
Identifying Speculation Points 
 
While thinking about the role of dynamic compilation in support of speculation, I was 
trying to come up with a generic view of speculation points within a program. I had 
assumed that speculation points would naturally be branches, but a small amount of 
thought shows this not to be the case. 
 
This was obvious when I realised that any instruction in a ser ial program can be a 
speculation point. 
 
Take the case of method (subroutine) speculation where the call is executed non 
speculatively and the code following the method, the continuation, is executed 
speculatively. What if we inlined the method? This should make no difference to the 
opportunity for speculation but we would now be dealing with a totally linear piece of 
code. 
 
The answer is that, in any linear sequence of code, we can choose to jump ahead and 
speculate on any sequence of code beyond the current program counter. All we need 
to do is identify the speculation point S and the continuation point C. Consider the 
following sequence: 
 

Inst1 
S  Inst2 

Inst3 
Inst4 

C Inst5 
 Inst6 
 
Assuming we are executing Inst1 and we come upon the speculation point at Inst2, we 
continue to execute Inst2 .. Inst 4 but start a speculative thread to execute the 
instructions beginning at C (Inst5) onwards. When the non-speculative thread reaches 
and has executed the instruction before C (Inst4), it is necessary to commit any non-
speculative state and determine if the speculative thread can be made non-speculative 
and continue or whether it needs to be squashed and restarted. These are, of course, 
the normal rules that are used for both loop and method speculation. 
 
Because HLL programs are structured, the S & C points are usually associated with 
control points in the program which reflect that structure and indicate points where 
speculation might be worthwhile but there is nothing fundamental about these. 

Method Call 
Here the speculation point is the call and the continuation point is the instruction 
immediately following. 
 

Inst1 
S  BSR sub 
C Inst3 

Inst4 



 
Of course, in this case, the subroutine body exists elsewhere, but if we consider it as 
logically inlined then we can see that it conforms to the general picture. 
 
Recursion, both serial and parallel, is just a particular case of method speculation. 

A Loop 
Consider the following ‘do while’  loop. To make it simple, assume that the loop 
termination is determined by the single Tst instruction. Now consider applying the 
previous rules. We need an additional rule that a speculative thread gives rise to 
another (more) speculative thread. This is again a standard technique. 
 
If we enter the loop from Inst1 we will execute Body1 & Body2 non-speculatively 
and start a speculative thread at the C point Tst. If the condition is true, we will jump 
back to execute a speculative copy of the loop body. However, because we encounter 
a speculation point S, we create a further speculative thread starting at C. This will 
continue until the loop termination condition is false when the speculative thread will 
continue to execute Inst6 etc.. 
 

Inst1 
S  Body1 

Body2 
C Tst 
 Bcc (Body1) 
 Inst6 
 
Of course, in practice, we need to cope with any loop control variables. If, for 
example, the loop is controlled by a simple incremented counter immediately before 
Tst then this could be the continuation point. More complex loops might require 
transformation to make this simple model work sensibly. (exercise for the reader!). 
 
We also need to deal with the situation where the non-speculative thread invalidates 
the speculative thread which follows it. This requires the well known rule that the 
squashing of a speculative thread must invalidate any further speculative threads 
which it created. 

ILP Speculation 
We ought to be able to express speculation, using this approach, down to the level 
where a thread is a single instruction. In that case we might hope that this becomes 
equivalent to speculative ILP as executed in superscalar processors. 
 

Inst1 
S  Inst2 
CS Inst3 
CS Inst4 
C Inst5 
 Inst6 
 
This specifies that, on reaching Inst2 we immediately spawn Inst3, Inst4 & Inst5 
speculatively in parallel. 



 
The squashing rules must again deal with the multiple speculative threads but this 
corresponds to the normal mechanisms which exist in superscalar processors. 

Nested Speculation 
In the above ILP example (and all previous) we have assumed that the C 
corresponding to an S is the one that follows in sequence. However, this does not 
have to be the case. Consider the following: 
 
 

Inst1 
S Inst2 
S Inst3 
C Inst4 
 Inst5 
C Inst6 
 
The only sensible interpretation would seem to be that the S & C points are nested in 
a block structured way. On reaching Inst2 we would start a speculative thread at Inst6. 
The non-speculative thread, on reaching Inst3 would start a further speculative thread 
at Inst4.  
 
We need to cope with the situation where the execution of Inst4 and Inst5 is squashed 
before Inst 5 is reached. In that case we must still examine the effect of the commit of 
the non-speculative part of the inner thread on that which started at Inst6. However, 
this is really no different from the previous cases of multiple speculative threads. The 
only additional rule we need to add is that inner threads are less speculative than outer 
ones. 

Data Dependence 
We suggested above that we can choose any instruction as a spawn point and any 
subsequent instruction as a continuation point. Does this make practical sense? 
 
Consider firstly a simple linear sequence of instructions with no branches. What 
might determine how we would choose such points? Clearly there is the issue of 
granularity. Depending on hardware considerations we may choose smaller or larger 
groups of instructions. In the ILP case we may choose to speculate on the execution of 
single instructions. 
 
The viability of this is determined in an ILP processor by the data dependences. There 
is no point in scheduling speculative execution of and instruction if its inputs depend 
on a previous instruction which is still being executed. In a superscalar processor, a 
combination of compiler analysis, instruction re-ordering and hardware interlocks are 
used to control both instruction issue and mis-speculation. 
 
In general it is going to be a combination of granularity and data dependence which 
will determine the choice of sensible points in a more general scheme. In ILP we need 
to consider dependences caused by register usage. In a larger grain scheme intended 
for multi-threaded multi-processors we probably want to avoid dependences in a 
speculative thread on registers in a different core. This is a good reason why method 



boundaries are probably suitable points to consider; the register dependences are 
limited and can probably be eliminated in the thread spawning mechanism. 
 
The data dependences via memory are usually either difficult or impossible to 
determine by static analysis depending on the nature of the program/ language. It is 
clear that some analysis of the probability of store carried data dependences are 
important in making choices of speculation points. However, it is important to realise 
that we have a wide choice of where these might be which is not directly related to the 
program structure. 

More Complex Instruction Sequences 
The above discussion assumed a linear sequence of instructions without branches. If 
we have branches, does this limit our choices? 
 
Method Calls 
 
Consider first the case of method calls. We have seen how, considering the call 
sequence as linear code, normal method speculation corresponds to choosing the 
speculation point as the call instruction and the continuation point as the immediately 
following one. 
 
However, if we were to consider the code as logically extending into the method 
body, would it make any sense to choose a continuation point somewhere within this 
method body? Assume, to simplify the discussion, that the body itself contains no 
branches. We could consider the following: 
 

Inst1 
S  BSR sub 
 Inst3 

Inst4 
… 
 

Sub Sub1 
C Sub2 

Sub3 
Rts 

 
Assume that the parameters are passed to the call on the stack (i.e. not using registers) 
at the point the call occurs. The return link would usually be in a register although it 
could in principle also be on the stack. If, when we started a speculative thread at 
point C, we forwarded the stack (and frame?) pointer and the return link to the thread, 
the continuation could access all the input data to the call. It might be necessary to set 
up a separate stack to hold data generated by the speculative thread, but this again is a 
detail. We could, of course, also pass parameters in registers as long as we forwarded 
them. 
 
Assuming the continuation code was largely independent of the first part of the 
method, there is no reason why it should not continue. It could generate the method 
result, perform the return and continue (speculatively) with the code following the 
call. When the non-speculative thread reaches the continuation point, it may have 



produced values which invalidate the speculation. These could be in registers, on the 
stack or global. To avoid the register situation, we might want to compile the method 
body appropriately.  The speculative thread would be squashed if necessary, but if 
not, it would be made non-speculative and allowed to continue. 
 
It is not suggested that this approach would make sense in most circumstances, 
However, it does indicate that the principle is generally applicable and that it is only 
data dependences which determine correct behaviour. 
 
An ‘ if’  Statement 
 
By avoiding branches in the code we have considered so far. We have always ensured 
that the speculative thread is executing code that will be required and will produce 
wanted results if it is not invalidated by data dependences. 
 
However, if we are allowed to choose any instructions as speculation and continuation 
points this may not always be the case. Consider the following ‘ if’  statement code: 
 

Inst1 
S  Inst2 

Inst3 
Bcc (Inst8) 

 Inst5 
C Inst6 
 Inst7 
 Inst8 
 
Here we have chosen to begin a speculative thread before a test which controls 
execution of a block of code (Inst5..Inst7). however, we have chosen our continuation 
point within the block which may or may not get executed. 
 
The situation here is slightly different. If the test fails, when executed by the non-
speculative thread, the thread will never reach the continuation point. However, it is 
clear that the fact that the control of the non-speculative thread is about to progress 
beyond the continuation point is an indication that the non-speculative thread should 
commit and squash the speculative one. We could handle this as the fact that the 
program counter should be the address before the continuation point at the time the 
non-speculative thread commits. If the actual value were added to the data that the 
speculative thread checks at the commitment point this would handle the situation 
correctly. 
 
One could continue to examine more complex sequences of branch instructions to 
analyse whether the principles work with general ‘spaghetti’  code and arbitrary spawn 
and continuation points. It is believed, but not proved, that they will. 

Summary 
It has been observed that thread level speculation can be achieved from serial code by 
choosing any instruction as a spawn point and any subsequent instruction as a 
continuation point. It has been shown that the common forms of TLS, namely method 
speculation and loop body speculation are particular cases of this principle where the 



points have been chosen to correspond with points in high level languages where the 
structure suggests that speculation may be profitable. It has further been shown that 
ILP speculation can be viewed in the same framework and that speculation can 
readily be nested with correct interpretation of the markings. 
 
At execution time the following steps and principles must be followed: 
 

• When control reaches a speculation point, the current thread should continue 
and a new speculative thread started at the continuation point. 

• When a thread reaches and completes the instruction before the continuation 
point, if it is non-speculative it must commit its calculated values. Otherwise it 
must wait to become non-speculative. 

• When a thread commits, the thread that it created will either be squashed or 
become non-speculative depending on whether the committing thread has 
made any of its input values invalid. 

• Any squashed thread must also squash threads which it created. 
• If the speculation is nested, the speculation and continuation points must be 

considered in a block structured manner. Outer speculations must be 
considered more speculative than inner ones and therefore squashed if they 
fail. 

• If the continuation point is chosen within a method call (relative to the 
speculation point) the parameters and control variables (sp, fp & lr) need to be 
forwarded to the speculative thread. 

• To handle situations where a continuation point is chosen within a section of 
code which would not have been executed in a normal serial schedule, it is 
necessary to modify the execution rules to squash the resulting speculative 
thread if the control point of a non-speculative thread is about to transfer 
beyond the continuation point. 

Conclusions 
Most TLS proposals concentrate on either method level or loop level speculative 
parallelism. This analysis has shown that there is nothing fundamental concerning this 
choice of control structure division. In principle, we can view the code at single 
instruction level and choose any instruction as a speculation point and any subsequent 
instruction as a continuation point. To make this principle work in all circumstances, 
it is necessary to add slightly to the normal rules of speculative execution which have 
been used previously. 
 
By using this analysis, it may be possible to be more flexible in the generation of 
speculative parallelism. For example, compiler analysis might indicate that there are 
sections of a loop body which need to be executed serially before a speculative 
version of the next loop body is generated. The techniques described here show how 
this should be achievable by direct selection of sections of the loop body. 
 
 
 
 
 
 


