example, a test case may specify that a relation be empty
and to satisfy the condition the content is discarded. How-
ever, this relation may be required by later test cases and so
by discarding its contents we increase the divide between the
test state and the real world. This could be accomplished
by either embedding the modifications inside of a transac-
tion which can then be aborted or by using a hypothetical
database engine.

7. ACKNOWLEDGMENTS
We thank Leonardo Mariani and the anonymous reviewers

for comments on earlier drafts of this paper. David Willmor
is supported by a research studentship from the UK Engi-
neering and Physical Sciences Research Council.

8. REFERENCES
[1] M. Arenas, L. E. Bertossi, and J. Chomicki.

Consistent query answers in inconsistent databases. In
Proceedings of the 18th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), pages 68–79. ACM
Press, 1999.

[2] L. E. Bertossi and J. Chomicki. Query answering in
inconsistent databases. In J. Chomicki, R. van der
Meyden, and G. Saake, editors, Logics for Emerging
Applications of Databases, pages 43–83. Springer,
2003.

[3] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi. A
cost-based model and effective heuristic for repairing
constraints by value modification. In Proceedings of
the SIGMOD Conference, pages 143–154. ACM, 2005.

[4] L. Bravo and L. E. Bertossi. Logic programs for
consistently querying data integration systems. In
G. Gottlob and T. Walsh, editors, Proceedings of the
18th International Joint Conference on Artificial
Intelligence (IJCAI), pages 10–15. Morgan Kaufmann,
August 2003.

[5] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability
and complexity of query answering over inconsistent
and incomplete databases. In Proceedings of the 22nd
ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems (PODS), pages
260–271. ACM, June 2003.

[6] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and
E. J. Weber. A framework for testing database
applications. In Proceedings of the International
Symposium on Software Testing and Analysis
(ISSTA), pages 147–157, August 2000.

[7] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I.
Vokolos, and E. J. Weyuker. An AGENDA for testing
relational database applications. Software Testing,
Verification and Reliability, 14(1):17–44, 2004.

[8] J. Chomicki and J. Marcinkowski. On the
computational complexity of minimal-change integrity
maintenance in relational databases. In L. E. Bertossi,
A. Hunter, and T. Schaub, editors, Inconsistency
Tolerance, volume 3300 of Lecture Notes in Computer
Science, pages 119–150. Springer, 2005.

[9] S. S. Cosmadakis and C. H. Papadimitriou. Updates
of relational views. Journal of the ACM,
31(4):742–760, 1984.

[10] S. M. Embury, S. M. Brandt, J. S. Robinson,
I. Sutherland, F. A. Bisby, W. A. Gray, A. C. Jones,
and R. J. White. Adapting integrity enforcement
techniques for data reconciliation. Information
Systems, 26(8):657–689, 2001.

[11] G. Greco, S. Greco, and E. Zumpano. A logical
framework for querying and repairing inconsistent
databases. IEEE Transactions on Knowledge and
Data Engineering, 15(6):1389–1408, 2003.

[12] A. Guessoum and J. W. Lloyd. Updating knowledge
bases. New Generation Computing, 8(1):71–89, 1990.

[13] F. Haftmann, D. Kossmann, and A. Kreutz. Efficient
regression tests for database applications. In
Proceedings of the 2nd Biennial Conference on
Innovative Data Systems Research (CIDR), pages
95–106. Online Proceedings, January 2005.

[14] G. M. Kapfhammer and M. L. Soffa. A family of test
adequacy criteria for database-driven applications. In
Proceedings of the 11th ACM SIGSOFT Symposium
on Foundations of Software Engineering, pages
98–107. ACM, September 2003.

[15] R. Langerak. View updates in relational databases
with an independent scheme. ACM Transactions on
Database Systems (TODS), 15(1):40–66, 1990.

[16] P. Louridas. Junit: Unit testing and coding in
tandem. IEEE Software, 22(4):12 – 15, July-Aug 2005.

[17] J. Melton and A. R. Simon. SQL:1999 Understanding
Relational Language Components. Morgan Kaufmann,
2002.

[18] H. Shu. Using constraint satisfaction for view update.
Journal of Intelligent Information Systems,
15(2):147–173, 2000.

[19] D. Willmor and S. M. Embury. Exploring test
adequacy for database systems. In Proceedings of the
3rd UK Software Testing Research Workshop
(UKTest), pages 123–133. The University of Sheffield,
September 2005.

[20] D. Willmor and S. M. Embury. A safe regression test
selection technique for database–driven applications.
In Proceedings of the 21st International Conference on
Software Maintenance (ICSM), pages 421–430. IEEE
Computer Society, September 2005.

