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Abstract

We can classify several quite different calculi for automated reasoning in first-

order logic as instantiation-based methods (IMs). Broadly speaking, unlike in

traditional calculi such as resolution where the first-order satisfiability problem

is tackled by deriving logical conclusions, IMs attempt to reduce the first-order

satisfiability problem to propositional satisfiability by intelligently instantiating

clauses.

The Inst-Gen-Eq method is an instantiation-based calculus which is complete

for first-order clause logic modulo equality. Its distinctive feature is that it com-

bines first-order reasoning with efficient ground satisfiability checking, which is

delegated in a modular way to any state-of-the-art ground solver for satisfiabil-

ity modulo theories (SMT). The first-order reasoning modulo equality employs a

superposition-style calculus which generates the instances needed by the ground

solver to refine a model of a ground abstraction or to witness unsatisfiability.

The thesis addresses the main issue in the Inst-Gen-Eq method, namely ef-

ficient extraction of instances, while providing powerful redundancy elimination

techniques. To that end we introduce a novel labelled unit superposition calcu-

lus with sets, AND/OR trees and ordered binary decision diagrams (OBDDs) as

labels. The different label structures permit redundancy elimination each to a

different extent.

We prove completeness of redundancy elimination from labels and further inte-

grate simplification inferences based on term rewriting. All presented approaches,

in particular the three labelled calculi are implemented in the iProver-Eq system

and evaluated on standard benchmark problems.
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Lay Abstract

How can we be sure that software which we entrust more and more vital tasks to

is free of flaws? Incidents of software maliciously being exploited or accidentally

failing have had consequences that range from severe financial losses to threats to

the lives of people. Good engineering is just a weak safeguard, and in particular

in an ever faster paced and more complex world no guarantee that no flaw in

the final product has been overlooked. Only formal verification can prove that a

program will always behave as specified or that a specification is actually without

loopholes.

Unfortunately, verification of real world applications is tantamount to finding

a needle in a haystack. The problems are too large and too complex to tackle

for any one person even with all human intuition and creativity. This is where

automated reasoning comes in. It offers a mechanisation of the process of finding

logical conclusions, sifting through the haystack and in relevant practical cases

actually finding a needle. Then, either defects in the implementation or specifica-

tion can be fixed, or the reliability of the software has been formally established.

This research is focused on a recent approach to automated reasoning that

has already shown success in a range of cases. The goal is to allow specifications

to use more expressive theories, leading to more concise formulations, in turn

making the automated reasoning process more powerful. Ultimately, automated

reasoning for verification will have an integral place in design processes, resulting

in better and safer software.
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Chapter 1

Introduction

Information systems are ubiquitous. Many aspects of our daily lives depend on

both software and hardware correctly executing the task we entrust them with.

Accidental failures, malicious exploits or flawed designs of these systems can

have severe consequences and good engineering should make all efforts to prevent

these. With systems becoming more and more complex, simple approaches based

on thorough testing are neither appropriate nor possible and formal methods

become an essential part of the toolbox.

The interest in formal methods for system design and verification is growing

and major industry players now integrate formal methods in their processes to de-

velop dependable systems. One notable example is the design of the Intel CoreTM

i7 processor, where for the first time formal verification became the “primary val-

idation vehicle” for the core execution cluster, with coverage oriented testing in

a merely supplementary role [Kaivola et al., 2009]. Another example of active

research in an industry setting is Microsoft, where several tools for verification of

software have been developed. For instance, the Windows Driver Development

Kit contains SLAM [Ball et al., 2010], which checks if a piece of software like a

device driver satisfies mandatory behavioural properties, or Pex [Tillmann and

de Halleux, 2008] integrated into the Visual Studio development environment for

“white box test generation”, which automatically produces a “small test suite

with high code coverage”.

Academia has long recognised verification as a “grand challenge” [Beckert

et al., 2006] and automated reasoning as the heart of formal methods plays a

central role in it. Most verification tasks can be directly posed in first-order logic

or discharge proof obligations as first-order formulae.

15
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In other application areas we can translate into certain fragments of first-

order logic important non-classical logics such as description logics for reasoning

in knowledge databases [Hustadt et al., 2004b] or more general many modal logics

[Schmidt, 1999]. Moreover, the translated first-order problems can be efficiently

decided with calculi for first-order reasoning. Therefore we can consider first-

order logic it as the standard logic and due to its generality certainly as one of

the most important logics.

Automated reasoning for first-order logic has a rather long history in Com-

puter Science, but the canonical problem all other tasks are reduced to has always

been the following: Prove the unsatisfiability of a formula. Despite the inherent

undecidability of this problem, calculi have been developed that make it feasible

for larger and larger fragments of first-order logic.

A number of diverse calculi and variants have been proposed, they have been in

and out of fashion at times and perform differently for different kinds of problems.

In this thesis we are interested in so-called instantiation-based methods that have

recently gained attention as they promise some advantages over longer established

methods (see, e.g., Baumgartner [2007]).

A first simple instantiation-based method was already presented in Gilmore

[1960], but it was soon overshadowed by the success of the resolution calculus

by Robinson [1965]. Two developments have lead to the recent interest and the

development of “modern” instantiation-based calculi.

The first is the success of solvers for the decidable problem of propositional

satisfiability with the DPLL method [Davis and Putnam, 1960, Davis et al., 1962].

Although this method was originally formulated as a first-order calculus, it is vir-

tually exclusively employed for propositional reasoning. Sophisticated techniques

were developed such that DPLL-based solvers for propositional satisfiability, so

called SAT solvers, can tackle huge problems and have become valuable tools for

certain verification tasks.

A second reason was the discovery of the decidable fragment of effectively

propositional logic, also called the Bernays-Schönfinkel fragment, that can en-

code problems from domains as diverse as bounded model checking [Pérez and

Voronkov, 2007], logic programming [Eiter et al., 2005], knowledge represen-

tation [Hustadt et al., 2004a] and hardware verification [Emmer et al., 2010].

Instantiation-based methods by their nature are decision procedures for this frag-

ment and outperform traditional methods.
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However, instantiation-based methods are not only restricted to the Bernays-

Schönfinkel fragment. They are general calculi for first-order logic and have

attractive features, some of which are complementary to other contemporary

methods.

At the core of instantiation-based methods is a theorem, ultimately due to

Herbrand’s Theorem, which we state in the following form.

Theorem 1.1. Let ϕ (x̄) be a quantifier-free formula, then ∀x̄ ϕ (x̄) is unsat-

isfiable if and only if there is a finite number of ground terms t̄1, . . . , t̄n such

that
∧
i ϕ (t̄i) is unsatisfiable.

We immediately obtain a refutationally complete method, which is the pro-

totype of an instantiation-based method, by repeating two steps.

1. Guess a finite number of ground instances of ∀x̄ ϕ (x̄).

2. Test ground satisfiability.

Since techniques for SAT solving are well explored and mature industrial-

strength tools exist, instantiation-based methods can rely on such approaches for

the second part. The central question and the distinguishing feature between

instantiation-based methods is therefore how to efficiently find a set of ground

instances of a first-order formula to witness first-order unsatisfiability.

An instantiation-based method searches in an intelligent way for ground in-

stances of the input formula. In general, a quantifier-free formula has an infinite

number of ground instances, but by Theorem 1.1 it suffices to find a finite sub-

set. This approach is orthogonal to traditional methods, which usually derive

logical conclusions or analyse the input formula. A number of properties make

instantiation-based methods interesting in their own regard as well as a comple-

ment to traditional methods.

• They cover a different search space, solving a different set of problems.

This is in particular exemplified by the decidable Bernays-Schönfinkel frag-

ment, where formulae only have a finite number of ground instances. Hence,

instantiation-based methods terminate after having produced all these in-

stances. Therefore instantiation-based methods are natural decision pro-

cedures and particularly strong, unlike other methods in their standard

formulations, which do not necessarily decide this fragment.
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• The search for instances is usually guided by partial models, although not

with the intention of finding a model of the input formula, but rather

to find a set of unsatisfiable ground instances. As a side effect, in most

instantiation-based methods it is easy to extract a model after the input

formula has been found satisfiable.

• Since propositional reasoning is an integral part, instantiation-based meth-

ods usually show a good performance on propositional and nearly proposi-

tional formulae. Other methods do not have this advantage and in partic-

ular resolution is well-known to be weak on propositional formulae.

• Finally, unlike other methods, where new and longer formulae can be de-

rived by recombining formulae, instantiation-based methods have the ad-

vantage of preserving the structure of formulae.

In many applications it is indispensable to have equational reasoning robustly

built into the calculus. While theoretical foundations of equational reasoning

in several instantiation-based methods have been laid already some time ago

(Baumgartner and Tinelli [2005], Ganzinger and Korovin [2004], Letz and Stenz

[2002]), due to a number of challenging issues only now practical implementations

of the calculi appear.

In this thesis we take up equational reasoning with the Inst-Gen-Eq calculus as

presented in Ganzinger and Korovin [2004], which is a novel approach not found

in other calculi. The distinctive feature of the Inst-Gen-Eq method is a modular

combination of superposition style first-order reasoning to find ground instances

and ground satisfiability based on any off-the-shelf solver. The extension of the

SAT problem to ground satisfiability modulo equality remains decidable, and

instead of a SAT solver, we use a solver for satisfiabiliy modulo theories (SMT)

to decide ground satisfiability modulo equality.

Our research hypothesis is that instantiation-based reasoning and in particu-

lar the Inst-Gen-Eq method can benefit from a robust integration of equational

reasoning. We further test the hypothesis that in the Inst-Gen-Eq method the

separation into and cooperation between first-order reasoning and ground reason-

ing as conceived in the non-equational Inst-Gen method extends to equational

reasoning.
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A major practical challenge in Inst-Gen-Eq is the efficient extraction of rele-

vant substitutions from superposition proofs, which are used for instance genera-

tion. Here we need to explore potentially all non-redundant superposition proofs

resulting in contradictions, extract relevant substitutions and efficiently propa-

gate redundancy elimination from instantiation into superposition derivations.

Non-trivial issues arise when combining literals equal up to renaming, where it is

crucial to preserve the structure of proofs. For refutational completeness the nec-

essary instances have to be generated, while for efficiency redundancy elimination

with constraints should be preserved.

The main original contribution of the thesis is the Inst-Gen-Eq method with

unit superposition on labelled literals to handle different literal variants in an

elegant, uniform and efficient way. The labelling initially distinguishes between

literal variants and the inference systems provide a merging rule to combine literal

variants such that further inferences are simultaneously performed on all merged

literal variants. The labelling approach has the advantages of replacing the ex-

traction of substitutions from proofs and enabling redundancy elimination with

both constraints and subsumption. We define and discuss inference systems for

three label structures, namely sets, AND/OR trees and ordered binary decision

diagrams (OBDDs), some enabling redundancy elimination to a greater extent at

the cost of a higher computational complexity.

Besides redundancy elimination based on labels we lift simplification infer-

ences based on rewriting and add a demodulation inference rule to the labelled

inference systems. This is another non-trivial contribution due to interactions

between the first-order reasoning and the ground satisfiability solving.

The methodology in the thesis comprises both formal proofs and empirical

evaluation. We give an extensive completeness proof of the Inst-Gen-Eq method

that features a general notion of redundancy to justify the concrete techniques

presented afterwards. All theoretical aspects have been implemented in the

iProver-Eq system using state-of-the art techniques and the system is efficient

enough to be on a par with leading theorem proving systems. In particular, the

system implements the three labelled calculi and we give experimental evidence

of strengths and weaknesses.

Finally, there are directions for further work to move beyond equational rea-

soning, where further significant contributions can be expected.
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Putting applications back into focus, we find that there is an amount of back-

ground knowledge required to solve problems in particular domains. This results

in the approach of satisfiability modulo theories (SMT), which is a currently

highly active research topic. Since virtually all theories of interest have the the-

ory of equality embedded, the work in this thesis is an essential step towards a

possible further development of the Inst-Gen method to reasoning modulo theo-

ries as already described in Ganzinger and Korovin [2006].

The main value of this line of research, building in robust equational reasoning

into Inst-Gen and further extending the calculus to reason modulo theories, lies

in connecting three areas of active research in automated reasoning: first-order

reasoning, propositional satisability (SAT) solving and satisfiability modulo the-

ories (SMT). By their nature, instantiation-based methods combine first-order

reasoning and SAT solving. In particular the Inst-Gen method exhibits this com-

bination in a clear modular way and has led to valuable insights. A hot topic in

first-order reasoning is the integration of theory reasoning, while a complemen-

tary topic in SMT solving is to lift the efficient ground reasoning to first-order.

Extending the Inst-Gen calculus to equational reasoning and to theories beyond

has the potential to benefit these two concurrent developments.

The thesis is organised into the following chapters.

Chapter 2 provides a common ground of definitions and notation for the chap-

ters to follow.

Chapter 3 gives an overview of the non-equational Inst-Gen method and de-

monstrates equational reasoning with Inst-Gen-Eq. We contrast the method with

other instantiation-based methods and in particular their approaches to equa-

tional reasoning.

Chapter 4 formally defines the Inst-Gen-Eq method and proves refutational

completeness. The proof provides more details than in the original publication by

Ganzinger and Korovin [2004] and contributes a more restrictive inference rule

based on superposition rather than ordered paramodulation. We also extend the

notion of redundancy in order to allow simplifications with unit clauses.

Chapter 5 contains the main contribution of the thesis, introducing three la-

belled calculi for the Inst-Gen-Eq method and proving their completeness. The
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label structures of sets, AND/OR trees and OBDDs differ in the way labels are

merged, the precision of redundancy elimination and the existence of normal

forms.

Chapter 6 is concerned with concrete techniques for redundancy elimination.

Justified by the extended notion of redundancy in the proof of completeness we

contribute two techniques for simplification that use unit clauses: subsumption

by unit clauses and demodulation.

Chapter 7 is a system description of iProver-Eq, the implementation of the

Inst-Gen-Eq calculus based on the non-equational system iProver. All of the

features studied in previous chapters are implemented in iProver-Eq.

Chapter 8 backs up the theoretical contributions with experimental evidence,

demonstrating the effects of the main contributions in the iProver-Eq system. We

also report on a comparison with other systems.

Chapter 9 concludes and discusses further work.

Parts of Chapters 5 and 7 of this thesis were published as Korovin and Sticksel

[2010a] and Korovin and Sticksel [2010b], respectively.
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Chapter 2

Preliminaries

We use standard terminology and notions of first-order logic. In order to keep

this thesis self-contained, we give definitions and notations of the central elements

in this chapter.

Definition 2.1. A signature Σ = 〈Σf ,ΣP 〉 is a pair of sets of function symbols

and disjoint predicate symbols. We assume a unary function arity : Σf ∪ ΣP → N
that assigns to each function symbol f ∈ Σf and each predicate symbol P ∈ ΣP

a non-negative integer arity(f) ≥ 0 and arity(P ) ≥ 0. Function symbols with

arity zero are also called constant symbols and we assume that every signature Σ

contains at least one constant symbol.

Definition 2.2. Let Σ be a signature and X be a set of variables with X ∩ Σ = ∅.
A term is either

(i) a variable x ∈ X or

(ii) a functional term f (t1, . . . , tn) where f ∈ Σf with arity (f) = n and each ti

is a term.

By T (Σ, X) we denote the set of all terms built over the signature Σ with variables

from X.

The set of variables of a term is recursively defined as

var (t) =

{x} if t = x⋃n
i=1 var (ti) if t = f (t1, . . . , tn).

A term t is ground if var (t) = ∅ and we denote the set of ground terms over

a signature Σ as T (Σ) = T (Σ, ∅).

23
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The set of subterms of a term t contains the term t itself and if t = f (t1, . . . , tn)

also the subterms of t1, . . . , tn.

A position in a term t is a sequence of integers, it denotes a subterm of t. The

empty sequence λ denotes the term t itself and the position p = q.i denotes the i-th

subterm of the subterm at position q. For instance the subterm at position 2.1

in f(a, g(b)) is b.

We write t[u]p to express that the term u is a subterm of t at position p. Am-

biguously we denote by t[v]p the result of replacing the subterm of t at position p

with the term v.

Conventionally the symbols x, y, z, u, v and w denote variables, a, b and c

are constant symbols and f , g and h function symbols, each decorated with ′ and

subscripts as necessary.

Definition 2.3. A substitution σ is a total function from variables to terms, which

is the identity on all variables except a finite set, which we call the domain dom (σ)

of the substitution. We write σ = [t1/x1, . . . , tn/xn] in order to explicitly list the

image ti of each variable xi in the domain. We call the set {t1, . . . , tn} the

range rng (σ) of the substitution

The restriction of a substitution σ to a domain Y ⊂ X, written as σ|Y is the

substitution where xσ|Y = xσ if x ∈ dom (σ) ∩ Y and xσ|Y = x otherwise.

When applying a substitution σ to a term t we simultaneously replace each

variable x in t with the term σ (x). We usually write tσ instead of σ (t)to denote

the result of applying the substitution σ to the term t.

We extend the notion of applying a substitution to sets of terms and to sub-

stitutions by defining

Sσ = {tσ | t ∈ S}

and

στ = [t1/x1, . . . , tn/xn] τ = [t1τ/x1, . . . , tnτ/xn] ,

respectively.

If the domains of two substitutions σ and ρ are disjoint, the union of the

substitutions is defined as

x (σ ∪ τ) =


xσ if x ∈ dom (σ),

xτ if x ∈ dom (τ) and

x otherwise.
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If a substitution is injective, that is rng (σ) = {x1, . . . , xn} where each xi is a

variable and xσ 6= yσ if x 6= y, we call σ a renaming.

A substitution σ is proper if there is at least one variable x ∈ dom (σ) such

that xσ is not a variable. Otherwise a substitution is non-proper. The substitu-

tion [x/z, y/z] is non-proper and not injective, therefore not a renaming.

A substitution σ is more general than a substitution τ if there is a substitu-

tion µ, which is not a renaming, such that σµ = τ . A substitution σ unifies two

terms t ∈ T (Σ, X) and t′ ∈ T (Σ, X) if tσ = t′σ. The substitution σ is a most

general unifier for t and t′ if tσ = t′σ and there is no substitution τ that unifies t

and t′ and is more general than σ. All substitutions which are a most general

unifier for two terms t and t′ are equal up to renaming and we arbitrarily choose

one representative denoted mgu (t, t′).

We write σ ≡ τ if xσ = xτ for each x.

Definition 2.4. An atom P (t1, . . . , tn) is a predicate, which consists of a predi-

cate symbol P ∈ ΣP with arity (P ) = n and n terms.

Definition 2.5. An equation is an atom with the binary predicate symbol ',

written in infix notation as l ' r. We view equations as multisets of size two and

do not distinguish between l ' r and r ' l.

A disequation is the negation of an equation, we usually write l 6' r instead

of ¬ (l ' r).

In most parts of this thesis we consider without loss of generality pure equa-

tional logic, where equality ' is the only predicate symbol in the signature.

We translate a formula F containing a predicate other than ' into a purely

equational formula in the following way. We extend the signature with the

distinct constant symbol > and a fresh function symbol fP 6∈ Σf for each non-

equational predicate P in F such that arity (fP ) = arity (P ). We then replace

each atom P (t1, . . . , tn) with fP (t1, . . . , tn) ' > and remove all predicate sym-

bols except ' from ΣP .

In order to prevent producing ill-formed purely equational formulae, which

cannot be translated back into the original signature by reversing the above pro-

cedure, we take a two-sorted approach: no function symbol fP and neither the

constant > may occur in the range of a substitution. In this way, we effectively

prevent unifications of terms with atoms.
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Definition 2.6. A literal L is an equation l ' r or a disequation l 6' r. For

convenience and to avoid multiple negations we define the complement L of a

literal as l ' r = l 6' r and l 6' r = l ' r. A literal is ground if both terms l

and r are ground.

A clause C is a multiset of literals and is to be interpreted as the disjunction

of its literals: C = {L1, . . . , Ln} = L1 ∨ · · · ∨ Ln. We also write L ∨ C for the

clause {L} ∪ C.

We call a clause ground if all its literals are ground.

For any two clauses we assume variable-disjointness and we do not distinguish

between variants of clauses. We say two clauses C and C ′ are equal up to renaming

if there is a renaming ρ such that C = C ′ρ.

Since any first-order formula can be effectively translated into a set of clauses,

we restrict the presentation to such sets of clauses.

Definition 2.7. A closure is a pair of a clause C and a substitution θ written

as C · θ where

(i) dom (θ) = var (C) and

(ii) for all variables x ∈ rng (θ) we have x 6∈ var (C).

We call a closure ground if Cθ is ground.

We say two closures C · θ and C ′ · θ′ are equal up to renaming if there is are

renamings ρ and µ such that C = C ′ρ and Cθ = C ′θ′µ.

An essential ingredient in equational reasoning is the notion of rewriting,

which is based on term orderings.

Definition 2.8. A simplification order � on terms over T (Σ, X) is a total and

strict ordering satisfying the following properties

(i) � is well-founded : every chain s1 � · · · � sn has a least element, there is

not infinite chain

(ii) � is monotonic: for all terms s, t and u if s � t, then also u[s] � u[t].

(iii) � is closed under substitutions : for all terms s and t if s � t, then sσ � tσ

for all substitutions σ.
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(iv) � satisfies the subterm property : u[s]p � s for all terms s and u and all

positions p 6= λ

We extend � from terms to multisets of terms and based on this to literals

and clauses in one of the standard ways, described in Nieuwenhuis and Rubio

[2001], obtaining a total, well-founded and monotone ordering.

We denote a simplification order on ground terms over T (Σ) by �gr.

In this thesis it suffices to consider rewriting of ground terms, resulting in the

following slightly simpler definition of rewrite systems.

Definition 2.9. A rewrite rule l→ r is a pair of ground terms. We call a rewrite

rule oriented with respect to a ground ordering �gr if l �gr r. A set of rewrite

rules is a rewrite system.

We say a rewrite system R reduces a term s[l]p to s[r]p if it contains a

rule l→ r. The term s[l]p is reducible at position p. If in a term s there is

no position p reducible by a rule in R, we call the term s irreducible.

We extend the notion of irreducibility from terms to substitutions in the nat-

ural way: a substitution σ is irreducible with respect to a rewrite system R if

none of the terms in rng(σ) is reducible by a rule l→ r ∈ R.

Let L be a set of ground literal closures and R be a ground rewrite system.

We denote with irredR(L) the set of closures L · θ ∈ L with θ irreducible with

respect to R.

Let us denote by →R the relation on ground terms induced by reducibility

in the rewrite system R, such that l→R r if l is reducible to r by some rule

in R. Let
∗→R be the reflexive and transitive closure of the relation→R. We have

l
∗→R r if l = r, if l→R r or if there are terms u1, . . . , un such that l is reducible

to u1, for each 1 < i < n the term ui is reducible to ui+1 and un is reducible to r.

A rewrite system is called terminating if there is no infinite chain of terms

t1 →R t2 →R · · · and confluent if for each term l, u1 and u2 with l
∗→R u1 and

l
∗→R u2 there is a term r such that u1

∗→R r and u2
∗→R r. A rewrite system is

convergent if it is both terminating and confluent.

As usual, we are only concerned with Herbrand interpretations, where a term t

is interpreted “as itself”.

Definition 2.10. In order to speak about truth values, we view a Herbrand

interpretation I as a set of ground literals over T (Σ). A ground literal L is true



28 CHAPTER 2. PRELIMINARIES

in an interpretation I if it is a consequence modulo equality from literals in I.

We write I |= L and say “L is true in I” or “L holds in I”. In contrast we say

“L is false in I” if I |= L. A non-ground literal L is true in I if all its ground

instances are true in L.

An interpretation is consistent if for each ground literal L the complement L

does not hold in I. If neither I |= L nor I |= L we say L is undefined and we

call I total if for each literal L either I |= L or I |= L. Otherwise I is partial.

A clause C is true in an interpretation I, written as I |= C, if at least one

literal L ∈ C holds in I. A set of clauses S is true in an interpretation if each

clause C ∈ S is true in I. We call I a model for S and write I |= S.

A set of clauses is satisfiable if it has a model.

Overloading the notation for |= we also write S |= C for a set of clauses S and

a clause C if in every model for S at least one literal of C is true. For brevity

we also use |= with rewrite systems R intending R |= C to be read as SR |= C

with SR = {l ' r | l→ r ∈ R}.

Definition 2.11. We use the symbol � to denote either a literal or a clause that

is false in every interpretation. We call it a contradiction or the empty clause.



Chapter 3

Inst-Gen, Inst-Gen-Eq and

Related Work

In this chapter we present the Inst-Gen method as found in Ganzinger and Ko-

rovin [2003] and Ganzinger and Korovin [2004]. We first introduce the method

for the non-equational case and its extension to equational reasoning in a less

formal way and demonstrate it on two examples. We exhibit the challenges when

moving to equational reasoning as it is considered for the remainder of the thesis.

Finally we mention other instantiation-based methods and their approaches to

equational reasoning.

3.1 Non-equational Reasoning with Inst-Gen

The main idea of the Inst-Gen method is as follows. Given a set of first-order

clauses S we first form its ground abstraction S⊥ by mapping all variables to

the same ground term, conventionally denoted by ⊥. Overloading notation, we

use ⊥ also for the substitution that maps all variables to the ground term ⊥.

If the ground abstraction S⊥ is unsatisfiable, we have found an unsatisfiable

set of ground instances of S. By Herbrand’s Theorem the original set S is also

unsatisfiable and the procedure terminates. Otherwise, there is a model I⊥ of

the ground abstraction S⊥ and the first-order instantiation process is guided by

means of a selection function sel based on I⊥. A selection function assigns to each

first-order clause C in S exactly one literal sel(C) = L from C such that I⊥ |= L⊥.

At least one such literal always exists as the ground abstraction of the clause is

true in the model I⊥.

29
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Let us for the moment treat the equational predicate ' as any other predicate

and consider first-order logic without equality. If the set of selected (not necessar-

ily ground) literals, seen as unit clauses, does not contain unifiable complementary

literal pairs, a model for the clause set S exists and it has thus been proved sat-

isfiable. Otherwise, there are two selected literals inconsistent in first-order. We

instantiate the clauses these literals are selected in, such that the inconsistency

can already be witnessed in the ground abstraction. Thus the ground model is

refined in order to resolve the inconsistency.

The Inst-Gen method applies the following inference rule to the set of clauses S

up to saturation. The inferences are interleaved with checking the ground abstrac-

tion S⊥ for unsatisfiability and updating the selection function sel to a model

of S⊥ if it is satisfiable.

Definition 3.1 (Inst-Gen inference rule for non-equational reasoning).

L ∨ C
(L ∨ C)σ

L′ ∨D(
L′ ∨D

)
σ

where

(i) sel (L ∨ C) = L, (ii) sel
(
L′ ∨D

)
= L′, (iii) σ = mgu (L,L′).

The Inst-Gen inference rule detects inconsistent selected literals and generates

clause instances such that the ground model has to be refined on the conflict. It

is related to the resolution inference rule (see Bachmair and Ganzinger [2001])

with a few important differences. The Inst-Gen rule can be applied if two clauses

can be resolved, that is contain complementary unifiable literals. However, while

a resolution inference would combine the two clauses into the clause (C ∨D)σ,

the Inst-Gen calculus keeps the clauses separate and instead creates two instances

with the most general unifier σ. A second important difference is the selection

function which is based on a model of the ground abstraction in the Inst-Gen

case, whereas only negative literals are selected in resolution. For an Inst-Gen

inference the literals L and L′ have to be selected, while in resolution inferences

the selection function together with an ordering determines eligible literals.

A main feature of the Inst-Gen approach is the delegation of the ground

satisfiability check to an off-the-shelf SAT solver. Figure 3.1 on the facing page

gives a bird’s eye view of the resulting procedure. The dashed line separates first-

order reasoning and ground reasoning; the latter is being dealt with in a black
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Figure 3.1: The Inst-Gen method without equality

boxed way by the SAT solver. The set of first-order clauses S is abstracted to a

set of ground clauses S⊥ and passed to the SAT solver. If the ground abstraction

is unsatisfiable, the procedure stops, having proved unsatisfiability of the first-

order clause set S. Otherwise, a model for the ground abstraction returned by

the SAT solver is used to select one literal in each first-order clause. If there is

a unifiable complementary pair of selected literals, the Inst-Gen inference from

Definition 3.1 is applied, resulting in new clause instances which are added to

the first-order clause set. Should there be no unifiable complementary literals

generating new clause instances, the procedure has proved satisfiability of the

first-order clause set.

Example 3.1. Let us consider the following unsatisfiable clause set.

¬Q(f(x)) (1)

¬P (f(f(y))) (2)

P (f(z)) ∨ Q(z) (3)

By mapping all variables in all clauses to the distinguished constant ⊥ we
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obtain the ground abstraction.

¬Q(f(⊥)) (1⊥)

¬P (f(f(⊥))) (2⊥)

P (f(⊥)) ∨ Q(⊥) (3⊥)

The ground clauses (1⊥)-(3⊥) are satisfiable with a model I⊥ in which, say,

the first literals in each clause, namely, ¬Q(f(⊥)), ¬P (f(f(⊥))) and P (f(⊥))

are true. In practice, finding the ground model I⊥ is delegated to the SAT solver.

The selection function sel now selects the first literal in each first-order clause

(1)-(3), since I⊥ |= ¬Q(f(x))⊥, I⊥ |= ¬P (f(f(y)))⊥ and I⊥ |= P (f(z))⊥. We

have underlined the selected literals in the clauses (1)-(3) above.

We attempt to extend the ground model to a first-order model by assuming it

contains all ground instances of a selected first-order literal. However, this fails

since we have

¬P (f(f(y))) |= ¬P (f(f(a))

for the selected literal in clause (2) as well as

P (f(z)) |= P (f(f(a))

for the selected literal in clause (3). The interpretation induced by the se-

lection function on the first-order clauses is contradictory because it contains

both P (f(f(a)) and its negation ¬P (f(f(a)).

The Inst-Gen method now tries to refine the model by generating clause in-

stances from the conflicting selected literals above. We perform the following

Inst-Gen inference.

¬P (f(f(y)))

¬P (f(f(y)))

P (f(z)) ∨Q(z)

P (f(f(y)) ∨Q(f(y))
[f(y)/z]

The two premises are separately instantiated with the most general uni-

fier [f(y)/z]. The first conclusion is a variant of the premise and can be omitted

since its ground abstraction is the same as the ground abstraction of the premise

and therefore does not contribute to the refinement of the ground abstraction.

The second conclusion is added to the clause set after its variables have been
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made disjoint from the variables occurring there.

P (f(f(u))) ∨ Q(f(u)) (4)

The ground abstraction of the clause set with the new instance is

¬Q(f(⊥)) (1⊥)

¬P (f(f(⊥))) (2⊥)

P (f(⊥)) ∨ Q(⊥) (3⊥)

P (f(f(⊥))) ∨ Q(f(⊥)). (4⊥)

The ground clauses (1⊥), (2⊥) and (4⊥) are unsatisfiable, which is detected by

the SAT solver. Hence we have found an unsatisfiable set of ground instances and

by Herbrand’s Theorem the initial first-order clause set (1)-(3) is unsatisfiable.

The Inst-Gen method can be extended to reasoning modulo equality, robustly

dealing with the particular properties of the equational predicate ', by the way

of the congruence it induces on terms. While it is straightforward to replace the

SAT solver with a ground solver modulo equality, the first-order reasoning needs

non-trivial adaptions.

In particular, it is not sufficient to employ an atomic inference rule on literal

pairs for instance generation as in the non-equational case. While the Inst-Gen

inference rule guarantees that at least one of the conclusions is a proper instance

of its premise (see Ganzinger and Korovin [2003]), this property does not hold in

the equational case.

Equational reasoning in first-order logic is commonly performed with para-

modulation-based calculi, which are a kin to resolution. The central inference

rule is the following superposition rule (from Bachmair and Ganzinger [1998]).
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Definition 3.2 (Superposition).

l ' r ∨ C s[l′] ' t ∨ D
(σ)

(s[r] ' t ∨ C ∨ D)σ

l ' r ∨ C s[l′] 6' t ∨ D
(σ)

(s[r] 6' t ∨ C ∨ D)σ

where

(i) σ = mgu(l, l′),

(ii) l′ is not a variable,

(iii) lσ � rσ,

(iv) s[l′]σ � tσ,

(v) (s[l′]σ ' t)σ �
(l ' r)σ.

As the following example shows, generating instances from the superposition

rule in the style the Inst-Gen inferences rule generates instances from the resolu-

tion rule is incomplete.

Example 3.2. Consider the following unsatisfiable purely equational clause set.

h(x) ' x ∨ x 6' a (1)

f(h(y)) ' g(z) (2)

f(a) 6' g(u) (3)

The ground abstraction is satisfiable modulo equality with a model that con-

tains the first literal in each clause and the selection function thus selects the first

literals in clauses (1)-(3), which we have underlined.

A superposition inference is possible between the selected literals in clauses

(1) and (2). If we were to generate instances from superposition, the inference

would be the following.

h(x) ' x

h(x) ' x

f(h(y)) ' g(z)

f(h(x)) ' g(z)
[x/y]

Instead of combining the two premises into one conclusion, both are instan-

tiated with the most general unifier. However, in this case only two variants of

the premises are generated which have no effect on the ground abstraction.

Since no further inference steps are possible, and the ground abstraction is

satisfiable, the Inst-Gen method would stop without showing the unsatisfiability

of the clause set.
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While we approach equational reasoning by extending the calculus in this

thesis, an alternative approach is to add axioms to the clause set that capture

the semantics of the equational predicate '.

x ' x (R)

x 6' y ∨ y ' x (S)

x 6' y ∨ y 6' z ∨ x ' z (T)

x1 6' y1 ∨ · · · ∨ xn 6' yn ∨ f(x1, . . . , xn) ' f(y1, . . . , yn) (Ff )

x1 6' y1 ∨ · · · ∨ xn 6' yn ∨ ¬P (x1, . . . , xn) ∨ P (y1, . . . , yn) (MP )

The monotonicity axioms (Ff ) and (MP ) have to be instantiated for every func-

tion symbol f and predicate symbol P , respectively, in the signature Σ.

The axiomatic approach in resolution theorem proving is usually inferior to

paramodulation-based approaches, which can make use of powerful ordering re-

strictions from rewriting and we expect similar benefits over an axiomatic treat-

ment of equality in Inst-Gen. However, we notice that if the input clause set is

in the Bernays-Schönfinkel fragment of first-order logic, it does not contain func-

tion symbols, no functional monotonicity axiom (Ff ) is needed and the remain-

ing axioms do not introduce function symbols, either. Since instantiation-based

methods, including Inst-Gen, are strong in the Bernays-Schönfinkel fragment, it

seems feasible to tackle equational reasoning in this fragment with a simple ax-

iomatic handling of equality. We postpone this thought until the evaluation in

Chapter 8 and now turn to equational reasoning with a paramodulation-based

approach that can handle full first-order logic with equality.

3.2 Equational Reasoning in Inst-Gen-Eq

In the remainder of the thesis we consider the extension of the Inst-Gen method

to equational reasoning, called Inst-Gen-Eq. Figure 3.2 on the next page shows

an overview of the reasoning process, which is similar to non-equational reasoning

in Figure 3.1 on page 31 with some adaptions.

Since the ground reasoning has to be performed modulo equality, a SAT solver

is not sufficient. In order to keep with the Inst-Gen principle of delegating the

ground reasoning to an off-the-shelf tool, we use a solver for satisfiability modulo

theories (SMT) of which many are available. Virtually all of them are able to
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Figure 3.2: The Inst-Gen method with equality

reason in the theory of equality with uninterpreted function symbols (EUF),

which is exactly the theory we require.

The main focus for equational reasoning is the shaded area in the first-order

part: superposition reasoning with selected literals which we regard as unit

clauses. In Example 3.2 above we have the set of selected literals

{ h(x) ' x, f(h(y)) ' g(z), f(a) 6' g(u) }

which is unsatisfiable if seen as the conjunction of literals in first-order modulo

equality. We call this set of inconsistent literals a conflict. In order to refine the

ground abstraction, clause instances have to be generated from this conflict. As

we are showing in one of the following sections, there is a proper substitution for

at least one literal in every conflict if the selection is based on a model of the

ground abstraction.

For equational reasoning we are in a situation where we have to generate

instances to refine the ground abstraction not only from pairs of selected literals,

but from sets of selected literals of any finite size. We note that a conflict can be

as small as a singleton set, for example

{ f(x) 6' f(a) } .

In order À to find conflicts in the set of selected literals and Á to generate
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instances from conflicts, we step back from the atomic Inst-Gen inference rule in

Definition 3.1 on page 30, which combines finding conflicts and the generation of

instances. Instead, we use two paramodulation-style inference rules.

Definition 3.3 (Unit Superposition Calculus).

Unit Superposition

l ' r s[l′] ' t
(σ)

(s[r] ' t)σ

l ' r s[l′] 6' t
(σ)

(s[r] 6' t)σ

where for some grounding substitution θ with dom (θ) = var ({lσ, rσ, s[l′]σ, tσ})

(i) σ = mgu(l, l′),

(ii) l′ is not a variable,

(iii) lσθ �gr rσθ,

(iv) s[l′]σθ �gr tσθ,

(v) var ({l, r}) ∩
var ({s[l′], t}) = ∅.

Equality Resolution

(l 6' r)
(σ)

�

where σ = mgu(l, r)

If a set of selected literals is a conflict, it is possible to derive a contradic-

tion � with the inference rules of the unit superposition calculus. We annotate

each inference step with the substitution σ to the right of the inference line and

by composing the substitutions along each branch in a derivation we find substi-

tutions to instantiate clauses with.

Example 3.3. Let us reconsider the clause set from Example 3.2 on page 34.

h(x) ' x ∨ x 6' a (1)

f(h(y)) ' g(z) (2)

f(a) 6' g(u) (3)

There is a proof of a contradiction from selected literals L1, L2 and L3 from
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clauses (1), (2) and (3), respectively, with the unit superposition calculus.

L1

h(x) ' x

L2

f(h(y)) ' g(z)
[x/y]

f(x) ' g(z)

L3

f(a) 6' g(u)
[a/x]

g(z) 6' g(u)
[z/u]

�

(∗)

For each leaf literal we now compose the substitutions on its branch ending

in a contradiction in the proof tree, obtaining

σ1 = [x/y][a/x][z/u] |var(L1)={x}= [a/x],

σ2 = [x/y][a/x][z/u] |var(L2)={y,z}= [a/y]

and

σ3 = [a/x][z/u] |var(L3)={u}= [z/u]

for L1, L2 and L3, respectively. Since σ3 is a renaming and leads to the a variant

of clause (3) only, we do not need to consider it. Applying σ1 and σ2 to clause

(1) and (2), respectively, results in two new instances.

h(a) ' a ∨ a 6' a (4)

f(h(a)) ' g(w). (5)

The ground abstraction of the whole clause set is

h(⊥) ' ⊥ ∨ ⊥ 6' a (1⊥)

f(h(⊥)) ' g(⊥) (2⊥)

f(a) 6' g(⊥) (3⊥)

h(a) ' a ∨ a 6' a (4⊥)

f(h(a)) ' g(⊥). (5⊥)

Clauses (3⊥), (4⊥) and (5⊥) are unsatisfiable and we have found ground instances

of the initial clause set (1)-(3) which is hence proved to be unsatisfiable.

The Inst-Gen-Eq method proceeds in analogy to the non-equational Inst-Gen

method in the previous section, see again Figure 3.2 on page 36. A set of first-

order clauses S is grounded to a set of clauses S⊥, which is passed to an SMT
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solver to be tested for satisfiability modulo equality. Then either unsatisfiability

of S⊥ is found by the solver and thus S is proved unsatisfiable. Otherwise, there

is a model of S⊥, which is used to select one literal in each first-order clause

in S by means of the selection function sel. In order to find conflicts in the set of

selected literals, we saturate the set under inferences from the unit superposition

calculus. Every contradiction � that is found in the process, yields substitutions

for clauses in S, which are in turn propagated to the ground solver. The process

then follows another cycle, where either the ground solver finds unsatisfiability

of S⊥ or returns a model of it. If the set of selected literals is saturated under

unit superposition inferences and all clause instances from conflicts have been

added to the clause set, we have found satisfiability of the original clause set.

Since Inst-Gen-Eq only produces instances of clauses, it is sound. The vari-

ables in clauses are universally quantified and therefore each clause already implies

all its instances. We formally prove completeness in the following chapter.

3.3 Related Instantiation-based Methods

We briefly turn to contemporary instantiation-based methods, their proof proce-

dures and the way equational reasoning is integrated. There are surveys [Baum-

gartner and Thorstensen, 2009] and comparisons [Jacobs and Waldmann, 2005] of

instantiation-based methods, which are only concerned with non-equational rea-

soning. No such surveys exist for equational reasoning, showing that equational

reasoning in instantiation-based methods is a recent and ongoing effort without

definite answers so far.

Instantiation-based methods can be classified mainly in two aspects: the way

ground solving is integrated and the control structure used in the proof procedure.

Inst-Gen is a two-level method, since the ground solving is done in a separate step

by a separate tool. In other methods the ground solving is part of the calculus.

Further, Inst-Gen is a saturation-based procedure and as such more related to

resolution, while some methods use tableaux structures making them resemble

more to tableaux methods.

Let us give two relevant and recent examples of instantiation-based calculi

and show the relation to and differences with the Inst-Gen method.
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The Disconnection Calculus originated in Billon [1996] as the “Disconnec-

tion Method” and was significantly extended by Letz and Stenz [2001b]. An

implementation is described by Letz and Stenz [2001a].

From a set of clauses as input, a clausal tableau is built, that is, each node is a

literal. The literals can contain free variables, but contrary to standard tableaux

calculi, the variables are non-rigid and there are no destructive substitutions that

would require backtracking to a previous tableau. The calculus is confluent and

the only choice points for backtracking are at nodes where different branches have

to be explored.

The central concept in the calculus are links between clauses. A link between

two clauses exists, when two clauses contain complementary unifiable literals. In

this case a resolution inference or an Inst-Gen inference could be applied. Another

ingredient is an initial path, which is a selection of one literal in each input clause.

Only links with the literals on the initial path are allowed, there is no restriction

on the links with literals that are added to the tableau.

Inferences are performed between linked literals on a branch of the tableaux

and consist of instantiating the linked clauses in the same way as in the Inst-Gen

method and extending the tableau. Afterwards the link is removed, the literals

are “disconnected”. Propositional satisfiability is tested for each branch sep-

arately by grounding all literals with a distinct constant, branches, where the

grounding is unsatisfiable are closed and if all branches of the tableau become

closed, unsatisfiability is detected.

The Disconnection method is similar to the Inst-Gen method in that the cal-

culi share the intuition behind their inference rule and the principle of grounding.

However, Inst-Gen is a two-level method and delegates the propositional satisfi-

ability check, while Disconnection is a one-level method, since the propositional

satisfiability check is a part of the proof procedure. Another difference is that

Inst-Gen saturates the set of clauses under inferences, whereas Disconnection

employs a tableau as control structure.

Equational reasoning in the Disconnection calculus is performed by extending

the notion of a link to be similar to paramodulation. A link exists between an

equation and a literal if the left-hand side of the equation can be unified with a

subterm of the literal. In a similar way than before, the tableau is extended with

instances from the instance and the link is disconnected.

There are several other instantiation-based methods based on the principle
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of links between clauses, for example Ordered Semantic Hyperlinking (OSHL)

[Plaisted and Zhu, 2000] or Partial Instantiation [Hooker et al., 2002].

Model Evolution as defined in Baumgartner and Tinelli [2003] can be viewed

as a lifting of the powerful propositional DPLL procedure for SAT solving to

first-order logic. A predecessor of Model Evolution was the FDPLL calculus in

Baumgartner [2000], but Model Evolution goes a step further by lifting more

aspects admitting to a more powerful implementation in the theorem prover Dar-

win, see Baumgartner et al. [2005].

Sequents of the form Λ ` Φ are processed, where Λ is an initially empty con-

text to be interpreted as a candidate model for the clause set and Φ contains the

remaining clauses. The calculus tries to extend the partial candidate model to

a complete model by asserting truth values for literals in Φ in the context Λ. If

it does not succeed, it backtracks to an earlier choice point and returns unsatis-

fiability if no more choice points are available. If the clause set Φ is empty, the

context Λ can be interpreted as a model for the initial clause set. The calculus has

several rules, each extending the current context or trying to find a contradiction.

The procedure is controlled by a tableau with sequents Λ ` Φ at its nodes.

Candidate models are local to their branch. There is no separate propositional

solver involved as this is part of the calculus, similar to closing a branch as in the

Disconnection calculus. Therefore, Model Evolution is also a one-level method.

The relationship to resolution and the Inst-Gen calculus is only distant. The

calculus does not consider links between clauses, it is only guided by the candidate

model and inferences only operate on a single clause. The procedure is controlled

by a tableaux where rule applications are local to a branch and generate new

clauses to saturate the a clause set as in resolution and Inst-Gen. Model Evolu-

tion can be classified as instance-based nevertheless, because it refines candidate

models with instances of literals Φ and in case of satisfiability, a model is eas-

ily retrieved from the context Λ in a representation similar to the Disconnection

calculus.

There are two different extensions of Model Evolution to equational reasoning.

The first approach [Baumgartner and Tinelli, 2005] that has been revised and

implemented in the E-Darwin system is described in Baumgartner et al. [2010].

A constraint notation is added to clauses in the clause set Φ and equational

reasoning is performed with superposition on the context Λ.
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A more recent approach in Baumgartner and Waldmann [2009] takes a differ-

ent turn and combines the superposition with model evolution by labelling each

atom as either a split atom or a superposition atom. Split atoms are treated with

the Model Evolution calculus, while superposition atoms are used for superposi-

tion. If all atoms are labelled as split atoms or superposition atoms, the calculus

becomes identical to Model Evolution or superposition, respectively. Although

this idea looks promising and the approach of combining an instantiation-based

method with a paramodulation-based method is attractive, the calculus is not

mature enough, requiring an extensive formalism for the interaction between the

two components and lacks an implementation.



Chapter 4

Completeness of Inst-Gen-Eq

After the brief introduction of the Inst-Gen-Eq method in the previous chapter

in the context of and in contrast to other instantiation-based methods, we now

give a comprehensive proof of its completeness. While Inst-Gen-Eq has already

been proved complete in Ganzinger and Korovin [2004] and the proof we present

closely follows theirs, the main contributions of this section are two extensions.

The original proof has used ordered unit paramodulation to reason on literals,

whereas we strengthen the ordering constraints and consider unit superposition,

which is not an obvious extension in an instantiation-based framework. Moreover,

we extend the saturation process in order to justify the special treatment of unit

clauses in Chapter 6. Introducing the proof in this chapter keeps the thesis self-

contained and allows to adapt presentation and notation bearing in mind the

following chapters. Finally, we have the opportunity to explicitly spell out and

to describe each step in the proof.

Let us first remind ourselves of the important notion of a ground closure (see

Definition 2.7 on page 26) before we give a more detailed overview of the proof.

A ground closure C · θ is a pair consisting of a clause C and a substitution θ such

that Cθ is ground. We assume that dom (θ) = var (C) and consider equality of

closures modulo renaming: we do not distinguish between a closure C ·θ and D ·ρ
if Cθ = Dρ and C is a variant of D.

We think of a ground closure C · θ as representing the ground instance Cθ of

the clause C. We also call a closure C · θ a ground instance of a set of clauses S

if C ∈ S. Considering ground instances not as clauses but instead as closures is

necessary to distinguish between and to compare ground instances from different

clauses. Although this enables us to define redundancy in a fine-grained way, in a

43
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Figure 4.1: Road map for the completeness proof of the Inst-Gen-Eq method

practical implementation it is not sensible to work on the level of ground closures.

Therefore, in following sections we lift the results from closures to clauses and

cover redundancy with constraints on clauses.

Figure 4.1 shows a road map for the proof of completeness of the Inst-Gen-Eq

method as an overview of this chapter. We begin with a set of clauses S and

its ground abstraction S⊥. The clauses are represented by ground closures in

an Inst-saturation process. A redundancy criterion and the selection function sel

based on a model of the ground abstraction S⊥ lead to a set of relevant literal

closures L (S) from the ground closures of the clauses in S. Applying the unit

superposition calculus in a fair way we obtain the US-saturation Lsat (S) which is

closed under unit superposition inferences and free from US-redundancy (À in the

figure). If the US-saturation does not contain a contradiction �, we can generate

a model of the initial clause set S (Á in the figure). Otherwise, there are finite

sets of closures from which a contradiction � can be derived. We call these sets

conflicts. For completeness, a fair Inst-saturation process must make all conflicts

redundant (Â in the figure). An effective way to make a conflict redundant is

to extract relevant clause instances from the proof of the contradiction � and to

propagate the clause instances to the clause set S (Ã in the figure).

In the next sections we follow the above sequence to show that Inst-Gen-Eq

is refutationally complete. That is, if the initial clause set S is unsatisfiable, a

fair Inst-saturation process eventually obtains a clause set S ′ with an unsatisfiable

abstraction S ′⊥. On the other hand, the clause sets produced by adding instances
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from conflicts in a satisfiable initial clause set S always have satisfiable ground

abstractions. Further, if the Inst-saturation process encounters a saturated set of

literal closures without conflicts, satisfiability of S can be concluded.

The proof techniques of model generation and saturation processes that we

employ in the following have been used in completeness proofs of the resolution

calculus [Bachmair and Ganzinger, 2001] or several variants of the paramodula-

tion calculus, see [Bachmair et al., 1995, Nieuwenhuis and Rubio, 2001]. However,

in order to prove completeness of Inst-Gen-Eq, we have to take into account the

nested Inst-saturation and US-saturation processes.

Since closures and literal closures are of little practical use, we lift the proof

of completeness to first-order literals and subsequently introduce a constraint

notation to lift the concept of redundancy on closures. We finish the chapter with

remarks on the combination of ground solving, Inst-saturation and US-saturation

towards a practical implementation.

4.1 Unit Superposition on Literal Closures

We begin by refining the unit superposition calculus from literals (Definition 3.3

on page 37) to ground literal closures. The following definition is a stronger

version of the unit paramodulation calculus given by Ganzinger and Korovin

[2004], which is in turn based on the standard superposition calculus, see, e.g.,

Nieuwenhuis and Rubio [2001].

Definition 4.1 (Unit Superposition on closures).

Unit Superposition

(l ' r) · θl (s[l′] ' t) · θr
(σ)

(s[r] ' t)σ · ρ|var({s[r]σ,tσ})

(l ' r) · θl (s[l′] 6' t) · θr
(σ)

(s[r] 6' t)σ · ρ|var({s[r]σ,tσ})

where

(i) σ = mgu(l, l′),

(ii) l′ is not a variable,

(iii) lθl �gr rθl,

(iv) s[l′]θr �gr tθr,

(v) ρ is such that

(θl ∪ θr) = σρ

(vi) lθl = l′θr,

(vii) var ({l, r}) ∩
var ({s[l′], t}) = ∅.
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Equality Resolution

(l 6' r) · θ
(σ)

�

where

(i) σ = mgu(l, r), (ii) lθ = rθ.

Conditions (i)-(iv) of the unit superposition inference rule and condition (i) on

the equality resolution inference rule are identical to conditions on the correspond-

ing standard superposition inference rules in the literature (see Definition 3.2 on

page 34, or Nieuwenhuis and Rubio [2001]).

Conditions (v) and (vi) on the superposition inference and condition (ii) on the

equality resolution inference connect the ground literals that the literal closures

in the premises represent, in order to make the reasoning on ground instances

visible. We use the most general unifier σ for the terms l and l′ as in a first-

order superposition inference and lθl = l′θr in condition (vi) ensures that the

superposition inference also applies for the ground literals represented by the

closures. The same holds for the equality resolution inference, where we only

consider literal closures to be contradictory if the represented ground literals

are. In a unit superposition inference, by means of condition (v) we form the

union of the variable-disjoint the substitutions θl and θr from the premises and

“pull out” the substitution σ. We restrict the resulting ρ and take the closure

(s[r] ' t)σ · ρ|var({s[r]σ,tσ}) as the conclusion. Hence a unit superposition inference

and an equality resolution inference on closures can be viewed both as a first-order

inference and as a ground inference, the former by dropping the substitution part

of the closures and the latter by considering the ground literals represented by

the closures.

Since closures C · θ are defined such that dom (θ) = var (C), that is the

substitution θ affects exactly the variables of the clause, closures produced by

inference rules have to respect this definition. Restricting the domain of ρ to

ρ|var({s[r]σ,tσ}) in the conclusion ensures that the closure is well-defined.

Due to condition (vii) the literals in the literal closures in premises are variable

disjoint and therefore the domains of the substitutions θl and θr in the literal clo-

sures are variable disjoint. The union θl∪ θr of the two substitutions in condition

(v) can thus always be formed.
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It is important to notice that given two variable disjoint premises for the first

inference rule which satisfy conditions (i)-(iv), there is always a substitution ρ

satisfying the remaining conditions (v)-(vii). Due to conditions (i) and (vi) both σ

and θl ∪ θr are unifying substitutions for l and l′. Since σ is the most general

unifier, either σ = θl ∪ θr and thus ρ = [] or there is a substitution ρ such

that σρ = θl ∪ θr .

Unit superposition as defined above has three properties that play important

roles in the completeness proof of the Inst-Gen-Eq calculus.

Lemma 4.1. In a superposition inference the literal in the conclusion follows

from literals in the premise instantiated with the most general unifier σ

(l ' r)σρ, (s[l′] ' t)σρ |= (s[r] ' t)σρ

and

(l ' r)σρ, (s[l′] 6' t)σρ |= (s[r] 6' t)σρ,

for every substitution ρ that grounds (l ' r)σ, (s[l′] ' t)σ and (s[l′] 6' t)σ, re-

spectively.

Proof. The ground equation (l ' r)σρ induces a rewrite rule lσρ→ rσρ . Since σ

is a unifier for l and l′, we have lσ = l′σ and also lσρ = l′σρ for every substitu-

tion ρ. Hence the rewrite rule reduces (s[l′] ' t)σρ to (s[r] ' t)σρ.

Therefore, if the two ground equations (l ' r)σρ and (s[l′] ' t)σρ are true,

the ground equation (s[r] ' t)σρ also holds.

We can give a parallel proof with (s[r] 6' t)σρ as the right premise.

In order to define a notion of redundancy, we need the following ordering on

ground literal closures, which is based on the ordering �gr on ground terms.

Definition 4.2. Let �l be an arbitrary total well-founded extension of �gr from

ground literals to ground literal closures such that if Lθ �gr Mρ then L·θ �l M ·ρ.

Let L be a set of ground literal closures and L · θ be a ground literal closure.

By LL·θ�l
we denote the set of literal closures in L smaller than L · θ:

LL·θ�l
= {M · ρ ∈ L | L · θ �l M · ρ} .

Lemma 4.2. In every unit superposition inference the literal closure in the con-

clusion is smaller in �l than at least one of the premises.
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Proof. Let (l ' r) · θl and (s[l′] ' t) · θr be the premises of a unit superposi-

tion inference. Since lθl = lσρ �gr rθl = rσρ as well as lσ = l′σ, in the conclu-

sion we have s[l′]θr = s[l′]σρ �gr s[r]σρ and with monotonicity of �gr it follows

that (s[l′] ' t) · θr �l (s[r] ' t)σ · ρ′ with ρ′ = ρ|var({s[r]σ,tσ}).

With a parallel argument for the inference with the premises (l ' r) · θl

and (s[l′] 6' t) · θr we can conclude (s[l′] 6' t) · θr �l (s[r] 6' t)σ · ρ|var({s[r]σ,tσ}).

The empty clause � is smaller than any term, therefore the conclusion of an

equality resolution inference is smaller than its premise.

Lemma 4.3. Let R be a ground rewrite system and let θl, θr, σ and ρ be the

substitutions in a unit superposition inference. If θl ∪ θr is irreducible in R then ρ

also is.

Proof. Let θl ∪ θr be an irreducible substitution and assume ρ reducible, that is

there is a variable x such that xρ = s and the term s is reduced by a rewrite

rule (s→ t) ∈ R.

If there is a term v[x] ∈ rng (σ) then there is a variable x′ such that x′σ = v[x]

and x′ (θl ∪ θr) = x′σρ = v[x]ρ = v[s]. Now we have v[s] ∈ rng (θl ∪ θr) reducible

by (s→ t) ∈ R which contradicts the assumption of irreducibility of θl ∪ θr .

Otherwise, xσ = x and x (θl ∪ θr) = xσρ = xρ = s. We have reducibility

of s ∈ rng (θl ∪ θr) by (s→ t) ∈ R contradicting the assumption of irreducibility

of θl ∪ θr .

Hence ρ must be irreducible and so also its restriction ρ|var({s[r]σ,tσ}).

Let us define redundancy of literal closures based on the ordering �l.

Definition 4.3. Let L be a set of literal closures and L · θ be a literal closure.

We say that L · θ is US-redundant in L, if for every convergent ground rewrite

system R oriented by �gr, where θ is irreducible with regard to R, the literal

closure L · θ follows from smaller irreducible closures and the rewrite system R:

R ∪ irredR (LL·θ�l
) |= Lθ.

Let RUS (L) denote the set of all US-redundant literal closures in L.

Informally, a literal closure L · θ is redundant if it follows from smaller closures.

However, we have to take into account the candidate model from the model

generation proof we present later in this section. US-redundancy has to hold in
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every rewrite system R built from smaller irreducible literal closures, where the

rewriting system must not affect terms in the substitution θ.

Irreducibility of the substitution in a literal closure is an important concept

in the model generation proof later and is therefore required in the definition

of redundancy. It is necessary to accept some not obvious properties as in the

following example.

Example 4.1 (Ganzinger and Korovin [2004]). Let f(a) �gr f(b) �gr a �gr b and

L = {(f(x) ' b) · [a/x], (a ' b) · [], (f(b) 6' b) · []}

be a set of literal closures. Both the set of literals of the closures

{f(x) ' b, a ' b, f(b) 6' b}

and the set of represented ground literals

{f(a) ' b, a ' b, f(b) 6' b}

are inconsistent.

No inference is possible with the unit superposition calculus between literal

closures in L: the left-hand side term f(x) of the first literal closure only uni-

fies with the left-hand side term f(b) of the last literal closure, but since the

ground terms f(x) [a/x] and f(b) [] are different, no inference can be performed.

Because a �gr b, the equation in the second literal closure can only be applied as

a left premise to literals with a subterm a, but the unit superposition inference

rule does not allow the subterm to be a variable, which is why no inference is

performed between the first two literal closures.

Therefore the inconsistency remains undetected. However, this does not harm

completeness of the Inst-Gen-Eq method due to two observations.

We have (f(x) ' b) · [a/x] �l (a ' b) · [] and the rewrite system R induced

by a candidate model in the model generation later contains the rule a→ b be-

fore (f(x) ' b) · [a/x]. Since the substitution [a/x] is reducible by a→ b, the

literal closure (f(x) ' b) · [a/x] does not contribute to the candidate model.

On the other hand, we always consider each literal closure of a literal. The

model generation guarantees that if the inconsistency is not redundant, there

is a literal closure (f(x) ' b) · [b/x], for instance, so that the unit superposition
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calculus does find a contradiction.

Having presented inference rules and a notion of redundancy, we can now

precisely define a saturation process. In contrast to Ganzinger and Korovin [2004]

we consider the saturation process modulo a distinguished set of literal closures.

Intuitively, there are literal closures that are ground instances in every model of

the input clause set and that can thus be efficiently used for simplification by

rewriting. From the point of view of the saturation process it suffices to assume a

partition of the input set of literal closures into a pair of sets. Incorporating above

intuition, in the next section we give a condition that has to be satisfied by the

partition. We present concrete simplification inferences based on this saturation

process in Chapter 6.

Definition 4.4. A US-saturation process is a sequence of pairs {〈N i,Di〉}∞i=1,

where N i is a set of literal closures and Di is a set of positive literal closures. Each

pair 〈N i+1,Di+1〉 with i > 1, called a successor state, is obtained from 〈N i,Di〉
by either

(i) adding to N i the conclusion of a unit superposition inference with a left

premise (l ' r) · θl ∈ N i ∪ Di and a right premise (s[l′] ' t) · θr ∈ N i

or (s[l′] 6' t) · θr ∈ N i, or the conclusion of an equality resolution inference

with a premise (l 6' r) · θ in N i,

(ii) adding to Di the conclusion of a unit superposition inference with both

premises (l ' r) · θl and (s[l] ' t) · θr in Di,

(iii) removing a literal closure from N i which is US-redundant in N i ∪ Di or

(iv) removing a literal closure from Di which is US-redundant in Di.

In a later chapter we present simplification inferences such as demodulation

with unit clauses. To justify these inferences, the set D will contain closures from

unit clauses. However, for the rest of this chapter we can assume D to be empty.

Definition 4.5. Let us denote by N∞ and D∞ the sets of persistent closures in

the US-saturation process {〈N i,Di〉}∞i=1, which are the lower limits of {N i}∞i=1

and {Di}∞i=1, respectively:

N∞ = lim inf
i→∞

N i =
∞⋃
n=1

(
∞⋂
m=n

Nm

)
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D∞ = lim inf
i→∞

Di =
∞⋃
n=1

(
∞⋂
m=n

Dm
)

A literal closure in N and D is persistent if it is in the saturation process for

every i greater than a fixed i0. Further, a saturation process is fair if in the limit

it reaches sets N∞ and D∞ which are closed under non-redundant inferences

from their respective persistent literal closures. This is formalised in the next

definition.

Definition 4.6. A US-saturation process is fair if

(i) for every unit superposition inference with one premise in N∞ and the

second premise in N∞∪D∞, there is an i such that the conclusion is in N i

or US-redundant in N i ∪ Di and

(ii) for every unit superposition inference with both premises in D∞ there is a j

such that the conclusion is in Dj or US-redundant in Dj.

In the following we assume that a saturation process follows a deterministic

strategy and associate a fixed fair US-saturation process with each pair of sets

of literal closures. We only consider the limit of the saturation process modulo

redundancy.

Definition 4.7. Let 〈N ,D〉 be a pair of a set of literal closures N and a disjoint

set of positive literal closures D. Let {〈N i,Di〉}∞i=1 be an arbitrary but fixed and

fair US-saturation process with N 1 = N and D1 = D. We call the set

〈N ,D〉sat =
(
N∞ \ RUS (N∞ ∪ D∞)

)
∪
(
D∞ \ RUS (D∞)

)
the US-saturation of 〈N ,D〉.

This section has introduced the unit superposition calculus on literal closures,

a notion of redundancy and a saturation process. Returning to the proof road

map in Figure 4.1 on page 44, we are now equipped with a fair US-saturation

process (À in the figure) that provides us with the US-saturation 〈N ,D〉sat to

any pair of sets of literal closures 〈N ,D〉.

4.2 Model Generation from Inst-Saturation

Step Á in Figure 4.1 on page 44 is the generation of a model for S from a US-

saturated set of literal closures. To that end we now consider ground closures
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which are instances of clauses in S. We first define a separate ordering �cl on

ground closures which extends the ordering �l on ground literal closures.

Definition 4.8. Let �cl be an arbitrary total well-founded ordering on ground

closures C · θ and D · ρ such that C · θ �cl D · ρ if

(i) Cθ �gr Dρ or

(ii) Cθ = Dρ and Cσ = D for some proper substitution σ.

In addition to comparing two closures by the ground clauses they represent,

the ordering �cl takes into account the clauses and makes the closure Cσ · θ
smaller than C · σθ, where the clause Cσ is a proper instance of C.

In order to define saturation on ground instances of clauses in S we need a

new notion of redundancy, making use of the ordering �cl on ground closures.

Definition 4.9. Let S be a set of clauses. The ground closure C · θ is Inst-

redundant in S if there exist ground closures C1·θ1, . . . , Cn·θn of clauses C1, . . . , Cn

in S such that C · θ �cl Ci · θi for each i and C1θ1, . . . , Cnθn |= Cθ.

Let S be a set of closures, then by RInst (S) we denote the set of closures

which are Inst-redundant in S.

A clause C is Inst-redundant in S if each ground closure C ·θ is Inst-redundant

in S.

We note that Inst-redundancy is as strong as standard redundancy in resolu-

tion as in Bachmair and Ganzinger [2001]. By their notion, a clause C is consid-

ered redundant with respect to a set of clauses S if there are clauses C1, . . . , Cn

in S such that C � Ci for all i and C1, . . . , Cn |= C for an ordering � on clauses.

If C � Ci for two clauses, then for all their ground instances we have Cθ �gr Ciθi

and therefore by Definition 4.8 also C · θ �cl Ci · θi for all ground closures of C

and Ci. Thus, all ground closures of C are Inst-redundant and finally C is Inst-

redundant.

However, the more important property of Inst-redundancy is how it relates

the closures of a clause C to the closures of an instance of C. If S contains

a proper instance Cσ of a clause C, then all ground closures C · σθ are Inst-

redundant. For each closure C · σθ there is a closure Cσ · θ which is smaller

in �cl and trivially Cσθ |= Cσθ. A closure of a clause C representing a ground

clause Cθ is therefore redundant if there is an instance of C which has a closure
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representing the same ground clause Cθ. The notion of Inst-redundancy is the

key to completeness of Inst-Gen-Eq. By instantiating a clause we are making

closures of the instantiated clause redundant.

Central to the US-saturation process are ground literal closures from instances

of S. It suffices to consider a subset of all literal closures from all ground instances.

Definition 4.10. Let S be a set of clauses and I⊥ be a model for its ground ab-

straction S⊥. A selection function sel assigns to each clause C ∈ S a literal L ∈ C
such that I⊥ |= L⊥. We call such a selection function based on I⊥.

Definition 4.11. Let sel be a selection function based on a model I⊥ of the

abstraction S⊥ of S. The set of S-relevant literal closures L (S) contains all

ground literal closures L · θ|var(L) such that

(i) L ∨ C ∈ S

(ii) (L ∨ C) · θ is not Inst-redundant in S

(iii) L = sel (L ∨ C).

A literal closure L·θ is relevant in S if the literal L is selected in a clause L ∨ C
and there is a closure of the clause L ∨ C which is not Inst-redundant and con-

tains L · θ. We then apply the unit superposition calculus to the relevant literal

closures until we arrive at saturation in the following sense.

Definition 4.12. Let S be a set of clauses and 〈N ,D〉 be a partition of the S-rel-

evant literal closures L (S) such that each closure (l ' r) · θ ∈ D follows from S,

i.e. S |= (l ' r) θ holds. Let 〈N ,D〉sat be the US-saturation of 〈N ,D〉. The

set of clauses S is Inst-saturated with regard to a selection function sel and a

partition 〈N ,D〉 if 〈N ,D〉sat does not contain a contradiction �.

The set of relevant literal closures L (S) is partitioned into 〈N ,D〉 such that

every closure (l ' r) · θ ∈ D follows from S. This property enables efficient

simplification inferences with literal closures from D, described in Chapter 6.

The partitioning ensures that these simplifications in the US-saturation process

remain valid throughout the incremental Inst-saturation process and never have

to be reversed.

A crucial theorem for completeness of Inst-Gen-Eq is the following.

Theorem 4.4. If a set of clauses S is Inst-saturated with regard to a selection

function sel and a partition 〈N ,D〉 and S⊥ is satisfiable, then S is also satisfiable.
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We prove the theorem by explicitly constructing a model for S from an Inst-

saturated set of clauses in the following way.

Definition 4.13 (Model generation). Let the literal closures L · θ = (l ' r) · θ,
respectively L · θ = (l 6' r) · θ, be in the US-saturation 〈N ,D〉sat of the parti-

tion 〈N ,D〉 of the S-relevant literal closures L (S). Since we regard equations

as unordered multisets, we may assume lθ �gr rθ without loss of generality. The

US-saturation 〈N ,D〉sat does not contain literal closures with lθ = rθ, since they

are tautologies and as such US-redundant.

Suppose that sets of ground literals εM ·ρ and sets of ground rewrite rules δM ·ρ

have been defined for all literal closures M · ρ in 〈N ,D〉sat smaller than L · θ
in �l. Let IL·θ�l

be a partial interpretation, defined as the set union of all ground

literals εM ·ρ where L · θ �l M · ρ. Let RL·θ�l
be the rewrite system consisting of

all rewrite rules δM ·ρ where L · θ �l M · ρ.

For a positive given L ·θ = (l ' r) · θ let εL·θ = {(l ' r) θ} and δL·θ = {l→ r}
and for a negative given L · θ = (l 6' r) · θ let εL·θ = {(l 6' r) θ} and δL·θ = ∅ if

(i) lθ is irreducible in RL·θ�l
and

(ii) Lθ is undefined in IL·θ�l
, i.e. neither IL·θ�l

|= Lθ nor IL·θ�l
|= Lθ.

If (i) and (ii) are satisfied, we say the literal closure L · θ is productive. Else,

let εL·θ = ∅ and δL·θ = ∅.
Let IS =

⋃
L·θ∈〈N ,D〉sat εL·θ be an interpretation and RS =

⋃
L·θ∈〈N ,D〉sat δL·θ be

a rewrite system.

The ordering �l is well-founded, hence induction over L · θ with �l is well-

founded. We show that the above model generation is sound, yielding a consistent

interpretation and a convergent rewrite system.

Lemma 4.5. The interpretation IS is consistent and the rewrite system RS is

convergent.

Proof. Due to condition (i) a literal closure L ·θ is only productive if the interpre-

tation IL·θ�l
does not entail its complement. By induction over 〈N ,D〉sat with �l

it follows that IS is consistent.

Since for each rule (l→ r) θ in RS we have lθ �gr rθ and �gr is well-founded,

the rewrite system RS is terminating.
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Further, we can show that RS is left-reduced, that is there are no two dif-

ferent rules (l→ r) θ and (s→ t) ρ where sρ is a subterm of lθ. By condition

(ii), if a literal closure (l ' r) · θ produces a rule (l→ r) θ, then lθ is irreducible

in R(l'r)·θ�l
, which contains the rules produced by smaller literal closures in �l.

Now assume that there is a literal closure (s ' t) · ρ �gr (l ' r) · θ producing the

rule (s→ t) ρ. We have (s ' t) ρ �gr (l ' r) θ. Since �gr is a simplification order

and as such obeys the subterm property, we have sρ �gr lθ and thus sρ cannot

be a subterm of lθ.

We now know RS is left-reduced and terminating. By standard theorems in

rewriting (see Baader and Nipkow [1998]), the system RS is confluent and hence

convergent, since it is terminating and confluent.

Let us now show that the interpretation IS as constructed from the US-

saturation 〈N ,D〉sat does indeed satisfy S: every total and consistent extension

of IS is a model for S. We proceed by contradiction and assume there are ground

closures false in some interpretation I and let C · θ be the minimal such closure

with regard to �cl. We call it the minimal Inst-counterexample to I.

We lead the assumption of the existence of a minimal Inst-counterexample to

a contradiction by first showing that there is an S-relevant literal closure L · θ′

from C · θ, which is false in I. It follows that there is a, possibly different, not

US-redundant literal closure M · ρ in the US-saturation 〈N ,D〉sat, which is also

false in I. Since M · ρ is false, it is not productive, but we show that it satisfies

(i) and (ii) in Definition 4.13, which is a contradiction. Hence we cannot have a

minimal Inst-counterexample C · θ and I is a model for all ground instances of S.

Lemma 4.6. The minimal Inst-counterexample C · θ is not Inst-redundant in S.

Proof. If the closure C · θ were Inst-redundant in S, we would have ground clo-

sures C1 · θ1, . . . , Cn · θn, which are instances of clauses from S, such that C · θ �cl

Ci · θi for each i and C1θ1 . . . , Cnθn |= Cθ. However, since C · θ is false in I, for

at least one i the closure Ci · θi would have to be false in I and hence C · θ would

not be the minimal Inst-counterexample.

Lemma 4.7. There is an S-relevant ground literal closure L · θ′ with L ∈ C,

which is false in I.

Proof. Since C · θ is not Inst-redundant, its selected literal closure L · θ′ =

sel (C) · θ|var(L) is S-relevant. Moreover, because the closure C · θ is false in I,

each of its literal closures, including L · θ′, is.
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Lemma 4.8. The substitution θ from C · θ is irreducible in RS.

Proof. Assume that there is a variable x ∈ dom (θ) such that xθ = xθ[u]p is

reducible at position p by a rewrite rule u→ v ∈ RS. We can define a sub-

stitution θ′ by changing θ at x so that xθ′ = xθ[v]p. Now we have a clo-

sure C · θ �cl C · θ′, which is false in I and thus contradicts the minimality

of the Inst-counterexample C · θ.

Lemma 4.9. There is a literal closure M ·ρ in 〈N ,D〉sat, which is false in I, not

US-redundant and ρ is irreducible in RS.

Proof. By Definition 4.7 on page 51 we have

〈N ,D〉sat =
(
N∞ \ RUS (N∞ ∪ D∞)

)
∪
(
D∞ \ RUS (D∞)

)
.

Due to Definition 4.12 we have S |= (l ' r) θ for every (l ' r) · θ ∈ D and,

since unit superposition inferences are sound, also S |= (s ' t) ρ for the literal

closures (s ' t) · ρ ∈ D∞. Every such (s ' t) · ρ is either productive or reducible

in R(s't)·ρ�l
to a productive literal closure. Hence, we have IS |= (s ' t) · ρ for

every (s ' t) · ρ ∈ D∞.

The S-relevant ground literal closure L·θ′ from Lemma 4.7 is false in I and thus

not in D∞ \RUS (D∞). If L ·θ′ is in N∞ \RUS (N∞ ∪ D∞), then let M ·ρ = L ·θ′.
Since then L · θ′ 6∈ RUS (N∞ ∪ D∞), it is not US-redundant in 〈N ,D〉sat. As of

Lemma 4.8 the substitution θ and therefore also θ′ = θ|var(L) is irreducible in RS.

If L · θ′ 6∈ 〈N ,D〉sat, then it is US-redundant in 〈N ,D〉sat and θ′ is irreducible

in RS. By Definition 4.3 on page 48 we have1

RS ∪ irredRS

({
M · ρ ∈ 〈N ,D〉sat | L · θ′ �l M · ρ

})
|= Lθ.

There is an M · ρ ∈ irredRS

(
〈N ,D〉sat), which is false in I since L · θ′ is false

in I. Because M · ρ ∈ 〈N ,D〉sat, it is not US-redundant in 〈N ,D〉sat. Further,

the substitution ρ is irreducible in RS.

Let us now consider the minimal wrt. �l literal closure M · ρ = (s ' t) · ρ,

respectively M · ρ = (s 6' t) · ρ, in irredRS

({
M · ρ ∈ 〈N ,D〉sat | L · θ′ �l M · ρ

})
,

which is false in I and call it again the minimal US-counterexample.

1For readability we choose not to use the abbreviated notation LL·θ�l as in the definition
but the longer form {L′ · θ′ ∈ L | L · θ �l L

′ · θ′} instead.



4.2. MODEL GENERATION FROM INST-SATURATION 57

Lemma 4.10. The minimal US-counterexample M · ρ is not productive.

Proof. Assume that sρ = rρ, then M · ρ = (s ' r) · ρ is a tautology and not false

in any interpretation. Further, if M · ρ = (s 6' r) · ρ, then an equality resolution

inference is applicable and the US-saturation contains a contradiction. Therefore

we have sρ �gr rρ without loss of generality, since an equation is a multiset.

The literal closure M · ρ is false in I, therefore it cannot follow from the

interpretation
⋃
L·θ∈〈N ,D〉sat IL·θ�l

and is thus not productive.

Lemma 4.11. The term sρ is irreducible in RS.

Proof. We note that the substitution ρ is irreducible in RS as we have seen

in Lemma 4.9. Assume that sρ is reducible in RS, then there is a position p

in sρ = s[u′]pρ that is reducible by (u→ v) τ ∈ RS, which is produced by the

closure (u ' v) · τ ∈ 〈N ,D〉sat. We can apply a unit superposition inference from

the premises (u ' v) · τ and M · ρ = (s[u′] ' t) · ρ (or M · ρ = (s[u′] 6' t) · ρ,

respectively), since the side conditions are satisfied as follows:

(i) Since u′ρ = uτ , there is a σ = mgu (u, u′),

(ii) u′ is not a variable,

(iii) uτ �gr vτ ,

(iv) s[u′]ρ �gr t and

(v) uτ = u′ρ

We obtain the conclusion K · µ′ = (s[v] ' t)σ · µ′ (or K · µ′ = (s[v] 6' t)σ · µ′,
respectively), with µ = (τ ∪ ρ) and µ′ = µ|var({s[v]σ,tσ}). The conclusion is false

in I as the right premise M · ρ is, whereas the left premise is true in I.

In order to show that K · µ′ is not US-redundant in 〈N ,D〉sat, we assume the

opposite. Due to Lemma 4.3 on page 48, the substitution in the conclusion of

a unit superposition inference from closures with irreducible substitutions is also

irreducible. Thus µ′ is irreducible and we can apply Definition 4.3 on page 48,

by which K · µ′ follows from smaller irreducible closures:

RS ∪ irredRS

({
P · ν ∈ 〈N ,D〉sat | K · µ′ �l P · ν

})
|= K · µ′.
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We thus have a P · ν ∈ 〈N ,D〉sat, which is false in I, and M · ρ �l K ·µ′ �l P · ν,

which contradicts the minimality of M · ρ and our assumption of US-redundancy

in 〈N ,D〉sat of K · µ.

On the other hand, the literal closure K · µ′ is the conclusion of a unit super-

position inference from premises in 〈N ,D〉sat and if K · µ′ is not US-redundant,

it is in 〈N ,D〉sat. However, this also contradicts the minimality of the US-

counterexample M · ρ. We conclude the irreducibility of sρ in RS.

Lemma 4.12. There is no minimal US-counterexample M · ρ.

Proof. By Lemma 4.11 we have that sρ is irreducible in RS. As we also know

that M ·ρ is not productive (Lemma 4.10) and M ·ρ ∈ 〈N ,D〉sat, condition (ii) in

Definition 4.13 must not be satisfied and it must be the case that IM ·ρ�l
|= M · ρ.

Let us consider the two possible cases:

Case M · ρ = (s ' t) · ρ. We have IM ·ρ�l
|= (s 6' t) ρ. Since sρ is irreducible

in RS, there must be a (u 6' v) · τ producing some (s ' t′) τ in IM ·ρ�l
such that t′

is reducible in RM ·ρ�l
to t. However, this is impossible as

Mρ = (u 6' v) τ �gr (s ' t′) ρ �gr (s ' tr) ρ = Mρ

and hence (u 6' v) · τ �l (s ' t) · ρ.

Case M · ρ = (s 6' t) · ρ. We have IM ·ρ�l
|= (s ' t) · ρ. Since sρ is irre-

ducible in RS, we have sρ = tρ. However, then equality resolution is applicable

to M · ρ = (s 6' t) · ρ and 〈N ,D〉sat contains a contradiction. Again, we have a

contradiction.

Backtracking over our assumptions shows that there cannot be a minimal US-

counterexample M ·ρ ∈ 〈N ,D〉sat and thus no minimal Inst-counterexample C ·θ,
which is a ground instance in S. Therefore, the interpretation I is a model for

all ground instances of S.

Hence, we have proved Theorem 4.4, which is part Á in Figure 4.1 on page 44:

if S is Inst-saturated, that is the US-saturation of its relevant literal closures

does not contain the contradiction, we can construct a model I of S as shown in

Definition 4.13.
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4.3 An Effective Inst-Saturation Process

In the previous section we have considered Inst-saturation only statically by as-

suming an Inst-saturated set of clauses, by Definition 4.12 on page 53 a set of

clauses for which the US-saturation of the relevant literal closures does not con-

tain a contradiction.

We now turn to the process of reaching Inst-saturation in this sense, which

is illustrated as a circle in the middle of Figure 4.1 on page 44. So far we have

defined the notion of relevant literal closures (Definition 4.11 on page 53) and have

shown how to obtain the US-saturation of a set of literal closures (Definition 4.7

on page 51). In order to close the circle, we have to remove contradictions from

the US-saturation. This requires eliminating certain literal closures from the set

of relevant literal closures, which we achieve by making closures redundant (part

Â in Figure 4.1 on page 44). An Inst-saturation process is fair if it eventually

removes all contradictions in the US-saturation.

In this section we prove the significance of a fair Inst-saturation process: we

can always find an unsatisfiable ground abstraction if the input clause set is

unsatisfiable. Moreover, all ground abstractions from a satisfiable set of clauses

remain satisfiable.

Let us now formally define the Inst-saturation process.

Definition 4.14. An Inst-saturation process is a possibly infinite sequence of

tuples
{〈
Si, I i⊥, seli

〉}∞
i=1

, where Si is a set of clauses. If at any i the ground

abstraction Si⊥ is unsatisfiable, the process stops with the result “unsatisfiable”.

Otherwise I i⊥ is a model of Si⊥ and seli a selection function based on I i⊥.

Given a triple
〈
Si, I i⊥, seli

〉
, which we call a state in the saturation process, a

successor state
〈
Si+1, I i+1

⊥ , seli+1
〉

is obtained by modifying the set of clauses Si

such that either

(i) Si+1 = Si ∪N where N is a set of clauses such that Si |= N or

(ii) Si+1 = Si \ {C} where C is Inst-redundant in Si.

An Inst-saturation process adds to the clause set Si in the current state con-

sequences of Si or removes Inst-redundant clauses, by Definition 4.9 on page 52

clauses which follow from smaller clauses in Si. The satisfiability of the clause

set S1 is preserved throughout the saturation process.



60 CHAPTER 4. COMPLETENESS OF INST-GEN-EQ

Lemma 4.13. The set of clauses Si+1 in a successor state is satisfiable if and

only if Si is satisfiable.

Proof. Neither adding consequences nor removing redundant clauses changes the

set of entailed clauses. In particular the empty clause is never redundant and

only follows from unsatisfiable clause sets, hence the set Si+1 is satisfiable if and

only if Si is.

Satisfiability is not always preserved for the ground abstraction between the

current state Si⊥ and a successor state Si+1⊥. In the introductory Example 3.3

on page 37 a satisfiable ground abstraction becomes unsatisfiable after adding

instances in a successor state. However, for a satisfiable clause set we can show

that no unsatisfiable ground abstraction can be obtained in the saturation process.

Lemma 4.14. If the clause set Si is satisfiable, then the ground abstractions of

all successor states Sj⊥ for j ≥ i are satisfiable.

Proof. From the above Lemma 4.13 we conclude that all clause sets Sj with j ≥ i

are satisfiable. By Herbrand’s Theorem a set of clauses is satisfiable if and only

if all sets of ground instances of the clause set are satisfiable. Consequently, in

particular the sets of ground instances Sj⊥ with j ≥ i are satisfiable.

In the following we are only interested in the clauses in the limit of the satu-

ration process, where we do not consider clauses that only intermittently appear.

Definition 4.15. For an Inst-saturation process
{〈
Si, I i⊥, seli

〉}∞
i=1

let us denote

by S∞ the set of persistent clauses which is the lower limit of the sequence {Si}∞i=1.

S∞ = lim inf
i→∞

{
Si
}∞
i=1

=
∞⋃
n=1

(
∞⋂
m=n

Sm

)

In other words, a persistent clause is in every Si from a certain i > i0 onwards.

It is neither feasible in practice nor necessary for the Inst-saturation process

to saturate the clause set with all consequences and to remove all redundant

clauses. For refutational completeness in the Inst-Gen-Eq method it suffices if the

saturation process eventually produces a clause set with an unsatisfiable ground

abstraction if the input clause set is unsatisfiable. In order to guide the process

towards an unsatisfiable ground abstraction we use a US-saturation process on

selected literal closures and define the notion of conflicts on clauses considering

only the persistent clauses.
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Definition 4.16. Let
{〈
Si, I i⊥, seli

〉}∞
i=1

be an Inst-saturation process with the

set S∞ of persistent clauses and K = {(L1 ∨ C1) · θ1, . . . , (Ln ∨ Cn) · θn} be a set

of n ground instances from S∞. Let L = {L1 · θ′1, . . . , Ln · θ′n} be a set of lit-

eral closures where θ′i = θi|var(Li) and each Li is selected infinitely often: for

all 1 ≤ j ≤ n and all i > i0 we have seli (Lj ∨ Cj) = Lj.

The pair 〈K,L〉 is called a persistent conflict if there is a contradiction � in

the US-saturation 〈N ,D〉sat (Definition 4.7 on page 51) of a partition of L into

〈N ,D〉 such that S∞ |= (l ' r) θ holds for each closure (l ' r) · θ ∈ D.

We remark that the definition of a persistent conflict does not refer to Inst-

redundancy. A conflict 〈K,L〉 can contain Inst-redundant closures in K and thus

not all literal closures in L are necessarily relevant. However, it is the intention

of a fair Inst-saturation process to make persistent conflicts irrelevant by making

closures in K redundant. A persistent conflict indicates where the Inst-saturation

process needs to refine the ground abstraction.

Definition 4.17. An Inst-saturation process is fair if for every persistent con-

flict 〈K,L〉 at least one of the closures in K is Inst-redundant in some state i of

the saturation process.

Let us now take a closer look at the models of the ground abstraction in the

Inst-saturation process. In each state, if the ground abstraction Si⊥ is satisfiable,

there can be several models I i⊥, from which we non-deterministically choose one.

In practice, this choice is delegated to a black-box ground solver.

Adding to the clause set Si in order to refine the ground abstraction on a per-

sistent conflict triggers changes in the model of the ground abstraction, which may

contradict assignments in the model of the preceding state. We can have I i⊥ |= L⊥
and I i+1

⊥ |= L⊥ and therefore in particular I i⊥ ∪ I
j
⊥ may be inconsistent for i 6= j.

When the model of the ground abstraction I i⊥ changes in a successor state,

this affects the selection function seli, which is based on I i⊥. If there is more than

one choice for a selection function, we again non-deterministically choose one. In

an implementation we employ heuristics for literal selection.

We are now ready to prove the main theorem about the effectiveness of a

fair Inst-saturation process: from a satisfiable set of clauses a fair Inst-saturation

process reaches an Inst-saturated set of clauses in the limit. Since models of

the ground abstraction and thus selection functions change in the course of the

saturation process, this theorem is not obvious.
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For this theorem in particular we have be able to deal with the situation of a

divergent selection function in the limit of the saturation process. We do not have

the notion of a persistent selection and since the model of the ground abstraction

is calculated by the black box ground solver, we cannot enforce a persistent model.

It is possible that the model and thus the selection function alternates between

two states of the saturation process, such that the selection functions in the states

of the saturation process do not converge towards one selection function in the

limit. To cope with this situation we do not require conditions on the selection

function to hold for all states i > i0 from a certain state i0 on, but weaken it

and demand that they only holds for infinitely many states. Divergent selection

functions that change in every state are covered by the latter condition, but not

by the former.

Theorem 4.15. Let S∞ be a set of persistent clauses of a fair Inst-saturation

process
{〈
Si, I i⊥, seli

〉}∞
i=1

and let S∞⊥ be satisfiable. Then there is a model I⊥

of S∞⊥ and a selection function sel based on I⊥ such that S∞ is Inst-saturated

with regard to sel and any partition 〈N ,D〉 of the S-relevant literal closures.

Proof. We arrange the clauses in S∞ in an arbitrary order as {Ci}∞i=1 and by

induction over the clauses thus arranged incrementally construct a model Jn of

the ground abstraction of the first n clauses, i.e. the set {Ci⊥}ni=1, and a selection

function selJn based on Jn such that for each n the following invariants hold.

(i) Jn is a consistent interpretation and a model for {Ci}ni=1. The function selJn

is a selection function based on Jn for the clauses in {Ci}ni=1.

(ii) Jn ⊆ Jn+1 and selJn+1 (C) = selJn (C) for all clauses C in {Ci}ni=1.

(iii) For infinitely many k we have Jn ⊆ Ik⊥ and selk (Cl) = selJn (Cl) for

all 1 ≤ l ≤ n.

For n = 1 we have the singleton set {C1} for which we have to give a

model J1 and a selection function selJ1 (C1) that satisfy the invariants (i)-(iii)

above. Since C1 ∈ S∞ and consists of a finite number of literals, there is a lit-

eral L ∈ C1 such that Ik⊥ |= L⊥ and selk (C1) = L for infinitely many k. We

let J1 = {L⊥}, leaving all other ground literals undefined, and selJ1 (C1) = L,

thus satisfying invariant (iii). Since J1 is consistent and selJ1 is a selection

function for C1 based on J1, we also satisfy invariant (i). Assuming J0 = ∅
and dom

(
sel0J

)
= ∅, invariant (ii) holds.
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We can now assume that there is a model Jn and a selection function selJn

that satisfy (i)-(iii) for some n. Let us consider the persistent clause Cn+1 ∈ S∞.

There is an m0 such that for all m > m0 we have Cn+1 ∈ Sm and hence Im⊥ |= Cn+1

and selm (Cn+1) = L for some literal L ∈ Cn+1. Due to invariant (iii) there are

infinitely many p with Jn ⊆ Ip⊥ and selp (Cl) = selJn (Cl) for all 1 ≤ l ≤ n.

There are infinitely many q where selq (Cn+1) = L for some literal L ∈ Cn+1,

consequently Iq⊥ |= L⊥, and also Jn ⊆ Iq⊥. Therefore Jn+1 = Jn ∪ {L⊥} is

consistent and a model for {Ci}n+1
i=1 . Further, we can define selJn+1 (Cn+1) = L

and selJn+1 (Cj) = selJn (Cj) for all 1 ≤ l ≤ n, obtaining a selection function

for the clauses {Ci}n+1
i=1 based on Jn+1. By construction Jn+1 and selJn+1 satisfy

invariants (i)-(ii).

By induction the invariants hold for all n and we let I⊥ =
⋃∞
i=1 J

i as well

as sel(Ci) = selJi(Ci). Since all finite subsets of all J i are consistent, we conclude

consistency of I⊥ from compactness of first-order logic. Further, sel is a selection

function based on I⊥.

Assume S∞ not Inst-saturated with regard to sel and some partition 〈N ,D〉
of the S-relevant literal closures with S∞ |= (l ' r) θ for each (l ' r) · θ ∈ D.

There is a finite subset L and a partition 〈N ′,D′〉, such that 〈N ′,D′〉sat contains

a contradiction. Let L = {(L1 ∨ C1) · θ1, . . . , (Ln ∨ Cn) · θn} be a set of closures

of clauses from S∞ such that for each Li there is a substitution θ′i with xθ = xθ′

for each x ∈ var(L) and L · θ′i ∈ L (S∞).

From the construction of I⊥ and invariant (iii) it follows that there are in-

finitely many i such that seli (Ll ∨ Cl) = Ll for 1 ≤ l ≤ n. Hence 〈K,L〉 is a

persistent conflict and as the Inst-saturation process is fair, at least one of the

closures in K is Inst-redundant in L (S∞).

However, this contradicts the assumption of Inst-saturation of S∞, whereby

all closures in L are S∞-relevant and cannot be produced by Inst-redundant

closures.

If the ground abstraction of the persistent clauses, that is, the limit of a

saturation process, is satisfiable, then there is a selection function with respect

to which the set of persistent clauses is Inst-saturated for any partition of the

S-relevant literal closures. The set of persistent clauses is not necessarily Inst-

saturated with respect to every selection function based on a model of the ground

abstraction, but the theorem guarantees the existence of at least one such selection

function.
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Refutational completeness of a fair Inst-saturation process is now a conse-

quence of the previous theorem.

Corollary 4.16. If S1 is unsatisfiable then in every fair Inst-saturation process

starting at
〈
S1, I1

⊥, sel1
〉

there is a state i0 such that for all states i > i0 the ground

abstraction Si⊥ is unsatisfiable.

Proof. Assume otherwise, then the ground abstractions Si⊥ are satisfiable in

some state i > i0 of the saturation process
{〈
Si, I i⊥, seli

〉}∞
i=1

. Therefore the

limit of the saturation process S∞⊥ is satisfiable and by Theorem 4.15 there is

a model I⊥ for S∞⊥ and a selection function sel such that S∞ is Inst-saturated

with regard to sel and any partition of the S-relevant literal closures. But then

by Theorem 4.4 on page 53 the Inst-saturated S∞ with its satisfiable ground

abstraction S∞⊥ is satisfiable. By Lemma 4.13 S1 is also satisfiable, which is

a contradiction. Hence our assumption is false and Si⊥ cannot be satisfiable in

every state i throughout the saturation process.

The saturation process does not in general terminate for a satisfiable clause set

Si, because of the undecidability of the satisfiability problem in first-order logic.

However, we can state the following theorem that allows us to claim satisfiability

after a finite number of steps in some cases.

Corollary 4.17. If there is a state of the saturation process i where Si is Inst-

saturated and Si⊥ is satisfiable, then S1 is satisfiable.

Proof. By Theorem 4.4 on page 53 an Inst-saturated set Si is satisfiable because

of its satisfiable ground abstraction Si⊥. Due to Lemma 4.13 S1 is also satisfiable.

The results about effectiveness of a fair Inst-saturation process are summarised

in the following theorem.

Theorem 4.18. Let
{〈
Si, I i⊥, seli

〉}∞
i=1

be a fair Inst-saturation process. Then

either

(i) Si⊥ is unsatisfiable for at least one i and therefore S1 is unsatisfiable or

(ii) Si⊥ is satisfiable for all i and therefore S1 is satisfiable.

Moreover, if for some i in the Inst-saturation process Si is Inst-saturated, then

we can conclude at this step the satisfiability of S1.
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In this section we have defined the Inst-saturation process and a notion of

fairness, which effectively guides the saturation process along persistent con-

flicts. We have shown that a fair Inst-saturation process eventually arrives at

an unsatisfiable ground abstraction from an unsatisfiable input clause set. An

Inst-saturation process produces only satisfiable ground abstractions from a sat-

isfiable input clause set. If in an Inst-saturation process the clause set becomes

Inst-saturated, the process has proved that the input clause set is satisfiable.

4.4 Instance Generation from Conflicts

Fairness of an Inst-saturation process as in Definition 4.17 on page 61 requires

closures in persistent conflicts to be made redundant. Remember that by Defini-

tion 4.9 on page 52 a closure C · σθ of a clause C is Inst-redundant in a set of

clauses S if the set contains the proper clause instance Cσ. In this section we show

that it suffices to consider unit superposition inferences leading to a contradiction

from literal closures in a persistent conflict: from every such unit superposition

proof we can extract some proper instantiating substitution for some clause that

makes at least one closure in the conflict redundant. Adding clause instances,

generated from proofs of contradictions from literal closures in persistent conflicts,

is thus a fair Inst-saturation process, the final step Ã in Figure 4.1 on page 44.

The US-saturation of the selected literals of the closures in a persistent conflict

contains a contradiction, hence there is a finite proof of a contradiction from literal

closures in the unit superposition calculus. Let us first formalise the notion of a

proof in the unit superposition calculus.

Definition 4.18. A US-proof P on literal closures is a binary tree, drawn with

the root at the bottom, consisting of persistent literal closures from N∞ or D∞ in

a US-saturation process. Each non-leaf node L ·θ has exactly two children, which

are the premises of an inference in the unit superposition calculus on literal clo-

sures (Definition 4.1 on page 45) resulting in L ·θ. An exception is the root node,

which may be a contradiction � and in this case has only one child node (l 6' r) · θ
such that an equality resolution inference is applicable to it. Each leaf node is

a relevant literal closure and each edge is labelled with the substitution σ in the

inference from the child node to the parent.

The substitutions to instantiate clauses in order to make closures in persistent

conflicts redundant are extracted from the US-proof of a contradiction of relevant
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literal closures. By tracing the branches of the tree from the root to the leaves

we obtain a substitution for each relevant literal closure.

Definition 4.19. Let P be a US-proof and the literal closure L · θ be a leaf

of P . Let σ1, . . . , σn be the substitutions labelling the edges along the branch

of P from the leaf L · θ to the root. We call the composition σ = σ1 · · ·σn the

P -relevant instantiator and the closure Lσ · ρ the P -relevant instance of L · θ
where Lσρ = Lθ.

We prove the following theorem relating leaf literal closures, relevant instan-

tiators and the literal closure at the root of a proof.

Theorem 4.19. Let P be a US-proof of the literal closure L·θ or a contradiction �

(the root of P ) from the literal closures L1 · θ1, . . . , Lk · θk (the leaves of P ).

Let σ1, . . . , σk be the respective P -relevant instantiators for the leaf literal closures.

Then

L1σ1ρ, . . . , Lkσkρ |= Lρ

and

L1σ1ρ, . . . , Lkσkρ |= �,

respectively, for every substitution ρ grounding the literals L1σ1, . . . , Lkσk.

Proof. We proceed by induction over the depth of the proof tree, that is the

length n of the longest path in the US-proof P .

Case n = 0. L · θ is a literal closure at a leaf and the relevant substitution is

empty []. Trivially, L[]ρ |= Lρ for all substitutions ρ grounding L.

Case n > 0. If the root of the proof tree is the empty clause � then there is

an equality resolution inference with a literal closure (l 6' r) · θ as premise. The

depth of the US-proof of (l 6' r) · θ is n− 1 and thus by the induction hypothesis

L1σ
′
1τ, . . . , Lkσ

′
kτ |= (l 6' r) τ

for the instantiated literal closures Liσ
′
i at the leaves and all grounding sub-

stitutions τ . Since lσ = rσ with the substitution σ in the equality resolution

inference, (l 6' r)σρ |= � for all substitutions ρ. We choose τ = σρ and by
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transitivity of |= conclude

L1σ
′
1σρ, . . . , Lkσ

′
kσρ |= (l 6' r)σρ |= �,

where each σ′iσ is the relevant instantiator for Li in the US-proof P .

If the literal closure at the root of the tree is L · θ = (s[r] ' t)σ · ρ′ [or,

respectively, L · θ = (s[r] 6' t)σ · ρ′], then it is the conclusion of a superposition

inference between the literal closures (l ' r) · θl and (s[l′] ' t) · θr [(s[l′] 6' t) · θr].

Since the proof trees of these two literals are at most of depth n− 1 we apply the

induction hypothesis and conclude

L1σ
′
1τ, . . . , Llσ

′
lτ |= (l ' r) τ

and

Ll+1σ
′
l+1τ, . . . , Lkσ

′
kτ |= (s[l′] ' t) τ

[Ll+1σ
′
l+1τ, . . . , Lkσ

′
kτ |= (s[l′] 6' t) τ ]

for all grounding substitutions τ .

By Lemma 4.1 on page 47 we also have

(l ' r)στ, (s[l′] ' t)στ |= (s[r] ' t)στ

[(l ' r)στ, (s[l′] 6' t)στ |= (s[r] 6' t)στ ]

for all grounding substitutions τ .

Since |= is transitive, we choose τ = σρ and obtain

L1σ
′
1σρ, . . . , Llσ

′
lσρ, Ll+1σ

′
l+1σρ, . . . , Lkσ

′
kσρ |= Lρ

where σ′iσ are the relevant instantiators for Li in the proof tree with of L · θ at

the root for all substitutions ρ grounding the leaf literals L1, . . . , Lk.

We are in particular interested in US-proofs with a contradiction at the root

and consider the special grounding substitution ⊥ in the following corollary.

Corollary 4.20. Let L1 · θ1, . . . , Lk · θk be the literals at the leaves of a US-

proof with the empty clause � at the root and let σ1, . . . , σk be the respective

relevant instantiators for the leaf literal closures. The set {L1σ1⊥, . . . , Lkσk⊥} is

unsatisfiable.
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Proof. We have L1σ1ρ, . . . , Lkσkρ |= � for every substitution ρ grounding the

instantiated leaf literals L1σ1, . . . , Lkσk and in particular for ρ = ⊥. Since the

empty clause � follows from {L1σ1⊥, . . . , Lkσk⊥}, the set is unsatisfiable.

The literals {L1⊥, . . . , Lk⊥}, which are the ground abstractions of the literal

closures at the leaves of the proof, are true in the ground model I⊥, but the

set {L1σ1, . . . , Lkσk} of literals at the leaves of a US-proof of a contradiction,

instantiated with the respective relevant instantiators, is unsatisfiable in first-

order. Therefore the model of the ground abstraction I⊥ has to be refined in order

to prevent this situation. However, since the model of the ground abstraction is

calculated by a ground solver which is a black box to us, we do not directly control

the model. Instead we instantiate clauses and add them to the clause set in the

Inst-saturation process such that the conflict becomes redundant, which triggers

an adaption of the ground model for subsequent states of the saturation process.

Since a non-proper instance of a clause C does not make C redundant and the

ground abstraction of C and a non-proper instance of it are identical, it remains

to show that in every US-proof there is indeed a proper instantiator. Then, one of

the closures in the conflict becomes redundant and hence adding clause instances

from US-proofs makes every persistent conflict redundant and we obtain a fair

Inst-saturation process.

Theorem 4.21. Let 〈K,L〉 be a persistent conflict and P be a proof of the con-

tradiction from L. At least one of the P -relevant instantiators is proper.

Proof. Since 〈K,L〉 is a persistent conflict, every literal Li of the relevant literal

closures Li · θi ∈ L is selected infinitely often in the saturation process. Hence

all Li⊥ ∈ L are true in the model I i⊥ in some state i and therefore consistent. Also,

the US-saturation of some partition 〈N ,D〉 of L contains the empty clause � and

therefore there is a proof of � from literal closures in L.

By Corollary 4.20 the set {L1σ1⊥, . . . , Lkσk⊥} where each σi is the respective

relevant instantiator for the literal closure Li · θi is unsatisfiable. If all σi are non-

proper, then Liσi⊥ = Li⊥ and {L1σ1⊥, . . . , Lkσk⊥} = L which is satisfiable.

Therefore at least one σi must be non-proper.

Since every US-proof of the contradiction � from the relevant literals in a per-

sistent conflict contains at least one proper instantiator, we now have a concrete

fair Inst-saturation process (step Ã in Figure 4.1 on page 44). For a persistent
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conflict 〈K,L〉 there is a US-proof P of a contradiction � from the literal clo-

sures L. Instantiating clauses of closures in K with the respective P -relevant

instantiators makes at least one closure in K redundant as required by fairness

of an Inst-saturation process.

Summary and Example

This concludes the proof of refutational completeness of the Inst-Gen-Eq method

with the unit superposition calculus on literals. Let us summarise the main

elements and aspects we have presented, referring again to Figure 4.1 on page 44.

In the centre we have the Inst-saturation process (Definition 4.14 on page 59)

on a set of clauses S, from which a model I⊥ of the ground abstraction S⊥ is

calculated, which in turn induces a selection function sel. The selection function

together with Inst-redundancy (Definition 4.9 on page 52) gives rise to a set of

S-relevant literal closures L (S) (Definition 4.11 on page 53) of ground instances

of S.

Exhaustively applying unit superposition inferences in a fair way (Defini-

tion 4.6 on page 51) to a partition 〈N ,D〉 of the S-relevant literal closures and

removing literal closures which are US-redundant (Definition 4.3 on page 48)

leads to the US-saturation 〈N ,D〉sat (Definition 4.7 on page 51) of the S-relevant

literal closures.

If the ground abstraction S⊥ is unsatisfiable, the saturation process stops with

the result unsatisfiable. If the ground abstraction S⊥ is satisfiable and the US-

saturation does not contain a contradiction �, a model of S exists (Theorem 4.4

on page 53) and the Inst-saturation process stops with the result satisfiable.

Otherwise, there are conflicts (Definition 4.16 on page 61) which are sets of

closures and literal closures for which a US-proof (Definition 4.18 on page 65) of

a contradiction in the unit superposition calculus exists. A fair Inst-saturation

process (Definition 4.17 on page 61) must make persistent closures in conflicts

redundant, then it is refutationally complete (Theorem 4.18 on page 64).

Since at least one relevant instantiator (Definition 4.19 on page 66) extracted

from a US-proof of a contradiction is proper (Theorem 4.21 on the facing page),

adding instances of the clauses with respective relevant instantiators makes clo-

sures in the conflict redundant, yielding a concrete Inst-saturation process.

Example 4.2. Let us resume Example 3.3 on page 37 in order to illustrate the
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calculus on closures and literal closures. We have the following clause set with

the underlined literals selected.

h(x) ' x ∨ x 6' a (1)

f(h(y)) ' g(z) (2)

f(a) 6' g(u) (3)

We can consider the following closures, which are ground instances of (1)-(3)

and not Inst-redundant.

h(x) ' x ∨ x 6' a · [a/x] (1a)

f(h(y)) ' g(z) · [a/y, a/z] (2a)

f(a) 6' g(u) · [a/u] (3a)

With the unit superposition calculus on the literal closures L1, L2 and L3,

which are selected in the closures (1a)-(3a), we find a contradiction.

L1

h(x) ' x · [a/x]

L2

f(h(y)) ' g(z) · [a/y, a/z]
[x/y]

f(x) ' g(z) · [a/x, a/z]
L3

f(a) 6' g(u) · [a/u]
[a/x]

g(z) 6' g(u) · [a/z, a/u]
[z/u]

�

Hence the set of closures K = {(1a), (2a), (3a)} is a conflict which has to be

made redundant. We achieve this by adding the clause instances

h(a) ' a ∨ a 6' a (4)

f(h(a)) ' g(z) (5)

to the input set of clauses.

There is only one ground instance of the ground clause (4), namely

h(a) ' a ∨ a 6' a · []. (4a)

Since (1a) �cl (4a) and (4a) |= (1a), the closure (1a) is Inst-redundant and

therefore also the conflict K.

The ground solver finds the ground abstraction of the clause set (1)-(5) to be
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unsatisfiable and thus the Inst-Gen-Eq method has proved the unsatisfiability of

the initial clause set (1)-(3).

As we have proved in this section, the above procedure of adding clause in-

stances to the clause set with instantiators from a US-proof of a conflict makes the

conflict redundant. Further, if closures from each conflict are made redundant,

we have a fair Inst-saturation process that guarantees finding an unsatisfiable

ground abstraction for each unsatisfiable clause set.

4.5 Lifting Closures to First-Order Clauses

So far we have proved completeness of the Inst-Gen-Eq method, where an Inst-

saturation process generates clause instances from ground closures of clauses. In

the proof we have worked on the level of ground closures in order to allow for

notions of redundancy. However, in practice it is not necessary to consider all

ground closures separately, of which there may be infinitely many for every clause.

In Example 4.2 on page 69 we would have to consider in addition to closure

(1a) closures from clause (1) with every other grounding substitution. Thus there

are more literal closures which are potentially S-relevant and have to be saturated

under unit superposition inferences.

In the following we show that the unit superposition calculus on ground literal

closures can be lifted to first-order literals. It suffices to apply the first-order unit

superposition calculus as introduced in Definition 3.3 on page 37 without paying

attention to individual literal closures representing the ground instances of the

literal.

An Inst-saturation process lifted to first-order literals is fair if it generates

clause instances in a way analogous to the Inst-saturation process on S-relevant

literal closures. We are first concerned with the lifting and only in the next section

consider elimination of redundancy by the way of a constraint notation.

In parallel to Definition 4.18 on page 65 we can define a proof from unit

superposition inferences on literals as of Definition 3.3 on page 37.

Definition 4.20. A US-proof P on literals is a binary tree of literals, drawn with

the root at the bottom. Each non-leaf node L has exactly two children, which

are the premises of an inference in the unit superposition calculus on literals

(Definition 3.3 on page 37) resulting in L. An exception is the root node, which

may be a contradiction �, and in this case has only one child node l 6' r such that
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an equality resolution inference is applicable to it. Each leaf node is a selected

literal and each edge is labelled with the substitution σ in the inference from the

child node to the parent.

Definition 4.21. Let P be a US-proof on literals and the first-order literal L

be a leaf of P . Let σ1, . . . , σn be the substitutions labelling the edges along the

branch of P from the leaf L to the root. We call the composition σ = σ1 · · ·σn
the P -relevant instantiator and the literal Lσ the P -relevant instance of L.

Now we lift the result from Theorem 4.21 on page 68 on literal closures to

first-order literals.

Theorem 4.22. Let L = {L1 · θ, . . . , Lk · θk} be a set of literal closures such

that {L1⊥, . . . , Lk⊥} is satisfiable and there is a contradiction � in the US-

saturation of some partition 〈N ,D〉 of L. There is a US-proof of a contradiction

with unit superposition inferences on the set of literals {L1 . . . , Lk} such that at

least one relevant instantiator is proper.

Proof. There is a finite US-proof P of a contradiction � from {L1 · θ, . . . , Lk · θk}.
With Theorem 4.21 on page 68 at least one of the P -relevant instantiators is

proper.

By inspecting the side conditions on inferences in the unit superposition cal-

culus with ground literal closures and the unit superposition calculus with liter-

als in Definition 4.1 on page 45 and Definition 3.3 on page 37, respectively, we

find that if a unit superposition inference is applicable to literal closures L1 · θ1

and L2 · θ2 with the conclusion L · θ, then a superposition inference is applicable

to the literals L1 and L2 with the conclusion L and the same substitution σ is

applied in both inferences. Equally, if a contradiction � follows from a literal

closure (l 6' r) · θ, then a contradiction can be derived from the literal l 6' r with

the same substitution σ.

Thus we can simulate a unit superposition proof P of a contradiction from

a set of literal closures {L1 · θ, . . . , Lk · θk} by a unit superposition proof P ′ on

the set of first-order literals {L1 . . . , Lk}. Further, if the set {L1⊥, . . . , Lk⊥} is

satisfiable, at least one P ′-relevant instantiator is proper.

As a corollary of this theorem we present a fair Inst-saturation process with

the US-saturation lifted from literal closures to first-order literals. We have

an Inst-saturation process
{〈
Si, I i⊥, seli

〉}∞
i=1

, where persistent conflicts have to
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be made redundant. For 〈K,L〉 with K = {(L1 ∨ C1) · θ1, . . . , (Ln ∨ Cn) · θn}
and L = {L1 · θ′1, . . . , Ln · θ′n}, where θ′i = θi |var(Li), there is a state i of the Inst-

saturation process where

(i) seli (Lj ∨ Cj) = Lj for all 1 ≤ j ≤ n and

(ii) 〈N ,D〉sat contains a contradiction.

The fact (i) implies the satisfiability of {L1⊥, . . . , Ln⊥} with a model I⊥ and

by (ii) and Theorem 4.22 there is a US-proof P on literals, where at least one

P -relevant instantiator is proper. Without loss of generality let σ1 for L1 be

proper, then adding C1σ1 to Si makes C1 · θ1 redundant in state i + 1 and thus

also the conflict 〈K,L〉.
The procedure described in Example 3.3 on page 37 and Figure 3.2 on page 36

is therefore a refutationally complete method: we saturate selected literals under

inferences in the unit superposition calculus and for each contradiction that is

derived, extract relevant substitutions from the proof. We continue after adding

instances of clauses with the respective relevant substitutions until either the

ground abstraction becomes unsatisfiable or we achieve saturation of the selected

literals without contradictions.

4.6 Redundancy Elimination with Constraints

Lifting the unit superposition calculus from ground literal closures to first-order

literals is an essential step, since it is not practically possible to deal with all

ground instances separately. However, the straightforward lifting in the previous

section is too coarse to capture the notion of Inst-redundancy and it is crucial for

efficiency to employ a constraint mechanism to eliminate Inst-redundancy in the

lifted unit superposition calculus.

The lifting in Theorem 4.22 on the preceding page only ensures that every

US-proof on literal closures corresponds to a US-proof on literals, but does not

lift Inst-redundancy. There are US-proofs on literals for which all corresponding

US-proofs on literal closures are redundant. That is because in every such US-

proof on literal closures at least one literal closure is not relevant. This in turn

is due to Inst-redundancy of the closure the literal closure is selected in. Hence

the conflict that contains the closure is already irrelevant and fairness of the Inst-

saturation process (Definition 4.17 on page 61) holds without generating clause
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instances from the US-proof on literals.

We need to integrate the notion of Inst-redundancy in a concrete way into the

Inst-saturation process with US-proofs on first-order literals. Inst-redundancy

arises when clauses are instantiated: a closure C ·σθ of a clause C ∈ S is redundant

if there is a clause Cσ ∈ S, since the ground clause Cσθ is represented twice,

namely by C ·σθ and Cσ ·θ. Our intention is to have the ground clause Cσθ only

represented by the smaller closure Cσ · θ of Cσ and to block the closure C · σθ in

the closures of C.

We introduce the following constraint notion, which has already been a key

component in the non-equational Inst-Gen method [Korovin, 2009]. Dismatching

constraints allow eliminating precisely the kind of redundancy occurring in an

Inst-saturation process, similar constraints have appeared in Comon [1991] and

Caferra and Zabel [1992].

Definition 4.22. A dismatching pair s 6B t consists of two variable-disjoint n-tu-

ples of terms s = 〈s1, . . . , sn〉 and t = 〈t1, . . . , tn〉. A dismatching constraint is

either a dismatching pair D = s 6B t, an n-ary conjunction D1 ∧ · · · ∧Dn of dis-

matching constraints or an n-ary disjunction D1 ∨ · · · ∨Dn of dismatching con-

straints, where for each two dismatching pairs s 6B t and s′ 6B t′ in a dismatching

constraint the tuples s and s′ are variable-disjoint.

A substitution σ satisfies a dismatching constraint D if

(i) D = s 6B t and there is no substitution τ such that sτ = tσ, in other words,

the tuple s cannot be matched to tσ or

(ii) D = D1 ∧ · · · ∧ Dn and σ satisfies each of the dismatching constraints Di

for 1 ≤ i ≤ n or

(iii) D = D1 ∨ · · · ∨ Dn and σ satisfies at least one of the dismatching con-

straints Di for 1 ≤ i ≤ n.

Let σ be a substitution and D be a dismatching constraint. The σ-instance

of D is the constraint

Dσ =


s 6B tσ if D = s 6B t,

D1σ ∧ · · · ∧Dnσ if D = D1 ∧ · · · ∧Dn and

D1σ ∨ · · · ∨Dnσ if D = D1 ∨ · · · ∨Dn.
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The constraint Dσ of a substitution σ, where dom (σ) = {x1, . . . , xn}, is the

dismatching pair 〈x1σ, . . . , xnσ〉 6B 〈x1, . . . , xn〉.
If a dismatching constraint is the nullary conjunction, it is satisfied by any

substitution. We call the nullary conjunction the empty dismatching constraint

and denote it by >.

We note that disjunctive dismatching constraints are only used in one of the

labelled approaches in the next chapter in Section 5.3 on page 110.

Definition 4.23. A constrained clause C | D is a clause C with a dismatching

constraint D. We let Cl (C | D) denote the set of all ground closures C · θ of C

where θ satisfies D.

We let Unc (C | D) denote the unconstrained clause C | > and also write

just C for the unconstrained clause C | >.

Let us prove the property that makes dismatching constraints a useful concept

in instantiation-based theorem proving.

Lemma 4.23. If the substitution σ does not satisfy the dismatching constraint D,

then neither does a more specific substitution σρ for any substitution ρ.

Proof. Let D = s 6B t be not satisfied by σ, then there is a substitution τ such

that sτ = tσ. Since sτρ = tσρ, we have a substitution τρ hence σρ does not

satisfy D.

We continue by induction over the structure of D.

Let D = D1 ∧ · · · ∧Dn be not satisfied by σ. In this case, at least one Di is

not satisfied by σ and, using the induction hypothesis, this Di is not satisfied by

any σρ, either. Hence, D is not satisfied by any σρ.

Let D = D1 ∨ · · · ∨ Dn be not satisfied by σ, then Di is not satisfied for

all 1 ≤ i ≤ n. Due to the induction hypothesis, no Di is satisfied by any σρ and

therefore D is not satisfied by any σρ.

Corollary 4.24. A satisfiable dismatching constraint is satisfied by the empty

substitution [].

Proof. We take the contraposition of the previous lemma: if the dismatching

constraint D is satisfied by a substitution σρ, then it is satisfied by σ. Now let D

be satisfiable by a substitution ρ, and choose σ = [].
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If a dismatching constraint blocks a substitution σ, then it blocks all substi-

tutions more specific than σ. In particular the dismatching constraint Dσ of a

substitution σ blocks all substitutions that are more specific than σ. We exploit

this fact in the instantiation process. If a clause C | D is instantiated to Cσ,

we conjunctively add the constraint Dσ of the substitution σ to the dismatching

constraint D and continue with the constrained clause C | D ∧ Dσ. The clo-

sures Cl (C | Dσ) are the ground closures C · θ for all θ, except the closures C ·σρ
for all ρ grounding Cσ. The ground clauses Cσρ are represented by closures of

the unconstrained instance Cσ instead.

Example 4.3. Let σ1 = [f(u, v)/x] and σ2 = [a/u, b/v] be two substitutions

and Dτ = 〈f(a, v)〉 6B 〈x〉 be the constraint of the substitution τ = [f(a, v)/x].

The dismatching constraintDτ is satisfied by the substitution σ1 = [f(u, v)/x],

since 〈f(a, v)〉 ρ 6= 〈f(u, v)〉 = 〈x〉σ1 for every substitution ρ.

Instantiating the constraint Dτ with the substitution σ1, we obtain the con-

straint Dτσ1 = 〈f(a, v)〉 6B 〈f(u, v)〉. The substitution σ2 = [a/u, b/v] does not

satisfy Dτσ1, since with ρ = [b/v] we have 〈f(a, v)〉 ρ = 〈f(a, b)〉 = 〈f(u, v)〉σ2.

Moreover, the composition of the two substitutions σ1σ2 = [f(a, b)/x] does

not satisfy the constraint Dτ , since the same substitution ρ = [b/v] results

in 〈f(a, v)〉 ρ = 〈f(a, b)〉 = 〈x〉σ1σ2.

The dismatching constraint Dτ = 〈f(a, v)〉 6B 〈x〉 blocks all substitutions more

specific than τ = [f(a, v)/x], in this example σ1σ2, but it does not block σ1.

Finally, the constraint Dτσ1σ2 = 〈f(a, v)〉 6B 〈f(a, b)〉 is unsatisfiable.

We prove the following lemma that is relevant to checking dismatching con-

straints in practice: instead of satisfiability of an instantiated constraint Dσ with

a substitution ρ, we can consider satisfiability of the constraint D with the com-

posed substitution σρ.

Lemma 4.25. The composition of two substitutions σρ satisfies the constraint D

if and only if ρ satisfies the instantiated constraint Dσ.

Proof. Let D = s 6B t and Dσ = s 6B tσ be two dismatching pairs. If a sub-

stitution σρ satisfies D, then there exists a substitution τ , such that sτ = tσρ.

Hence, ρ satisfies Dσ = s 6B tσ. If a substitution ρ satisfies Dσ, then there exists

a substitution τ , such that sτ = tσρ and D = s 6B t is satisfied by σρ.
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We continue by induction over the structure of the dismatching constraint D.

If D = D1 ∧ · · · ∧Dn, then Dσ = D1σ ∧ · · · ∧Dnσ. Due to the induction hy-

pothesis, the substitution σρ satisfies the constraints Di if and only if the sub-

stitution ρ satisfies the constraints Diσ. Hence, D is satisfied by σρ if and only

if Dσ is satisfied by ρ. In analogy we prove the lemma if the dismatching con-

straint D is a disjunction and conclude that the lemma holds for any dismatching

constraint.

Checking if a substitution σ satisfies a dismatching constraint D can be poly-

nomially reduced to deciding if a monotone Boolean formula is satisfied by an

assignment of truth values to its variables. A monotone Boolean formula con-

tains no negations and we can decide if an assignment satisfies a Boolean formula

without negations in time linear to the size of the formula.

We recursively reduce a dismatching constraint D to a Boolean formula by

mapping conjunctions and disjunctions in D to Boolean conjunctions and dis-

junctions. We map a dismatching pair s 6B t to the propositional constant true

or false, respectively, if the constraint is satisfiable or unsatisfiable.

Deciding if a substitution σ satisfies a dismatching pair is equivalent to solving

the matching problem on the n-tuple of term s and t. The matching problem is a

sub-problem of syntactic unification, the problem of finding a substitution ρ such

that lρ = rρ for two terms l and r. Unification and matching are well studied

[Baader and Snyder, 2001] and efficient linear time and space-efficient algorithms

in almost-linear time exist.

As Korovin [2009] notes, our problem of checking if a given substitution σ

satisfies a dismatching constraint D can therefore be solved in polynomial time.

Moreover, we can use sophisticated algorithms like term indexing [Graf, 1996] in

an implementation.

We now extend the unit superposition calculus from Definition 3.3 on page 37

with dismatching constraints and eagerly check dismatching constraints in each

inference. A selected literal inherits the dismatching constraint of the clause it is

selected in.
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Definition 4.24 (Unit Superposition with Dismatching Constraints).

Unit Superposition

(l ' r) | Dl (s[l′] ' t) | Dr
(σ)

(s[r] ' t)σ | Dlσ ∧Drσ

(l ' r) | Dl (s[l′] 6' t) | Dr
(σ)

(s[r] 6' t)σ | Dlσ ∧Drσ

where for some grounding substitution θ with dom (θ) = var ({lσ, rσ, s[l′]σ, tσ})

(i) σ = mgu(l, l′),

(ii) l′ is not a variable,

(iii) lσθ �gr rσθ,

(iv) s[l′]σθ �gr tσθ,

(v) var ({l, r}) ∩
var ({s[l′], t}) = ∅.

and σ satisfies the dismatching constraints Dl and Dr.

Equality Resolution

(l 6' r) | D
(σ)

�

where σ = mgu(l, r) and σ satisfies the dismatching constraint D.

The unit superposition calculus with dismatching constraints allows to discard

proofs early, which would produce redundant instances. By using dismatching

constraints we reduce the number of literals to be considered in the US-saturation

and in this way also avoid producing proofs which would generate redundant

instances.

Example 4.4. Consider the unsatisfiable clause set

f(g(x), a) 6' c ∨ f(x, y) 6' c (1)

f(g(z), z) ' c (2)

f(a, a) ' c. (3)

The ground abstraction is satisfiable and the first literals in each clause can



4.6. REDUNDANCY ELIMINATION WITH CONSTRAINTS 79

be selected. There is a proof of a contradiction as follows.

L2

f(g(z), z) ' c

L1

f(g(x), a) 6' c
[a/x, a/z]

c 6' c
�

We obtain two new instances of clauses (1) and (2)

f(g(a), a) 6' c ∨ f(a, u) 6' c (4)

f(g(a), a) ' c. (5)

The ground abstraction remains satisfiable, but we can only select the second

literal in the new clause (4), since its first (ground) literal conflicts with the new

ground unit clause (5).

We also extend the previously empty dismatching constraints of the instanti-

ated clauses with the constraints of the respective instantiating substitution.

f(g(x), a) 6' c ∨ f(x, y) 6' c | 〈a〉 6B 〈x〉 (1)

f(g(z), z) ' c | 〈a〉 6B 〈z〉 (2)

The ground closures of the two constrained clauses (1) and (2) do not contain

the two closures blocked by their respective constraints:

f(g(x), a) 6' c ∨ f(x, y) 6' c · [a/x] (1a)

f(g(z), z) ' c · [a/z]. (2a)

These ground instances are now represented by the ground closures of the clause

instances (4) and (5) instead.

With the new instance (5) there is another proof of a contradiction

L5

f(g(a), a) ' c

L1

f(g(x), a) 6' c | 〈a〉 6B 〈x〉
[a/x]

c 6' c
�

that would lead to instance (4) again. However, since the substitution [a/x] in

the first inference step is blocked by the dismatching constraint on literal L1 from

clause (1), the proof is redundant. The dismatching constraint tells us that it is
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not necessary to consider conflicts containing the literal closure L1 · [a/x] selected

in closure (1a), since this closure is redundant.

Indeed, the inconsistency the blocked proof has found also holds for the instan-

tiated clauses (4) and (5) and can already be witnessed in the ground abstraction.

The first literal f(g(a), a) 6' c in clause (4), which is identical to the literal repre-

sented by the blocked literal closure L1 · [a/x], cannot be selected and no further

inferences in first-order reasoning are necessary.

We continue with the following proof of a contradiction

L5

f(a, a) ' c

L4

f(a, u) 6' c
[a/x]

c 6' c
�

,

which leads to the clause instance

f(g(a), a) 6' c ∨ f(a, a) 6' c. (6)

Clauses (3), (5) and (6), which are identical to their ground abstractions, are

unsatisfiable and thus the input clause set (1)-(3) is.

Using the unit superposition calculus with dismatching constraints therefore

blocks proofs of a contradiction in conflicts, where closures are already Inst-

redundant. Since the constraints are checked eagerly before each inference, literals

that are blocked are not added to the saturation process.

In order to show refutational completeness of redundancy elimination with

dismatching constraints in the unit superposition calculus, we need to lift the

US-saturation process from literal closures to constrained literals.

In the following we consider only dismatching constraints that model Inst-

redundancy in the following sense.

Definition 4.25. We extend the notions of Cl and Unc from Definition 4.23 to

sets of clauses:

Cl (S) = {C · θ ∈ Cl (C) | C ∈ S}

and

Unc (S) = {Unc (C) | C ∈ S} .
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A set of clauses S is well-constrained if

Cl (S) \ RInst (Cl (S)) ⊇ Cl (Unc (S)) \ RInst (Cl (Unc (S))) ,

which means that a dismatching constraint must not block closures that are not

Inst-redundant.

The closures of a set of well-constrained clauses contain all closures which are

not Inst-redundant. We note that adding the constraint Dσ of a substitution σ

to the dismatching constraint of the clause C | D when adding an instance Cσ

to S keeps the clause set S well-constrained.

We now lift the definitions about the US-saturation process from Section 4.1

from literal closures to constrained literals. We give the new notion of USD-

redundancy that incorporates Inst-redundancy by the means of dismatching con-

straints, define a USD-saturation process on constrained literal closures and the

USD-saturation.

Definition 4.26. A constrained clause C | D is Inst-redundant if all closures

in Cl (C | D) are Inst-redundant.

Definition 4.27. Let LD be a set of constrained literals. A constrained lit-

eral L | D ∈ LD is USD-redundant in LD if all literal closures in Cl (L | D) are

US-redundant in Cl (LD).

Let RUSD (LD) denote the set of all constrained literals in LD, which are

USD-redundant in LD.

Definition 4.28. A USD-saturation process on constrained literals is an in-

finite sequence of pairs {〈NDi,DDi〉}∞i=1, where NDi is a set of constrained

literals and DDi is a disjoint set of positive constrained literals. Each such

pair 〈NDi+1,DDi+1〉 with i > 1, called a successor state, is obtained from the

previous state 〈NDi,DDi〉 by either

(i) adding to NDi the conclusion of a unit superposition inference with one

premise in NDi and the second premise in NDi ∪ DDi, or the conclusion

of an equality resolution inference with its premise in NDi,

(ii) adding to DDi the conclusion of a unit superposition inference with both

premises in DDi, or the conclusion of an equality resolution inference with

its premise in DDi,
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(iii) removing a constrained literal from NDi which is USD-redundant in NDi∪
DDi or

(iv) removing a literal from DDi which is USD-redundant in DDi.

Definition 4.29. Let us denote by ND∞ and DD∞ the sets of persistent lit-

erals in the USD-saturation process, which are the lower limits of {NDi}∞i=1

and {DDi}∞i=1, respectively:

ND∞ = lim inf
i→∞

NDi =
∞⋃
n=1

(
∞⋂
m=n

NDm

)

DD∞ = lim inf
i→∞

DDi =
∞⋃
n=1

(
∞⋂
m=n

DDm

)
Definition 4.30. A USD-saturation process is fair if

(i) for every unit superposition inference with one premise in ND∞ and the

second premise in ND∞ ∪ DD∞, there is an i such that the conclusion is

in ND∞ or USD-redundant in NDi ∪ DDi and

(ii) for every unit superposition inference with both premises in DD∞ there is

a j such that the conclusion is in DD∞ or USD-redundant in DDj.

Definition 4.31. Let 〈ND,DD〉 be a pair of a set of constrained literals ND
and a disjoint set of positive constrained literals DD. Let {〈NDi,DDi〉}∞i=1

be an arbitrary but fixed and fair USD-saturation process with ND1 = ND
and DD1 = DD. We call the set

〈ND,DD〉sat =
(
ND∞ \ RUSD (ND∞ ∪ DD∞)

)
∪
(
DD∞ \ RUSD (DD∞)

)
the USD-saturation of 〈ND,DD〉.

Since we now have a lifted USD-saturation process on constrained literals, we

also need to lift the notion of relevant literal closures from a set of clauses to a

set of constrained clauses.

Definition 4.32. Let sel be a selection function based on a model I⊥ of the

ground abstraction Unc (S)⊥ of the set S of constrained clauses. The set of S-rel-

evant constrained literals LD (S) contains all constrained literals L | D such that
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(i) (L ∨ C) | D ∈ S,

(ii) (L ∨ C) | D is not Inst-redundant in S,

(iii) L = sel (L ∨ C).

Definition 4.33. Let S be a set of constrained clauses and 〈ND,DD〉 be a par-

tition of the S-relevant constrained literals LD (S) such that S |= Unc (l ' r | D)

holds for each constrained literal l ' r | D ∈ DD. Let 〈ND,DD〉sat be the

USD-saturation of 〈ND,DD〉. The set of clauses S is Inst-saturated with regard

to a selection function sel and the partition 〈ND,DD〉 if 〈ND,DD〉sat does not

contain a contradiction �.

Definition 4.34. A USD-proof P on constrained literals is a binary tree, drawn

with the root at the bottom, consisting of constrained literals in 〈ND,DD〉sat.

Each non-leaf node L | D has exactly two children, which are the premises of an

inference in the unit superposition calculus with dismatching constraints (Defi-

nition 4.24) resulting in L | D. An exception is the root node, which may be

a contradiction � and in this case has only one child node l 6' r | D such that

an equality resolution inference is applicable to it. Each leaf node is a relevant

literal closure and each edge is labelled with the substitution σ in the inference

from the child node to the parent.

Lemma 4.26. Each P -relevant instantiator from a USD-proof P of a constrained

literal L | D satisfies the dismatching constraint D if the dismatching constraints

of the leaf literals in P are satisfiable.

Proof. We additionally propose and prove that the dismatching constraint of

a literal L | D derived in a USD-proof P is the conjunction of dismatching

constraints D1σ1 ∧ · · · ∧Dnσn, where each Di is the dismatching constraint of a

leaf literal Li | Di in P and σi is the P -relevant instantiator for Li | Di.

Let L | D be a literal with a satisfiable dismatching constraint. If L | D is a

leaf literal and the root of an empty USD-proof P , then there is only one P -rele-

vant instantiator, which is the empty substitution [] and satisfies the dismatching

constraint D. Further, the dismatching constraint D = D[] of the root L | D is

the unary conjunction of the dismatching constraint D of the leaf literal L | D
instantiated with the P -relevant instantiator [].

Let L | D 6= � | D be the conclusion of a unit superposition inference from the

premises l ' r | Dl and L′ | Dr, derived in the USD-proofs Pl and Pr, respectively.
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By the induction hypothesis the dismatching constraints Dl = D1σ1 ∧ · · · ∧Dlσl

andDr = Dl+1σl+1 ∧ · · · ∧Dnσn are conjunctions of instantiated dismatching con-

straints, where σ1, . . . , σl and σl+1, . . . , σn are the Pl- and Pr-relevant instantiators

and D1, . . . , Dl and Dl+1, . . . , Dn are the dismatching constraints of the leaf lit-

erals in Pl and Pr. Each σi satisfies all the dismatching constraints D1, . . . , Dn.

Let us consider the USD-proof P with L | D at the root and the above

premises l ' r | Dl and L′ | Dr as children of the root. The substitution σ of the

unit superposition inference satisfies both dismatching constraints Dl and Dr,

hence each P -relevant instance σ1σ, . . . , σnσ satisfies all the dismatching con-

straints D1, . . . , Dn. Moreover, the dismatching constraint of the conclusion

is Dlσ ∧Drσ = D1σ1σ ∧ · · · ∧Dnσnσ.

We draw an analogous conclusion for the equality resolution inference, which

proves the lemma.

We can further exploit this in an implementation to avoid instantiating the

constraints Dl and Dr in the conclusion of an inference: we check if the constraints

of the leaf literals inherited from the clause are satisfied by the respective relevant

instantiators instead.

With the previous definitions we can state and prove the following lifting

lemma, where completeness follows from a corollary.

Lemma 4.27. Let LD be a set of constrained literals. If the US-saturation of

a partition of the literal closures Cl (LD) into 〈N ,D〉 contains a contradiction,

then the USD-saturation of the partition 〈ND,DD〉 of the constrained literals LD
contains a contradiction.

Proof. If the set of literal closures 〈N ,D〉sat contains a contradiction, then there is

a US-proof of a contradiction from a finite set of literal closures in 〈N ,D〉sat. We

show by induction that there is also a USD-proof of a contradiction on constrained

literals.

By Theorem 4.22 on page 72 we already have that there is a US-proof on

literals if there is a US-proof on literal closures. Therefore we only need to consider

the additional restriction of the inference rules in Definition 4.24 introduced by

the dismatching constraints. We show that a US-proof P on literal closures can

be simulated by a USD-proof P ′ on constrained literals.

For every leaf literal closure L · θ in Cl (LD) we have that θ satisfies the

dismatching constraint of L | D ∈ LD. We therefore assume as an induction
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hypothesis that for two literal closures (l ' r) · θl and (s[l′] ' t) · θr in the US-

proof P the substitutions θl and θr satisfy the dismatching constraints Dl and Dr

of the constrained literals (l ' r) | Dl and (s[l′] ' t) | Dr in the USD-proof P ′. Be-

cause (θl ∪ θr) = σρ, it follows that the substitution ρ in the conclusion of the unit

superposition inference (s[r] ' t)σ · ρ satisfies the dismatching constraints Dlσ

and Drσ. The same argument holds if we consider the literal (s[l′] 6' t) | Dr as the

right premise and we conclude that a unit superposition inference on constrained

literals is applicable if a unit superposition inference on literal closures is.

Since for a literal (l 6' r) · θ the substitution θ satisfies the dismatching con-

straint D of the literal (l 6' r) | D, the mgu σ of l and r also satisfies D and an

equality resolution inference on a constrained literal is applicable if an equality

resolution inference on a literal closure is applicable.

We can therefore simulate the US-proof P on literal closures from Cl (LD)

by a USD-proof P ′ on constrained literals from LD, where in each inference

step the dismatching constraint condition is satisfied. Hence every contradiction

in 〈N ,D〉sat is also found in 〈ND,DD〉sat.

Finally we can lift the model generation theorem (Theorem 4.4 on page 53).

Theorem 4.28. If a well-constrained set of clauses S is Inst-saturated and the

ground abstraction Unc (S)⊥ is satisfiable, then Unc (S) is also satisfiable.

Proof. We use the contraposition of Lemma 4.27. Since S is Inst-saturated,

the USD-saturation of the S-relevant constrained literals LD (S) does not con-

tain a contradiction and thus the US-saturation of the literal closures of the

constrained S-relevant literals Cl (LD (S)) does not contain a contradiction, ei-

ther. Since S is well-constrained, LD (S) contains all S-relevant literal clo-

sures and Cl (LD (S)) ⊇ L (Unc (S)). In other words, the set of literal clo-

sures of the S-relevant constrained literals contains all Unc (S)-relevant literal

closures. The model generation in Theorem 4.4 on page 53 applies and we con-

clude that Unc (S) is satisfiable.

The last theorem concludes the proof of refutational completeness of the Inst-

Gen-Eq method in this chapter. Let us briefly review the main characteristics of

the calculus and the important role the lifting theorems.

We are working on a set of constrained clauses and a ground abstraction.

Based on a model of the ground abstraction that is calculated by a ground solver
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modulo equality we select one literal in each clause. Each selected literal inher-

its the dismatching constraint of its clause and we saturate the set of selected

literals under the unit superposition calculus with dismatching constraints. If a

contradiction is found, the clauses of the selected literals form a conflict and we

can extract substitutions to instantiate some clauses in order to make the ground

solver refine the model. For redundancy elimination we extend the dismatch-

ing constraint of an instantiated clause with the constraint of the instantiating

substitution.

We have proved refutational completeness of the method by refining the super-

position reasoning to ground literal closures and also conflicts to ground closures.

If there is a proof of a contradiction from ground literal closures, there is at least

one relevant instantiator for a clause extracted from the proof tree such that the

conflict on closures becomes irrelevant when the clause instance is added to the

clause set. We have lifted this proof from ground literal closures to first-order

literals by showing that every proof of a contradiction from literal closures can

also be obtained from literals. Moreover, in every lifted proof there is a relevant

instantiator that makes the conflict on clauses irrelevant. Adhering to fairness in

the sense that every conflict eventually becomes irrelevant guarantees that the

ground abstraction of an unsatisfiable clause set eventually becomes unsatisfiable.

We have also shown that a model of a clause set can be generated if the ground

abstraction is satisfiable and the set of relevant literal closures is saturated under

unit superposition inferences and does not contain a contradiction. We have

lifted the notion of Inst-redundancy from literal closures to first-order literals by

introducing dismatching constraints. Using the notion of well-constrainedness we

have lifted the model generation proof to show that a model of a well-constrained

clause set with a satisfiable ground abstraction can be generated if the set of

selected constrained literals is saturated under unit superposition inferences and

does not contain a contradiction.

The two lifting theorems allow us to reason exclusively with the unit superpo-

sition calculus on constrained literals. The formalism of literal closures is a mere

tool to prove completeness and not relevant in practice. In the remainder of the

thesis we will encounter literal closures only once more in Chapter 6 to justify

simplification inferences in the unit superposition calculus.
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4.7 Incremental Instantiation

We can view the Inst-Gen-Eq method as consisting of three components we have

already discussed: a black boxed ground solver, the Inst-saturation process and

the USD-saturation process. The ground solver provides the Inst-saturation pro-

cess with a model, which a selection function is based on. The USD-saturation

process in turn is given selected constrained literals as input and by exhaustively

applying inferences of the unit superposition calculus finds proofs of contradic-

tions. From these proofs instantiating substitutions are extracted for clauses in

the Inst-saturation process, such that eventually the ground solver can witness

unsatisfiability on the ground abstraction.

The combination of the three components to obtain an effective and efficient

system needs some consideration, since the naive approach of alternating runs

of each component up to saturation will only be successful for the most simple

inputs. To build a system for the Inst-Gen-Eq method we exploit the modularity

of the method, which allows detaching the three processes of ground solving,

Inst-saturation and USD-saturation, if fairness conditions are obeyed and the

properties hold in the limit of the processes.

Running a solver for ground satisfiability modulo equality can be an expensive

operation, while working with an out of date selection function does not harm

soundness or completeness. Hence, it pays off to skip calling the ground solver in

most states of the Inst-saturation process and to only obtain an up to date model

of the ground abstraction in larger intervals.

The USD-saturation process does not necessarily terminate, since an infinite

number of literals can be derived, while it is also possible to find an infinite number

of contradictions. It is therefore not possible to compute the USD-saturation in

each state of the Inst-saturation process.

The set of clauses in the Inst-saturation process is extended with instances

of clauses, guided by conflicts on selected literals. Clauses are removed only if

they are redundant, that is, follow from smaller clauses. It is therefore expected

that the model of the ground abstraction changes only locally from one state of

the Inst-saturation process to the next and hence the selection function can be

kept constant on most clauses. This ensues that most of the relevant literals of

the clauses in a successor state of the Inst-saturation process have already been

relevant in the previous state. Thus, restarting the USD-saturation from the set

of relevant literals in every state of the Inst-saturation process means discarding
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results from the previous USD-saturation and duplicating most of the work.

In order to reign in the potentially not terminating USD-saturation process,

while at the same time reusing conclusions derived in earlier states, our imple-

mentation, described in detail in Chapter 7, interleaves the Inst-saturation and

the USD-saturation process in the following way. Literals are selected in a fixed

number of clauses and propagated to the USD-saturation process. A fixed number

of unit superposition inferences are performed and clause instances from proofs

of contradictions are propagated to the Inst-saturation process. In turn, the Inst-

saturation process selects literals in another batch of clauses and propagates them

to the USD-saturation process.

There are two challenges in the interleaving of Inst- and USD-saturation.

Since the ground abstraction in a successor state of the Inst-saturation process

can require a change in the selection function, some literals lose their relevance

and must be removed from the USD-saturation process. Furthermore, adding

a clause instance extends the dismatching constraint of the instantiated clause,

which is inherited by the selected literal. Consequently, the proofs of some literals

in the USD-saturation process become blocked. Both adaptions to a changed

selection function, that is, removal of leaf literals or inner literals in a USD-proof,

result in conclusions of inferences becoming invalid and having to be removed.

In an implementation, we can address the removal in a lazy way by checking the

validity of a literal only when necessary.

Although the interleaving of Inst-saturation and USD-saturation complicates

an implementation of the Inst-Gen-Eq method, it is worth the effort compared

to restarting USD-saturation from scratch in each state of the Inst-saturation

process. In the rest of the thesis we consider the Inst-Gen-Eq method in this

incremental way with Inst- and USD-saturation interleaved. Hence, we need to

develop methods to efficiently adapt a partial USD-saturation to an evolving

selection function.



Chapter 5

Labelled Unit Superposition

The previous chapter has introduced the Inst-Gen-Eq method and the unit su-

perposition calculus that serves to find inconsistent literals in the selection and to

provide the clause instances that refine the ground abstraction on the conflicts.

While the focus of the presentation there was on completeness and effective in-

terleaving of the calculus, we now turn to one of the main issues in an efficient

implementation of the Inst-Gen-Eq method.

We have considered how to generate instances of clauses by extracting sub-

stitutions from unit superposition proofs. The US-saturation process, where we

find those proofs, frequently contains literals which are equal up to renaming.

However, as we show by the way of an example, it is necessary for completeness

to distinguish between certain literals even though they are equal up to renam-

ing. Having to deal with literal variants separately instead of modulo renaming

leads to duplication of efforts in the saturation process and motivates more robust

handling of literal variants and more efficient extraction of substitutions in unit

superposition.

In this chapter1 we introduce labels for literals and investigate three versions of

the unit superposition calculus, where labels are sets, AND/OR trees or ordered

binary decision diagrams (OBDDs). In Section 5.2 we present set labelled unit

superposition as the simplest structure, including redundancy elimination and

adaption to an evolving selection function. This prompts the development of

labels with a Boolean structure and we present tree labelled unit superposition

in Section 5.3. Looking for efficient checking for equivalence of labels leads us

to OBDD labelled unit superposition discussed in Section 5.4. To conclude the

1Parts of this chapter were published as Korovin and Sticksel [2010a].
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chapter in Section 5.5 we prove that set and OBDD labelled unit superposition

are decision procedures for the Bernays-Schönfinkel fragment of first-order logic

modulo equality. The purpose of the first section of this chapter is to motivate

our labelling approach.

5.1 Literal Variants and Proofs

Let us begin with an example, where literals equal up to renaming have to be

kept distinct.

Example 5.1. Consider the following set of clauses, which is based on prob-

lem SEU150+1 from the TPTP benchmark library version 5.1.0, originally a set

theoretical problem from the Mizar mathematical library.

f(x, y) ' f(y, x) (1)

f(u, v) 6' g(z) ∨ u ' z (2)

f(a, b) ' g(c) (3)

a 6' b (4)

The clause set is unsatisfiable, which the Inst-Gen-Eq method can prove.

There are two sets of inconsistent literals and hence two unit superposition proofs

from which instances need to be generated. We choose an ordering �gr such

that f(b, a) �gr f(a, b) �gr g(c) �gr b �gr a.

The first step in the Inst-Gen-Eq method is to construct the ground abstrac-

tion of the clause set (1)-(4) by mapping all variables to the ground term ⊥. For

clauses (1) and (2) we obtain

f(⊥,⊥) ' f(⊥,⊥) (1⊥)

f(⊥,⊥) 6' g(⊥) ∨ ⊥ ' ⊥, (2⊥)

respectively. Clauses (3) and (4) are ground and therefore identical to their

ground abstractions.

The ground abstraction of the input clause set consisting of clauses (1⊥), (2⊥),

(3) and (4) is satisfiable modulo equality, which in practice is discovered by the

ground solver. The solver also returns a model, which is the basis of a selection

function for literals in the first-order clause set. In our case we select the first
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literal in each clause (1) to (4), which we have underlined above and respectively

denote with L1 to L4 in the following.

The selected literals L2 and L3 in clauses (2) and (3) are inconsistent in first-

order logic. One way a contradiction can be derived is as in the following unit

superposition proof.

L3

f(a, b) ' g(c)

L2

f(u, v) 6' g(z)
[a/u, b/v]

g(c) 6' g(z)
[c/z]

�

(∗)

Now the ground abstraction has to be refined on the conflict between the

selected first-order literals L2 and L3. To this end we add to the clause set the

relevant instances of clauses (2) and (3), where L2 and L3 are respectively selected

in.

In order to obtain the relevant instances for the clauses, we trace the branches

of the proof tree and compose the substitutions along the paths from the root to

the two leaf literals. For this proof the resulting substitution for both branches

is σ1 = [a/u, b/v] [c/z] = [a/u, b/v, c/z].

We now apply the substitution σ1 to clauses (2) and (3). Since clause (3) is

ground, instantiation with σ1 has no effect. Instantiating clause (2) with σ1 yields

f(a, b) 6' g(c) ∨ a ' c, (5)

which is added to the input clause set.

There is another conflict between the selected literals L1, L2 and L3, which

can be found by deriving a contradiction in the following proof.

L3

f(a, b) ' g(c)

L1

f(x, y) ' f(y, x)

L2

f(u, v) 6' g(z)
[u/x, v/y]

f(v, u) 6' g(z)
[b/u, a/v]

g(c) 6' g(z)
[c/z]

�

(†)

The rightmost branch of the proof tree contains the literals f(u, v) 6' g(z)

and f(v, u) 6' g(z), which are equal up to renaming. The latter literal is inferred

from the former with the commutativity axiom f(x, y) ' f(y, x). Omitting this

inference we obtain proof (∗) above. Hence one could regard proof (∗) as a
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subproof of (†). In proof (†) the inference steps from the second literal vari-

ant f(v, u) 6' g(z) and L3 to the contradiction are identical to the inference steps

in the previous proof (∗) in the sense that the premises are equal up to renam-

ing and the inferences are on the same positions in the literals with the same

substitutions.

However, the sets of relevant instances extracted from the two proofs are

different and in fact both are required. The substitutions extracted from proof (†)
are

σ21 = [b/u, a/v] [c/z] = [b/u, a/v, c/z]

for L3 and

σ22 = [u/x, v/y] [b/u, a/v] [c/z] = [b/x, a/y, b/u, a/v, c/z]

for L1 and L2. We apply these substitutions to the respective clauses: instan-

tiating ground clause (3) with σ21 results in the same clause while instantiating

clauses (1) and (2) with σ22 leads to these two new clauses to be added to the

input clause set.

f(b, a) ' f(a, b) (6)

f(b, a) 6' g(c) ∨ b ' c. (7)

The ground abstractions of the new ground clause instances (5)-(7) from the

two proofs are the clauses themselves as there are no variables to be mapped

to ⊥. Altogether we have the following ground abstraction of the input clauses

and their instances.

f(⊥,⊥) ' f(⊥,⊥) (1⊥)

f(⊥,⊥) 6' g(⊥) ∨ ⊥ ' ⊥ (2⊥)

f(a, b) ' g(c) (3⊥)

a 6' b (4⊥)

f(a, b) 6' g(c) ∨ a ' c (5⊥)

f(b, a) ' f(a, b) (6⊥)

f(b, a) 6' g(c) ∨ b ' c (7⊥)

The ground solver finds clauses (3⊥)-(7⊥) to be ground unsatisfiable modulo

equality: from (3⊥) and (5⊥) we can infer the equation a ' c, from (3⊥), (6⊥)

and (7⊥) the equation b ' c follows and a ' c and b ' c together contradict the
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unit clause (4⊥) a 6' b.

If we omitted one of the proofs, the ground abstraction would not contain (5⊥)

from proof (∗) or (6⊥) and (7⊥) from proof (†), respectively. Hence, either a ' c

or b ' c would not be consequences in the ground abstraction and unsatisfiability

could not be concluded.

Since a �gr b and f(b, a) �gr f(a, b), the side conditions of the inference rules

prevent any other inference than those in proofs (∗) and (†). It is therefore

essential to ensure that both proofs are found, which in turn requires consider-

ing f(u, v) 6' g(z) and its variant f(v, u) 6' g(z) as being different.

However, then the commutativity axiom f(x, y) ' f(y, x) in clause (1) can

produce an unbounded number of variants of f(u, v) 6' g(z). Since we assume

the premises of a unit superposition inference to be variable disjoint, we can

generate ever more variants of f(u, v) 6' g(z) from clause (2) in the following

way: the conclusion of a unit superposition inference between f(x, y) ' f(y, x)

and f(u, v) 6' g(z) is f(v, u) 6' g(z), a variant of f(u, v) 6' g(z) to which we can

apply another unit superposition inference with the literal f(x, y) ' f(y, x) from

the commutativity clause to obtain yet another new variant. One such variant

suffices for completeness in this example, while in general any number of variants

may be required.

From the example we learn that in the unit superposition calculus literals must

be treated separately even if they are equal up to renaming. A practical imple-

mentation of the unit superposition calculus has to distinguish between literal

variants in order to allow more than one variant of a literal on the same branch

of a proof tree. However, a simple implementation along the lines suggested by

the example would be inefficient for two reasons:

(i) no upper bound for the number of variants of one literal can be given and

(ii) reasoning with each literal variant separately creates significant duplication.

An inference step applicable to one literal variant can also be applied to ev-

ery other literal variant resulting in one variant of the conclusion each. Since

Inst-Gen-Eq must saturate the set of literals under unit superposition inferences,

finding all inconsistencies, the amount of duplication of inferences and the size of

the set of literals in the saturation process make this approach intractable even

in cases as small as in the example.
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Literal Variants and Cyclic Proofs

Our main approach is based on labelling of literals and described in the next sec-

tion. In the rest of this section we discuss an alternative approach without labels

that we did not follow. We believe it offers insights about the obstacles dealing

with literal variants and motivates our labelling approach. Readers may safely

skip to the next Section 5.2 and the rest of the chapter, where we present unit

superposition calculi on labelled literals, starting with set labels and continuing

with tree labels and OBDD labels.

One possible approach to literal variants that avoids duplication in the satura-

tion process is to treat as identical all literals equal up to renaming. However, this

comes at the cost of a more complicated structure of proofs, which are then not

trees in every case. If in Example 5.1 on page 90 we do not distinguish between

the literals f(u, v) 6' g(z) and f(v, u) 6' g(z), the two nodes of these literals in

the proof tree (†) collapse into one and we obtain a cyclic graph. The edge from

the right premise to the conclusion is a cycle on f(u, v) 6' g(z). Now extraction

of substitutions is complicated by having to consider this cycle an unbounded

number of times in order to generate all instances necessary for completeness as

in the previous example. Techniques like iterative deepening have to be invoked

in order to preserve fairness of the US-saturation process.

We notice that if the composed substitution between two literal variants on

a branch is proper, the cycle can be unfolded by eagerly generating instances,

thus eliminating some proofs with cycles. The following example demonstrates

this idea. Unfortunately, eager instantiation does not work if the substitution is

non-proper.

Example 5.2. The following unsatisfiable set of clauses comes from problem

SWV268-2 from the TPTP benchmark library v5.1.0, modelling properties of a

cryptographic protocol.

f(f(u)) ' f(u) (1)

g(f(x), f(y)) ' h(z) ∨ g(x, y) 6' h(c) (2)

g(f(a), f(b)) 6' h(w) (3)

g(f(a), b) ' h(c) (4)

The ground abstraction of the clauses is satisfiable and a possible selection
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consists of the first literal in each clause, which we have underlined and denote

as L1 to L4. We derive a variant of literal L2 from clause (2) in the following way.

L1

f(f(u)) ' f(u)

L2

g(f(x), f(y)) ' h(z)
[f(u)/x]

g(f(u), f(y)) ' h(z)

(∗)

Since the conclusion g(f(u), f(y)) ' h(z) is a variant of the leaf literal L2 and

the extracted substitution σ1 = [f(u)/x] is proper, we can discard this proof if

we instantiate the clauses at the leaves.

Applying σ1 to clause (1) does not change the clause, the instance of clause (2)

with σ1 is

g(f(f(x′)), f(y′)) ' h(z′) ∨ g(f(x′), y′) 6' h(c), (5)

where we use the fresh variables x′, y′ and z′ to keep the clause variable disjoint

from (1)-(4). The ground abstraction of clauses (1)-(5) is satisfiable and we can

select the first literals in each clause.

We derive a contradiction from the inconsistent literals L1, L3 and L5 in

clauses (1), (3) and (5), respectively, as follows.

L1

f(f(u)) ' f(u)
L5

g(f(f(x′)), f(y′)) ' h(z′)
[x′/u]

g(f(x′), f(y′)) ' h(z′)
L3

g(f(a), f(b)) 6' h(w)
[a/x′, b/y′]

h(z′) 6' h(w)
[w/z′]

�
(†)

The first inference is between L1 and L5 from the instantiated clause (5),

the conclusion g (f(x′), f(y′)) ' h(z′) is not a variant of the premise L5 and the

substitution [x′/u] in the inference is non-proper . The whole proof tree does not

contain variants of any literal on the same branch.

We extract the substitutions

σ21 = [x′/u] [a/x′, b/y′] [w/z′] = [a/x′, b/y′, w/z′, a/u]

and

σ22 = [a/x′, b/y′] [w/z′] = [a/x′, b/y′, w/z′]
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for the left and the right branches, respectively. Instantiating clause (3) with σ22

results in the same clause, the instances of clauses (1) and (5) with σ21 are

f(f(a)) ' f(a) (6)

g(f(f(a)), f(b)) ' h(w) ∨ g(f(a), b) 6' h(c). (7)

In proof (†) the last two inference steps on g (f(x′), f(y′)) ' h(z′) could have

been applied to its variant g (f(u), f(y)) ' h(z) in order to continue the aban-

doned proof (∗) to the contradiction, proving inconsistency of the selected lit-

erals L1, L2 and L3. Applying the relevant instantiators from this proof to the

respective clauses (1), (2) and (3), we would obtain exactly the relevant instances

(6) and (7) we have from proof (†).
Now the ground abstraction of clauses (1)-(7) is as follows.

f(f(⊥)) ' f(⊥) (1⊥)

g(f(⊥), f(⊥)) ' h(⊥) ∨ g(⊥,⊥) 6' h(c) (2⊥)

g(f(a), f(b)) 6' h(⊥) (3⊥)

g(f(a), b) ' h(c) (4⊥)

g(f(f(⊥)), f(⊥)) ' h(⊥) ∨ g(f(⊥),⊥) 6' h(c) (5⊥)

f(f(a)) ' f(a) (6⊥)

g(f(f(a)), f(b)) ' h(⊥) ∨ g(f(a), b) 6' h(c) (7⊥)

The ground abstraction is unsatisfiable modulo equality: due to the unit

clause (4⊥) the second literal of (7⊥) must be false. However, the first literal of

(7⊥) and f (f(a)) ' f(a) from (6⊥) contradict g(f(a), f(b)) 6' h(⊥) from unit

clause (3⊥). Therefore, no interpretation can satisfy all clauses (3⊥), (4⊥), (6⊥)

and (7⊥). The ground abstraction of the instantiated clause (5⊥) from the aban-

doned proof is not necessary to show ground unsatisfiability.

In this example we derive a variant of the literal g (f(x), f(y)) ' h(z) with a

proper substitution σ1 = [f(u)/x]. We abandon the proof which would have led to

a contradiction, instantiate the clauses at the leaves and find another proof of the

contradiction, which does not contain multiple variants of g (f(x), f(y)) ' h(z)

and has the same relevant instances as the abandoned proof.

Eager instantiation from cycles as shown in the example is applicable as soon

as the literal at the root of a proof is a variant of a literal in a branch and only
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if the composed substitution between the literal variants is proper. Instantiating

the clauses at the leaves of the proof with the extracted substitutions makes

every continuation of the proof redundant as for every such proof there is a proof

without the cycle, using a literal from an instantiated clause that leads to the

same conclusion.

As mentioned before, the instantiation approach only eliminates cycles with

proper substitutions. Let us consider the first inference in proof (†) from Exam-

ple 5.1 on page 90.

L1

f(x, y) ' f(y, x)

L2

f(u, v) 6' g(z)
[u/x, v/y]

f(v, u) 6' g(z)

The conclusion of the inference is a variant of the right premise with the

non-proper substitution σ = [u/x, v/y]. Applying σ to clauses (1) and (2) only

creates variants of these clauses. Then variants of L1 and L2 are selected in the

new clauses, the same proof as above is obtained and we still have a variant of

the premise f(u, v) 6' g(z) as the conclusion.

We have not pursued the sketched approach further from here. Although it

seems attractive to consider only one representative of all literals equal up to

renaming in the saturation process, the downside of losing the tree structure of

proofs through the introduction of cycles leaves the benefits in terms of efficiency

unclear. A significant amount of bookkeeping about cycles with non-proper sub-

stitutions is required and how to integrate instantiations from cycles with proper

substitutions is not immediately obvious.

The result would be a rather ad hoc approach in contrast to the robust ap-

proach we are presenting in the rest of this chapter. Labelling literals and explicit

merging of variants allow to uniformly integrate literal variants into the saturation

process while directly addressing the problem of duplication.

5.2 Set Labelled Unit Superposition

In order to tackle the problem of literal variants in proof trees as presented in

the examples of the previous section, we have chosen a robust approach that

combines multiple literal variants, avoids duplication of inferences and preserves

the tree structure of proofs. The idea of our approach is to attach labels to
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literals, accumulating composed substitutions from inferences in the label. The

labels allow us to treat literal variants initially as distinct. Merging of literal

variants is done in an explicit step with a new calculus rule that keeps track

of the literal variants merged in the label. After merging two literal variants,

inferences are drawn simultaneously on all literal variants merged and instead of

tracing proof trees, relevant instances are extracted from the label.

The Inst-Gen-Eq method with labelled unit superposition proceeds in the

same way as in the unlabelled case. We saturate a set of literals under inferences

and add relevant instances to the clause set when finding a contradiction. While

unlabelled unit superposition starts with the set of selected literals, we now start

with the set of initially labelled selected literals.

The labels in our labelled superposition calculi contain closures C · θ, which

are not necessarily ground, such that C is the clause a leaf literal is selected in

and the substitution θ is the relevant instantiator for C. Let us introduce set

labels as the first and simplest label structure.

Definition 5.1. A set label L is a set of closures {C1 · θ1, . . . , Cn · θn} where

the closures are not necessarily ground. A set labelled literal L : L is a pair of

a set label L and a literal L where L and L are variable disjoint, such that for

each Ci · θi ∈ L we have var (Ci) ∩ var (L) = ∅.
Let sel be a selection function, C be a clause and C · θ be an arbitrary but

fixed closure, such that C and Cθ are equal up to renaming. The initial labelling

of the selected literal L in clause C with respect to the selection function sel is

the set labelled literal {C · θ} : sel (C) θ.

Let L = {C1 · θ1, . . . , Cn · θn} be a set label and σ a substitution, which is vari-

able disjoint from L in the following way: var (rng (σ)) ∩ var ({C1, . . . , Cn}) = ∅.
The σ-instance of the set label L is Lσ = {C1 · θ1σ, . . . , Cn · θnσ}.

We say two set labelled literals L : L and L′ : L′ are equal up to renaming

if there is a renaming ρ such that L = L′ρ and for each closure in L there is a

closure equal up to renaming in L′ρ and vice versa. We usually do not distinguish

between labelled literals equal up to renaming.

In a non-ground closure C · θ (see Definition 2.7 on page 26) the clauses C

and Cθ are variable disjoint. An initially labelled selected literal {C · θ} : sel (C) θ

satisfies the variable disjointness property, since var (C) ∩ var (sel (C) θ) = ∅. The

σ-instance of a set labelled literal preserves variable disjointness since the condi-

tion var (rng (σ)) ∩ var ({C1, . . . , Cn}) = ∅ has to be observed.
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An initial labelling {C · θ} : sel (C) θ also has the property to bind the vari-

ables in the selected literal in the closure C · θ in the label to the variables in the

labelled literal: sel (C) θ ∈ Cθ. Instantiating the label and the literal with the

same substitution preserves this binding.

The inference rules of set labelled unit superposition in the following definition

are extensions to set labelled literals of the previously used unlabelled inference

rules (see Definition 3.3 on page 37) and include a new merging rule.

Definition 5.2 (Set Labelled Unit Superposition). The respective conclusions of

superposition and equality resolution are new labelled literals. The conclusion of

merging replaces the two premises.

Unit Superposition

L : l ' r L′ : s[l′] ' t
(σ)

Lσ ∪ L′σ : (s[r] ' t)σ

L : l ' r L′ : s[l′] 6' t
(σ)

Lσ ∪ L′σ : (s[r] 6' t)σ

where for some grounding substitution θ with dom (θ) = var ({lσ, rσ, s[l′]σ, tσ})

(i) σ = mgu(l, l′),

(ii) l′ is not a variable,

(iii) lσθ �gr rσθ,

(iv) s[l′]σθ �gr tσθ,

(v) var ({l, r}) ∩
var ({s[l′], t}) = ∅.

and there is at least one closure C · ρ ∈ L and one closure C ′ · ρ′ ∈ L′ such

that ρσ satisfies the dismatching constraint of C | D ∈ S and ρ′σ satisfies the

dismatching constraint of C ′ | D′ ∈ S.

Merging (Replacement rule for both premises)

L : l ' r L′ : l′ ' r′
(σ)L ∪ L′σ : l ' r

L : l 6' r L′ : l′ 6' r′
(σ)L ∪ L′σ : l 6' r

where σ is a renaming such that l′σ = l and r′σ = r.

Equality Resolution

L : l 6' r
(σ)Lσ : �

where σ = mgu (l, r) and there is at least one closure C · ρ ∈ L such that ρσ

satisfies the dismatching constraint of C | D ∈ S.
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Labels do not occur in side conditions, we can therefore view labelling as

an elegant way of bookkeeping about clauses where the leaves of the proofs are

selected in and their relevant instantiators in proofs. Since the substitutions from

inferences are applied to closures in the label and the label of a conclusion is the

union of the labels of the premises, we obtain the relevant instances from a proof

of a literal directly from its label. Hence extraction of substitutions from proof

trees as in the unlabelled calculus is obsolete.

Definition 5.3. The relevant instantiators and the relevant instances of the set

labelled literal {C1 · θ1, . . . , Cn · θn} : L are the substitutions θ1, . . . , θn for the

clauses C1, . . . , Cn, respectively, and the set {C1θ1, . . . , Cnθn}.

Let us resume the motivating example from the beginning of the chapter,

demonstrating the inference rules of set labelled unit superposition.

Example 5.3. We consider the clause set from Example 5.1 on page 90

f(x, y) ' f(y, x) (1)

f(u, v) 6' g(z) ∨ u ' z (2)

f(a, b) ' g(c) (3)

a 6' b (4)

with the same literals selected.

In this example we implicitly view variables in clauses and labelled literals as

disjoint. The initially labelled selected literals of clauses (1) and (2) are

L1 : L1 = {(1) · []} : f(x, y) ' f(y, x)

and

L2 : L2 = {(2) · []} : f(u, v) 6' g(z).

Between these two labelled literals we draw the following unit superposition in-

ference.

L1 : L1

{(1) · []} : f(x, y) ' f(y, x)

L2 : L2

{(2) · []} : f(u, v) 6' g(z)
[u/x, v/y]

{(1) · [u/x, v/y], (2) · []} : f(v, u) 6' g(z)

(†′)

This step corresponds to the first inference in proof (†) in Example 5.1. In
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order to preserve variable disjointness between a literal and the clauses in its label,

without loss of generality we restrict the domain of the substitution σ1 = [u/x, v/y]

from the inference to the variables occurring in the literals. When applying σ1 to

the label of L2, we therefore obtain the empty substitution [].

The literal f(v, u) 6' g(z) in the conclusion is a variant of the literal in the

right premise f(u, v) 6' g(z). We use the merging rule to combine the two literal

variants into one.

{(2) · []} : f(u, v) 6' g(z) {(1) · [u/x, v/y], (2) · []} : f(v, u) 6' g(z)
[v/u, u/v]

{(2) · [], (1) · [v/x, u/y], (2) · [v/u, u/v]} : f(u, v) 6' g(z)
(‡)

We apply the renaming substitution [v/u, u/v] to the label of the right premise

only and take the union with the left premise, obtaining a set of three closures.

The labelled literal

{(2) · [], (1) · [v/x, u/y], (2) · [v/u, u/v]} : f(u, v) 6' g(z)

in the conclusion supersedes the two literal variants that were merged and we

only consider this literal from now on.

With a superposition inference between L3 : L3, the initially labelled selected

literal in clause (3), and the merged literal and subsequent equality resolution,

which are the common steps in both proofs (∗) and (†) in Example 5.1, we derive

a contradiction.

{(3) · []} : f(a, b) ' g(c) {(2) · [], (1) · [v/x, u/y], (2) · [v/u, u/v]} : f(u, v) 6' g(z) [a/u,
b/v]{(3) · [], (2) · [a/u, b/v], (1) · [b/x, a/y], (2) · [b/u, a/v]} : g(c) 6' g(z)

[c/z]
{(3) · [], (2) · [a/u, b/v, c/z], (1) · [b/x, a/y], (2) · [b/u, a/v, c/z]} : �

Before applying the substitution from an inference to the label of a literal,

without loss of generality, we restrict the domain of the substitution to the set of

variables of the literal in order to satisfy variable disjointness of a literal and the

clauses in its closures.

Because of the merging step, the label of the empty clause � contains the

relevant instances from both proofs (∗) and (†) in Example 5.1. Clause (3) is

ground, thus the relevant instance represented by the closure (3) · [] is (3). The
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relevant instances represented by the remaining closures in the label are

f(a, b) 6' g(c) ∨ a ' c (5)

f(b, a) ' f(a, b) (6)

f(b, a) 6' g(c) ∨ b ' c, (7)

which are exactly instances (5)-(7) in Example 5.1. Ground unsatisfiability is

shown on the ground abstraction of clauses (1)-(7) in the same way as there.

Set labelled unit superposition avoids duplication of inferences when the merg-

ing rule is applied. The common parts of proofs (∗) and (†) in Example 5.1 are fac-

tored out and instead of two separate proofs on the literal variants f(u, v) 6' g(z)

and f(v, u) 6' g(z), set labelled unit superposition needs only one proof on a

labelled literal, which has both variants merged.

As the example illustrates, set labels make available the relevant instances

directly, thus obsoleting the need to trace a proof tree. Note that the proof tree

of a literal cannot be reconstructed from its label as the label only contains the

relevant instances and no information about the proof structure. Neither can

the information be recovered, which literal variants have been merged. How-

ever, the relevant instances are all that is needed in the instantiation process of

Inst-Gen-Eq.

The merging rule eliminates the literal variant in the right premise by com-

bining it with the literal variant in the left premise. There are no two literals

that are equal up to renaming if the merging rule is applied exhaustively. Hence

merging reduces the size of the set of literals in the US-saturation process.

Example 5.4. Let us look at Example 5.3 again and show how labelled unit

superposition deals with literal variants. Consider the labelled literal from the

commutativity axiom in clause (1)

L1 : L1 = {(1) · []} : f(x, y) ' f(y, x)

and the conclusion of the merging inference (‡)

L2 : L2 = {(2) · [], (1) · [v/x, u/y], (2) · [v/u, u/v]} : f(u, v) 6' g(z).

As discussed in Example 5.1, an unbounded number of variants can be gen-

erated from the unlabelled literals f(x, y) ' f(y, x) and f(u, v) 6' g(z) in the
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unlabelled calculus by repeated superposition with f(x, y) ' f(y, x).

Here we draw a superposition inference between the labelled literals L1 : L1

and L2 : L2 as in (†′) in Example 5.3 and obtain the labelled literal

{(1) · [u/x, v/y] , (2) · [] , (1) · [v/x, u/y] , (2) · [v/u, u/v]} : f(v, u) 6' g(z).

We merge it with L2 : L2 to get

L′2 : L2 =

{(2) · [] , (1) · [v/x, u/y] , (2) · [v/u, u/v] , (1) · [u/x, v/y]} : f(u, v) 6' g(z).

The label L′2 replaces L2 on L2, where the only difference is the addition

of the closure (1) · [u/x, v/y]. A further superposition inference between L1 : L1

and L′2 : L2 results in

{(2) · [] , (1) · [v/x, u/y] , (2) · [v/u, u/v] , (1) · [u/x, v/y]} : f(v, u) 6' g(z).

This is equal up to renaming with the substitution [v/u, u/v] to L′2 : L2 and is

therefore discarded.

The set labelled commutativity axiom {(1) · []} : f(x, y) ' f(y, x) can only

generate a finite number of labelled literals, which are not equal up to renaming,

from the initial labelling L2 : L2. As soon as we have derived L′2 : L2, a further

inference with f(x, y) ' f(y, x) results in a literal which is equal up to renaming

to L′2 : L2 and does not add new relevant instances to the label.

Another advantage of merging literal variants is that inferences with a labelled

literal are simultaneously applied to all literal variants merged in the label. In

this way set labelled unit superposition eliminates duplication in an unlabelled

calculus where each literal variant would have to be treated separately.

Completeness

We show completeness of an Inst-saturation process with set labelled unit super-

position, where clause instances are obtained from the set label of a contradiction,

by lifting the completeness of unit superposition with dismatching constraints

from Section 4.6.
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We first define a correspondence between set labelled literals and constrained

literals.

Definition 5.4. Let C1 | D1, . . . , Cn | Dn be constrained clauses in S and L : L

be a set labelled literal with L = {C1 · σ1, . . . , Cn · σn}. The set of constrained

literals DLit (L : L) of the set labelled literal is

DLit (L : L) = {L | D1σ1, . . . , L | Dkσn} .

We extend DLit from set labelled literals to sets of set labelled literals as

DLit (LL) =
⋃

L : L∈LL

DLit (L : L) .

As in the proof of completeness of unit superposition with dismatching con-

straints in Section 4.6, we first define redundancy on set labelled literals and

subsequently lift the definitions of a saturation process to set labelled literals.

Definition 5.5. Let LL be a set of labelled literals. A labelled literal L : L ∈ LL
is USL-redundant in LL if

(i) every constrained literal in DLit (L : L) is USD-redundant in DLit (LL) or

(ii) there is an L′ : L′ ∈ LL such that L and L′ are equal up to the renaming σ

and there is a renaming ρ such that L′σρ ) L. In other words, there is a

set labelled literal L′σ : L′, which is equal up to renaming to L : L and the

set label L′σρ is a superset of or equal to L.

Let RUSL (LL) denote the set of all set labelled literals in LL, which are

USL-redundant in LL.

We note that the above definition implies a natural property: the set labelled

literal ∅ : L is USL-redundant in any non-empty set of set labelled literals. It is

important to define USL-redundancy with strict set inclusion ), since otherwise

we would have the undesirable effect that a set labelled literal would make itself

redundant.

However, in contrast to previous definitions of redundancy (US-redundancy in

Definition 4.3 on page 48 and USD-redundancy in Definition 4.27 on page 81) the

above notion of redundancy is not well-founded in general. It is not only based

on US-redundancy, where a literal closure is redundant if it follows from smaller
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literal closures in the well-founded ordering �l, but in condition (ii) there is the

set inclusion ), which is not necessarily well-founded in a possibly infinte set of

labelled literals LL. Nevertheless, USL-redundancy with set inclusion is a useful

concept and in particular it is sufficient to justify eliminating the two premises

of the merging inference rule.

Theorem 5.1. The merging inference rule is a simplification inference, that is

the conclusion makes both of its premises USL-redundant.

Proof. Let L : L and L′ : L′ be the premises of a merging inference rule. Without

loss of generality we assume L 6= ∅ and L′ 6= ∅ in the premises. Otherwise,

either L = L′ = ∅ and the conclusion is USL-redundant, or L 6= ∅ and L′ = ∅
and the conclusion L ∪ L′σ : L = L : L is identical to the premise.

We have L and L′ equal up to the renaming σ, that is Lσ = L′ and L′σ−1 = L,

and also L ∪ L′σ ) L and (L ∪ L′σ)σ−1 = (Lσ−1 ∪ L′) ) L′. By condition (ii)

in Definition 5.5 the conclusion L ∪ L′σ : L makes both L : L and L′ : L′ USL-

redundant.

Hence, the effect of the merging inference rule is covered by USL-redundancy

and in the following saturation process we only need to pay attention to the

unit superposition rule and the equality resolution rule in the set labelled unit

superposition calculus.

Definition 5.6. A USL-saturation process on set labelled literals is an infinite

sequence of pairs {〈NLi,DLi〉}∞i=1, where NLi is a set of set labelled literals

and DLi is a disjoint set of positive set labelled literals. Each pair 〈NLi+1,DLi+1〉
with i > 1, called a successor state, is obtained from the previous state 〈NLi,DLi〉
by either

(i) adding to NLi the conclusion of a set labelled unit superposition inference

with one premise in NLi and the second premise in the union NLi ∪ DLi,
adding to NLi the conclusion of an equality resolution inference with the

premise in NLi, adding to NLi the conclusion of a set labelled merging

inference with both premises in NLi,

(ii) adding to DLi the conclusion of a set labelled unit superposition inference

with both premises in DLi, adding to DLi the conclusion of an equality

resolution inference with the premise in NLi, adding to DLi the conclusion

of a set labelled merging inference with both premises in DLi,
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(iii) removing a set labelled literal from NLi which is USL-redundant in the

union NLi ∪ DLi or

(iv) removing a literal from DLi which is USL-redundant in DLi.

Since USL-redundancy is not well-founded, it is difficult to define the no-

tion of persistent literals in the USL-saturation process and also USL-saturation.

Thus, we omit these two definitions and give a definition of fairness not based on

persistent literals, which still suffices to prove completeness of the calculus. The

following definition of fairness is essentially identical to fairness in the US- and

USD-saturation process, but it avoids the notion of persistent literals.

Definition 5.7. A USL-saturation process is fair if there is a k for every i such

that

(i) for every possible unit superposition inference with with one premise inNLi

and the second premise in NLi ∪ DLi, for every equality resolution in-

ference with the premise in NLi and for every merging inference with

both premises in NLi the respective conclusion is in NLi+k or redundant

in NLi+k ∪ DLi+k and

(ii) for every possible unit superposition inference with both premises in DLi

and for every equality resolution inference with the premise in DLi the

respective conclusion is in DLi+k or redundant in DLi+k

In the previous chapter we have shown that generating clause instances with

relevant instantiators obtained from proofs of contradictions from constrained

literals is a fair Inst-saturation process and thus refutationally complete. We use

this result to justify refutational completeness with the following lifting theorem.

Theorem 5.2. If there is a USD-proof P of a contradiction � from the con-

strained literals L1 | D1, . . . , Ln | Dn in the USD-saturation 〈ND,DD〉sat, then

there is a set labelled contradiction L : � in some state of the USL-saturation pro-

cess, such that for at least one proper P -relevant instantiator σ for the clause C

a closure equal up to renaming to C · σ is in L.

Proof. For each S-relevant constrained literal L | D in the first state of the

USD-saturation process, there is an initially labelled literal {C · θ} : Lθ in the

first state of the USL-saturation process. Assuming all dismatching constraints
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to be empty, the side conditions on the unit superposition inference and the

equality resolution inference are identical in the unlabelled unit superposition

calculus with dismatching constraints (Definition 4.24 on page 78) and in the set

labelled unit superposition calculus (Definition 5.2). Hence, a contradiction can

be derived in the USL-saturation process if a contradiction can be derived in the

USD-saturation process.

Now assume that the set labelled contradiction L : �, obtained by repeating

the inferences in the USD-proof P in the set labelled unit superposition calculus,

is USL-redundant and removed in some state j in the USL-saturation process. We

have L = {C1 · σ1, . . . , Cn · σn}, where sel (Ci) = Li for each 1 ≤ i ≤ n. If the set

labelled contradiction L : � is USL-redundant due to a set labelled literal L′ : �
in 〈NLj,DLj〉, then there is a renaming ρ such that L′ρ ) L. Since there

are no variables in �, the renaming σ is the empty substitution []. We continue

with L′ : L′. Otherwise, let L′ : L′ = L : L. We have L′ρ ) {C1 · σ1ρ, . . . , Cn · σnρ}
and each σiρ is equal up to renaming to σi.

If the labelled contradiction L′ : � is USL-redundant in 〈NLj,DLj〉, then

all constrained literals in DLit (L′ : L′) ⊇ {� | D1σ1ρ, . . . ,� | Dnσ1ρ} are USD-

redundant in DLit (〈NLj,DLj〉). Because � is the smallest literal and there are

no smaller literals it follows from, the sets of closures Cl (� | Diσiρ) of the con-

strained contradictions are empty and hence the dismatching constraints Diσiρ

are unsatisfiable for all 1 ≤ i ≤ n.

In the USD-proof P the contradiction � | D at the root is constrained with D,

which is the union of the constraints D1σ1, . . . , Dnσn, where σ1, . . . , σn are the

respective P -relevant instantiators for L1 | D1, . . . , Ln | Dn. In the USD-proof P

each P -relevant instantiator σi satisfies the constraint Di by Lemma 4.26 on

page 83. However, this contradicts the assumption of USL-redundancy of L′ : �
and the consequence that all dismatching constraints Diσiρ are unsatisfiable.

We conclude that the set labelled contradiction L′ : � is not USL-redundant,

therefore contained in some state of the USL-saturation process 〈NLj,DLj〉 and

the set label L′ contains a closure Ci · σiρ, which is equal up to renaming to a

closure Ci · σi of a proper P -relevant instantiator σi for the clause Ci.

Instead of the Inst-saturation process with the USD-saturation process on

constrained literals and extraction of relevant instances from USD-proofs of a

contradiction, we have another fair Inst-saturation process based on the USL-

saturation process on set labelled literals. Here we do not need to record proofs



108 CHAPTER 5. LABELLED UNIT SUPERPOSITION

or literal variants and can rely on set labels of contradictions derived in the

set labelled unit superposition calculus to provide sufficient clause instances for

fairness of an Inst-saturation process.

Redundancy Elimination in Set Labels

Set labels are a concise and powerful enough mechanism in many practical cases

and an implementation based on set labels is efficient, as the evaluation in Chap-

ter 8 shows.

However, set labels do not eliminate redundancy completely in the incremen-

tal process of instantiation. Set labels collect clauses at the leaves of proofs and

accumulate respective relevant substitutions. Merging inferences combine super-

position proofs and the conclusion contains closures from several proofs. When a

leaf clause becomes redundant with the accumulated relevant substitution, every

proof with the clause at a leaf is redundant and all leaf clauses in this proof can

be eliminated. However, in a set label we cannot separate out all closures corre-

sponding to the redundant proof from a set label since the structure is lost when

two proofs are merged.

Example 5.5. Let us extend the running example and add dismatching con-

straints for redundancy elimination. We consider the clauses (1)-(4) in Exam-

ples 5.1 and 5.3 with initially empty dismatching constraints. We add to the

clause set an instance of clause (2) with the substitution [b/u, c/z].

f(x, y) ' f(y, x) (1)

f(u, v) 6' g(z) ∨ u ' z | {〈b, c〉 6B 〈u, z〉} (2)

f(b, v) 6' g(c) ∨ b ' c (2′)

f(a, b) ' g(c) (3)

a 6' b (4)

In order to block in clause (2) the redundant ground closures already repre-

sented by its instance (2′), the constraint of the instantiating substitution [b/u, c/z]

is added to the dismatching constraint of the instantiated clause (2).

In the unlabelled unit superposition proof (†) from Example 5.1 we obtain the

relevant substitution σ22 = [b/x, a/y, b/u, a/v, c/z] for the literal L2 which is the

selected literal in clause (2). The dismatching constraint {〈b, c〉 6B 〈u, z〉} blocks
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the substitution σ22. Moreover, since the dismatching constraint for one clause

at a leaf of the proof (†) is not satisfied, the entire proof is redundant and none

of the relevant instances

{(3) [] , (1) [b/x, a/y] , (2) [b/u, a/v, c/z]}

needs to be added to the clause set.

However, proof (∗) is not redundant, since the relevant substitution σ1 satisfies

the dismatching constraints of all clauses at the leaves. In particular for clause (2)

the relevant substitution σ1 = [a/x, b/y, c/z], is not blocked by the dismatching

constraint. Hence the relevant instances

{(3) [] , (2) · [a/u, b/v, c/z]}

are required.

In the set labelled unit superposition calculus in Example 5.3, both proofs

were merged and we had

{(3) · [], (2) · [a/u, b/v, c/z], (1) · [b/x, a/y], (2) · [b/u, a/v, c/z]}

as the label of the contradiction.

If we do not merge literal variants in the set labelled unit superposition, we

obtain two separate proofs, corresponding to the two unlabelled proofs. For the

redundant unlabelled proof (†) we obtain the set label of the contradiction

{(2) · [b/u, a/v, c/z], (1) · [b/x, a/y], (3) · []}

and we want to eliminate these redundant closures from the set label of the con-

tradiction in the merged proofs. However, the set label from the non-redundant

proof (∗) is

{(3) · [], (2) · [a/u, b/v, c/z]}

and we have to retain these closures.

As the information about the proof structure cannot be recovered from a set

label, we cannot eliminate all closures from the set label. In particular, we would

need to know that the proofs overlap on closure (3) · [] and not on (1) · [b/x, a/y].
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A similar problem arises from changes in the selection function in the incre-

mental Inst-saturation process. The model of the ground abstraction may change

in a way that a different literal has to be selected in a clause than before. In that

case, all proofs with the previously selected literal at a leaf should be eliminated.

Again, we want to remove a subset of the clauses in the label of a literal and it

is not possible to determine if a clause has to be kept in the label as it may well

be from the label of a non-redundant proof that was merged.

The cause of the problem is that we use the set union for combining labels

in both the merging inference and in the superposition inference. In the next

section we present a different label structure that preserves the shape of proofs

by using two different operations in merging and superposition.

Let us finally note again that set labels are still a useful sound and complete

mechanism. Although we cannot determine the full subset to be eliminated from

a label, we can safely remove each closure from a set label which has become

redundant with its substitution or where the selection has changed. A set label

is then an overapproximation of the set of relevant instances of unlabelled proofs.

Hence, unit superposition with set labels generates more instances of clauses

than strictly necessary, while adding these instances does not harm soundness

nor completeness. An instance of a clause is a sound consequence of the clause.

Set labelled unit superposition is a decision procedure for the Bernays-Schön-

finkel fragment as we show in Section 5.5. In Chapter 8 we evaluate an implemen-

tation of set labels with this restricted elimination against the label structures

with more powerful elimination presented next.

5.3 Tree Labelled Unit Superposition

Unlabelled proofs become redundant when dismatching constraints are extended

after instantiating clauses and when leaf literals are no longer selected in a clause.

In order to eliminate from a label precisely the closures corresponding to relevant

instances from redundant unlabelled proofs, we need to preserve a certain Boolean

structure in the labels in the unit superposition calculus to keep track of merging

inferences.

To this end we regard a closure C · θ as a propositional variable. A merging

inference corresponds to a disjunction and a superposition to a conjunction of

labels. Eliminating a redundant literal and precisely the closures from proofs
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depending on the redundant literal then means replacing a propositional variable

with the propositional constant false and simplifying the Boolean structure.

Definition 5.8. A tree label T is either a closure C · θ, which is not necessarily

ground, a conjunction
dn
i=1 Ti or a disjunction

⊔n
i=1 Ti of n tree labels T1, . . . , Tn.

The set of closures
⋃

(T ) of the tree label T is recursively defined as

⋃
(T ) =


C · σ if T = C · θ⋃n
i=1

⋃
(Ti) if T =

dn
i=1 Ti⋃n

i=1

⋃
(Ti) if T =

⊔n
i=1 Ti.

A tree labelled literal T : L is a pair of a tree label T and a literal L, where T
and L are variable disjoint, such that var (C) ∩ var (L) = ∅ for each C ·θ ∈

⋃
(T ).

Let sel be a selection function, C be a clause and C · θ be an arbitrary but

fixed closure, such that C and Cθ are equal up to renaming. The initial labelling

of the selected literal L in clause C with respect to the selection function sel is

the tree labelled literal C · θ : sel (C) θ.

Let T be a tree label and σ a substitution, which is variable disjoint from T
in the following way: var (rng (σ)) ∩ var (

⋃
(T )) = ∅. The σ-instance of a tree

label T is the tree label T σ such that

T σ =


C · θσ if T = C · θ,
dn
i=1 Tiσ if T =

dn
i=1 Ti or⊔n

i=1 Tiσ if T =
⊔n
i=1 Ti.

A tree label T = C ·θ is equal up to renaming to a tree label T ′ = C ′ ·θ′ if the

closures are equal up to renaming. A tree label T = T1 t · · · t Tn is equal up to

renaming to the tree label T ′ = T ′1 t · · · tT ′n if for every Ti there is a T ′j , which is

equal up to renaming, and for every T ′i there is a Tj equal up to renaming. A tree

label T = T1 u · · · u Tn is equal up to renaming to a tree label T ′ = T ′1 u · · · u T ′n
in the analogue way.

We say two tree labelled literals T : L and T ′ : L′ are equal up to renaming if

there is a renaming ρ such that L = L′ρ and the tree labels T and T ′ρ are equal

up to renaming. We usually do not distinguish between tree labelled literals equal

up to renaming.

A tree label is isomorphic to an AND/OR tree, where all non-leaf nodes are
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either labelled as AND nodes or OR nodes. AND and OR nodes alternate on

each level of the tree such that AND nodes only have OR nodes as successors and

vice versa for OR nodes. A tree label is also isomorphic to a monotone Boolean

formula in the following way.

Definition 5.9. The formula of a tree label T , with respect to a set of constrained

clauses S, written as ϕ (T ), is recursively defined as

ϕ (T ) =



false if T = C · σ and C | D ∈ S, where Dσ is unsatisfiable

XC·σ if T = C · σ and C | D ∈ S, where Dσ is satisfiable∧n
i=1 ϕ (Ti) if T =

dn
i=1 Ti∨n

i=1 ϕ (Ti) if T =
⊔n
i=1 Ti

The strength of tree labels when compared to set labels is the precise elimina-

tion of redundancy by simplifying the Boolean structure. If the closure C · θ has

to be eliminated from a label, we can simplify the tree label C · θ t T to T and

the label C ·θuT to the empty label. Literals with the latter label are redundant

and can be discarded.

As for set labelled literals, an initially tree labelled literal C · θ : sel (C) θ

satisfies the variable disjointness property var (C) ∩ var (sel (C) θ) = ∅ and σ-in-

stances of tree labels preserve this variable disjointness. Also, the binding of the

variables in an initially labelled literal, where sel (C) θ = Lθ is preserved when

instantiating the tree label and the literal with the same substitution σ.

We now define a unit superposition calculus with different operators to com-

bine labels in the merging and the superposition inference, namely t and u.

Definition 5.10 (Tree Labelled Unit Superposition). The respective conclusions

of superposition and equality resolution are new labelled literals. The conclusion

of merging replaces the two premises.
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Unit Superposition

T : l ' r T ′ : s[l′] ' t
(σ)

(T u T ′)σ : (s[r] ' t)σ

T : l ' r T ′ : s[l′] 6' t
(σ)

(T u T ′)σ : (s[r] 6' t)σ

where for some grounding substitution θ with dom (θ) = var ({lσ, rσ, s[l′]σ, tσ})

(i) σ = mgu(l, l′),

(ii) l′ is not a variable,

(iii) lσθ �gr rσθ,

(iv) s[l′]σθ �gr tσθ,

(v) var ({l, r}) ∩
var ({s[l′], t}) = ∅.

and ϕ (T σ) and ϕ (T ′σ) are satisfiable.

Merging (Replacement rule for both premises)

T : l ' r T ′ : l′ ' r′
(σ)T t T ′σ : l ' r

T : l 6' r T ′ : l′ 6' r′
(σ)T t T ′σ : l 6' r

where σ is a renaming such that l′σ = l and r′σ = r.

Equality Resolution

T : l 6' r
(σ)T σ : �

where σ = mgu(l, r) and ϕ (T σ) is satisfiable.

As in the set labelled unit superposition calculus, we start with the selected

literals, which are initially labelled with the respective clauses they are selected

in. Upon an equality resolution to a contradiction we generate the instances from

all closures at the leaves of the tree.

Definition 5.11. The relevant instantiators and the relevant instances of a tree

labelled literal T : L are the relevant instantiators and the relevant instances of

the set labelled literal
⋃

(T ) : L.

Let us give an example to illustrate elimination of redundancy by simplifica-

tion of the AND/OR tree.

Example 5.6. We apply tree labelled unit superposition inferences instead of

set labelled unit superposition inferences on the selected literals in the clause set

in Example 5.3.
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Figure 5.1: AND/OR tree of the tree labelled contradiction in Example 5.6.

The contradiction in the set labelled unit superposition proof from Exam-

ple 5.3 has the set label

L =
{

(3) · [], (2) · [a/u, b/v, c/z], (1) · [b/x, a/y], (2) · [b/u, a/v, c/z]
}
.

In the corresponding tree labelled unit superposition proof, we obtain the label

T = (3) · [] u
(

(2) · [a/u, b/v, c/z] t
(

(1) · [b/x, a/y] u (2) · [b/u, a/v, c/z]
))
,

ϕ (T ) = X(3)·[] ∧
(
X(2)·[a/u,b/v,c/z] ∨

(
X(1)·[b/x,a/y] ∧X(2)·[b/u,a/v,c/z]

))
,

also pictured in Figure 5.1. In contrast to the set label, the tree label with the

distinct operators u and t for superposition and merging, respectively, keeps the

proof structure visible. Going back to Example 5.1, the two unlabelled proofs (∗)
and (†) that the labelled calculi join in the merging inference can be told apart

in the tree label, but not in the set label.

If, as in Example 5.5, we are to eliminate the closure (2) · [b/u, a/v, c/z] due to

a dismatching constraint blocking the substitution, we consider the Boolean for-

mula ϕ (T ) of the tree label T . We replace the propositional variableX(2)·[b/u,a/v,c/z]

with the propositional constant false and simplify the Boolean formula by recur-

sively rewriting the Boolean formula with the logically equivalences A∨ false→ A

and A ∧ false→ false.

X(3)·[] ∧
(
X(2)·[a/u,b/v,c/z] ∨

(
X(1)·[b/x,a/y] ∧ false

))
= X(3)·[] ∧X(2)·[a/u,b/v,c/z]

The relevant instances from the tree label corresponding to the simplified
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formula are exactly the relevant instances from the unlabelled proof (†) in Ex-

ample 5.1. In the set label we can only eliminate the closure (2) · [b/u, a/v, c/z],

since the information about where proofs are merged is not kept.

Eliminating a closure from the other proof (∗), for instance (2) · [a/u, b/v, c/z],

from the formula of the tree label leaves us with

X(3)·[] ∧
(
false ∨

(
X(1)·[b/x,a/y] ∧X(2)·[b/u,a/v,c/z]

))
=

X(3)·[] ∧X(1)·[b/x,a/y] ∧X(2)·[b/u,a/v,c/z].

As before, we find three relevant instances in the simplified tree label, which are

exactly the relevant instances from the unlabelled proof.

Completeness

In order to prove completeness of an Inst-saturation process with tree labelled

unit superposition, we prove a lifting theorem similar to the one in the previous

section for set labelled unit superposition. We proceed in a parallel way and give

definitions adapted to tree labels.

Definition 5.12. Let us define an auxiliary function DC to obtain a dismatch-

ing constraint from a tree label, using disjunctive dismatching constraints from

Definition 4.22 on page 74 for the first time.

DC (T ) =


Dσ if T = C · σ and C | D ∈ S∧n
i=1 DC (Ti : L) if T =

dn
i=1 Ti∨n

i=1 DC (Ti : L) if T =
⊔n
i=1 Ti.

The constrained literal of a tree labelled literal T : L is

DLit (T : L) = L | DC (T ) .

We extend DLit from tree labelled literals to sets of tree labelled literals as

DLit (LT ) = {DLit (T : L) | T : L ∈ LT} .

In contrast to a set labelled literal L : L, where we have a set of constrained

literals DLit (L : L), there is only one constrained literal DLit (T : L) for a tree
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labelled literal T : L. Further, the dismatching constraint DC (T ) is isomorphic

to the formula ϕ (T ) of the tree label T .

Definition 5.13. Let LT be a set of tree labelled literals. A tree labelled lit-

eral T : L ∈ LT is UST-redundant in LT if

(i) the constrained literal DLit (L : T ) is USD-redundant in DLit (LT ) or

(ii) there is a T ′ : L′ ∈ LT such that L and L′ are equal up to the renaming σ and

there is a renaming ρ such that ϕ (T ) |= ϕ (T ′σρ) and not ϕ (T ′σρ) |= ϕ (T ).

Let RUST (LT ) denote the set of all tree labelled literals in LT , which are

UST-redundant in LT .

Redundancy of tree labels is not defined with set inclusion as for set labels,

but with entailment on the formulae of a tree label. It has analogous properties,

such that a tree labelled literal T : L with ϕ (T ) = false is redundant in any non-

empty set of tree labelled literals. Due to the “ex falso quodlibet” principle, we

have the entailment ϕ (T ) = false |= ϕ (T ′) for the formula of any tree label T ′.
If we allowed ϕ (T ′σρ) |= ϕ (T ), then we would have the same situation as

for non-strict inclusion of set labels: T would make T ′ UST-redundant and vice

versa.

In UST-redundancy, a more general tree label T ′ makes a more specific tree

label T redundant, that is, if T ′ is a consequence of T . Since there is no most

general tree label, whose formula entails the formula of all other tree labels, UST-

redundancy is not well-founded. As before in set labelled unit superposition,

the merging inference on tree labelled literals makes both its premises UST-

redundant.

Theorem 5.3. The merging inference rule is a simplification inference, that is

the conclusion makes both of its premises UST-redundant.

Proof. The literal in the conclusion of a merging inference is equal to the literal

in the left premise and equal up to the renaming σ to the literal in the right

premise. The formula of the tree label of the conclusion is ϕ (T ) ∨ ϕ (T ′σ).

We have both ϕ (T ) |= ϕ (T ) ∨ ϕ (T ′σ) and ϕ (T ′σ) |= ϕ (T ) ∨ ϕ (T ′σ), hence

both premises of the merging inference are UST-redundant in presence of the

conclusion.
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The elimination of the premises in the merging inference is covered by redun-

dancy and we are working with the more general concept of UST-redundancy in

the following.

We lift the definitions around the US-saturation process in close analogy to

the lifting in the context of the set labelled unit superposition.

Definition 5.14. A UST-saturation process on tree labelled literals is an infinite

sequence of pairs {〈NT i,DT i〉}∞i=1, where NT i is a set of tree labelled literals

and DT i a disjoint set of positive tree labelled literals. Each pair 〈NT i+1,DT i+1〉
with i > 1, called a successor state, is obtained from the previous state 〈NT i,DT i〉
by either

(i) adding to NT i the conclusion of a tree labelled unit superposition inference

with one premise in NT i and the second premise in the union NT i ∪DT i,
adding to NT i the conclusion of a tree labelled equality resolution inference

with the premise in NT i, adding to NT i the conclusion of a tree labelled

merging inference with both premises in NT i,

(ii) adding to DT i the conclusion of a tree labelled unit superposition inference

with both premises in DT i, adding to DT i the conclusion of a tree labelled

equality resolution inference with its premise in DT i, adding to DT i the

conclusion of a tree labelled merging inference with both premises in DT i,

(iii) removing a tree labelled literal from NT i which is UST-redundant in the

union NT i ∪ DT i or

(iv) removing a tree labelled literal from DT i which is UST-redundant in DT i.

Since UST-redundancy in the same way as USL-redundancy is not well-

founded, we face the same problems defining persistent literals and the notion

of UST-saturation. We resort to a similar definition of fairness as in the USL-

saturation process, which also in this case is sufficient to prove completness.

Definition 5.15. A UST-saturation process is fair if there is a k for every i such

that

(i) for every possible unit superposition inference with with one premise inNT i

and the second premise in NT i ∪ DT i, for every equality resolution infer-

ence with the premise in NT i and for every merging inference with both
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premises in NT i the respective conclusion is in NT i+k or UST-redundant

in NT i ∪ DT i and

(ii) for every possible unit superposition inference with both premises in DT i

and for every equality resolution inference with the premise in DT i the

respective conclusion is in DT i+k or UST-redundant in DT i.

With the above definitions we can prove a lifting theorem that allows us to

use tree labelled unit superposition in a fair Inst-saturation process.

Theorem 5.4. If there is a USD-proof P of a contradiction � from the con-

strained literals L1 | D1, . . . , Ln | Dn in the USD-saturation 〈ND,DD〉sat, then

there is a tree labelled contradiction T : � in some state of the UST-saturation

process, such that for at least one proper P -relevant instantiator σ for the clause C

a closure equal up to renaming to C · σ is in
⋃

(T ).

Proof. We have the same premise as in the lifting of set labelled unit superpo-

sition in Theorem 5.2. For each S-relevant constrained literal L | D in the first

state of the USD-saturation process, there is an initially labelled literal C · θ : Lθ

in the first state of the UST-saturation process. If all dismatching constraints

are empty, then there is a contradiction T : � in the some state j of the UST-

saturation process 〈NT j,DT j〉, which can be derived with inferences in the tree

labelled unit superposition calculus, if a contradiction can be derived in the USD-

saturation 〈ND,DD〉sat from unlabelled unit superposition inferences, since the

side conditions of the inference rules are equivalent.

Let us introduce some terminology and a normal form of tree labels for the

purpose of this proof, see for instance Goldsmith et al. [2005]. We call a con-

junction of literals a monomial, which is the dual to the disjunction of literals

in a clause. We also consider a monomial as a set. A Boolean formula without

negations is called monotone. A disjunctive normal form (DNF) of a Boolean

formula F is a disjunction of monomials that is logically equivalent to F . An

implicant C of a formula F is a monomial such that the formula C → F is valid.

An implicant is a prime implicant if C → F and no proper subset C ′ ( C is an

implicant. For a monotone Boolean formula F the disjunction of all its prime

implicants is a logically equivalent and unique DNF, which we call the canonical

DNF of F . For non-monotone formulae this property does not hold. Since the

formula ϕ (T ) of a tree label is monotone, we take the canonical DNF as the

normal form of ϕ (T ).
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With tree labelled unit superposition inferences corresponding to unlabelled

unit superposition inferences in the derivation in the USD-proof P we derive a

tree labelled contradiction T : �, where T = C1 · σ1 u · · · u Cn · σn.

We assume that T : � is UST-redundant in some state j of the UST-saturation

process 〈NT j,DT j〉. If it is UST-redundant because 〈NT j,DT j〉 contains a tree

labelled contradiction T ′ : �, then there is a renaming ρ such that ϕ (T ) |= ϕ (T ′ρ).

The renaming σ = [], since there are no variables in �. Let us consider the canon-

ical DNF of the monotone formula ϕ (T ′ρ) and the Boolean formula ϕ (T ), which

is a monomial and thus already in canonical DNF. If ϕ (T ) |= ϕ (T ′ρ), then,

without loss of generality, there is a prime implicant XC1·σ1ρ ∧ · · · ∧XCl·σlρ with

l ≤ n in the canonical DNF of ϕ (T ′ρ). Since T ′ ∈ 〈NT j,DT j〉, there is a deriva-

tion of a contradiction from the tree labelled literals C1 · σ1ρ : L1, . . . , Cl · σlρ : Ll

and a corresponding USD-proof P ′ from constrained literals L1 | D1, . . . , Ll | Dl.

Since in every USD-proof there is at least one proper instantiator (Theroem 4.22

on page 72), there is a proper instantiator already in σ1ρ, . . . , σlρ and it suffices

to consider the shorter proof P ′ instead of P , where the relevant instances are

variants of σ1, . . . , σl.

If there is no tree labelled contradiction T ′ : � ∈ {〈NT i,DT i〉}∞i=1 making

T : � UST-redundant, we let T ′ : � = T : �.

Since L1 | D1, . . . , Ll | Dl ∈ 〈ND,DD〉sat, each of the P ′-relevant instantia-

tors σ1, . . . , σl satisfies the respective dismatching constraint D1, . . . Dl. By the

same argument as in the set labelled proof, T ′ : � is not UST-redundant: the

contradiction � is the smallest literal and does not follow from smaller literals,

hence Cl (DLit (T ′)) must be empty, which contradicts the satisfiability of the

dismatching constraints Diσi for 1 ≤ i ≤ n.

We conclude that T ′ : � is not UST-redundant and
⋃

(T ′) contains at least

one closure Ci · σiρ, where σi is a proper P -relevant instantiator for C.

Tree labelled unit superposition therefore leads to another fair Inst-saturation

process. We saturate the set of initially labelled selected literals under unit super-

position inferences and generate instances from tree labelled contradictions. The

stronger notion of UST-redundancy enables precise elimination of redundancy,

compared to the weaker USL-redundancy for set labels.

Since UST-redundancy is defined on logical entailment between the Boolean

formulae of tree labels, we can arbitrarily transform a tree label as long as logical

equivalence of its formula is preserved. In particular we exploit this property to
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eliminate subtrees, where the substitution of a closure C · σ does not satisfy the

dismatching constraint of the clause C | D. For the same reason we may simplify

tree labels where a leaf literal is no longer selected in a clause.

Tree labelled unit superposition is implemented in our system as an alternative

to set labelled unit superposition and we compare the two labelling approaches

in Chapter 8. However, we find that tree labels with precise elimination of redun-

dancy are not automatically superior to set or tree labels. A tree label preserves

the structure of the proofs being merged, but it is not necessarily in a normal

form as a set label is. In the next section we are concerned with combining the

positive features of tree and set labels, namely precise redundancy elimination

and normal forms.

5.4 OBDD Labelled Unit Superposition

By Definition 5.8 the tree labelled literals T : L and T ′ : L′ are equal up to

renaming if the literals L and L′ are equal up to the renaming σ and there is a

renaming ρ such that the tree labels T and T ′σρ are isomorphic. However, UST-

redundancy (Definition 5.13) allows us to go beyond simple isomorphism of trees

and to consider logical equivalence of formulae of tree labels. The tree label T : L

makes the tree label T ′ : L′ UST-redundant if the literals L and L′ are equal

up to the renaming σ and there is a renaming ρ such that the formulae ϕ (T )

and ϕ (T ′σρ) are logically equivalent. We now look at with mechanisms to exploit

this stronger notion of equality up to renaming.

Since there are many tree labels with logically equivalent formulae, the natural

question of normal forms for tree labels arises. The sequence of merging and

superposition inferences determines the shape of the tree, which makes comparing

tree labels by their shape unusable except in simple cases. Maintaining tree

labels in a normal form has obvious benefits such as uniform algorithms and

data structures. More importantly, however, keeping tree labels in a suitable

normal form makes it computationally easy to discard tree labelled literals, whose

formulae are logically equivalent up to renaming to the formula of a previously

derived tree labelled literal. In a UST-saturation process this is not only an

important simplification step leading to greater efficiency, in certain cases it is

essential for termination as we show on our running example.

Consequently, only Inst-Gen-Eq with tree labelled unit superposition, treating
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equality of tree labels up to renaming based on logical equivalence of formulae, is a

decision procedure for the Bernays-Schönfinkel fragment of first-order logic. Sets

are unordered collections of elements and all set labels are in a natural normal

form. We show that Inst-Gen-Eq with set labelled unit superposition is another

decision procedure for the Bernays-Schönfinkel fragment of first-order logic.

Standard normal forms of Boolean formulae are the disjunctive and conjunc-

tive normal forms (DNF and CNF) and we have already used the DNF in the

proof of Theorem 5.4. However, in practice DNFs and CNFs are unfortunately

frequently exponential in the size of the original formula. There exist now widely

used approaches to computing small CNFs in first-order logic (see Nonnengart

and Weidenbach [2001]) like the definitional transformation, which introduces new

variables for subterms of the original formula. Therefore, it does not produce a

unique normal form as needed for our purposes.

The formula of a tree label is monotone, that is, does not contain negations,

but Goldsmith et al. [2005] prove that computing a unique DNF of a monotone

Boolean formula is as complex as it is for arbitrary Boolean formulae. There are

DNFs of exponential size for monotone Boolean formulae and checking whether

a monomial is a prime implicant is a DP-complete problem. Languages in the

problem class DP are the set difference between two languages in NP, the fol-

lowing inclusions hold in the polynomial complexity hierarchy: NP ⊆ DP ⊆ Σ2P

[Papadimitriou, 1994]. These properties make it appear unattractive to maintain

tree labels in DNF.

Instead, we choose ordered binary decision diagrams (OBDDs) [Bryant, 1986],

which offer particularly promising features, above all a unique normal form and

checking of equivalence in constant time. An OBDD is a graph with common sub-

trees shared, it provides a compact and well-understood normal form of Boolean

formulae. Although OBDDs can be exponential in the size of the original formula

just as CNFs and DNFs, they are successfully used to encode Boolean structures

in applications like formal verification [Bryant, 1995] and also in similar contexts

to ours [de Moura and Bjørner, 2008a].

An OBDD is based on the Shannon decomposition of Boolean formulae, which

is the logical equivalence

F ≡ (x ∧ Fx) ∨ (x ∧ Fx) .

The formula Fx is the positive cofactor of F with respect to the variable x, it is
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obtained by replacing the variable x in F with the propositional constant true.

The negative cofactor Fx is obtained by replacing the variable x with false. We

choose an arbitrary but fixed ordering on the variables of a Boolean formula F

and recursively split F into positive and negative cofactors with respect to the

ordering of its variables. Each node in an OBDD corresponds to a Boolean

formula F , is labelled with a variable x and has two outgoing edges: one to the

high node, corresponding to the positive cofactor Fx, and one to the low node,

corresponding to the negative cofactor Fx. Edges to low nodes are commonly

drawn as dashed lines.

An OBDD is reduced in the sense that each formula is represented by exactly

one node, hence there is exactly one node for the propositional constants true

and false, which are conventionally labelled with 1 and 0, respectively. Further,

an OBDD contains no redundant nodes, that is nodes where the succeeding high

and low nodes are identical. The root of an OBDD represents the formula.

In order to compute the truth value of a formula given an assignment to

the variables, one traverses the OBDD from the root to either the 0 or the 1

node, at each node labelled with a variable x following the high edge if x is

assigned true and the low edge otherwise. All Boolean operations like conjunctions

and disjunctions of OBDDs can be performed on their graph representation only,

it is not necessary to switch to a different representation of the Boolean formula.

The most important property of OBDDs is their uniqueness: if two formulae

are logically equivalent, their OBDDs are identical if the same variable ordering

is used. Consequently, all unsatisfiable formulae are represented by the OBDD

consisting of the single 0 node.

Example 5.7. Let us consider the tree label

T = (3) · [] u
(

(2) · [a/u, b/v, c/z] t
(
(1) · [b/x, a/y] u (2) · [b/u, a/v, c/z]

))
,

depicted in Figure 5.1 on page 114 and use the following abbreviations, since we

are only interested in the structure of the Boolean formula.

A = (1) · [b/x, a/y]

B = (2) · [a/u, b/v, c/z]

C = (2) · [b/u, a/v, c/z]

D = (3) · []
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A

C

B

D

0 1

(a) A > C > B > D

A

B

B

D

C

0 1

(b) A > B > C > D

A

D

DB

0

B

1

C

(c) A > D > B > C

Figure 5.2: OBDDs with three different variable orderings for the for-
mula D ∧ (B ∨ (A ∧ C)) of the tree label in Figure 5.1. Notice that permuting B
and C in the alphabetic order of the middle OBDD (b) results in the smaller left
OBDD (a). A permutation of C and D in the latter ordering leads to the larger
right OBDD (c).

We have the following formula

ϕ (T ) = D∧
(
B ∨

(
A∧C

))
= (B ∧D)∨ (A ∧ C ∧D) = D∧ (A ∨B)∧ (B ∨ C) ,

where the latter two formulae are in DNF and CNF.

Three OBDDs of the above formula with different variable orderings are in

Figure 5.2. Depending on the variable ordering, the OBDDs have four (a), five (b)

and six nodes (c).

It is well-known that the size and thus the performance of OBDDs strongly

depends on the chosen variable ordering, see Bryant [1992]. Not surprisingly,

finding an optimal ordering for the propositional variables to minimise the size

of an OBDD is NP-complete as proved by Bollig and Wegener [1996], where

the best published algorithm to obtain such an ordering is cited with a run time

of O(n3n).

In the case of OBDD labelled unit superposition we have to deal with many

OBDDs and in order to maximise sharing between the individual OBDDs, we

consider the forest-like structure of a shared OBDD. A shared OBDD has multiple
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roots, each corresponding to one OBDD and common subgraphs are shared across

all represented OBDDs. It requires a global variable ordering and Tani et al.

[1993] have proved that finding an optimal variable ordering in a shared OBDD

is also NP-complete.

Despite the potential drawbacks, we have experimented with OBDD labelled

unit superposition, since it seems more promising than the DNF as a normal

form. In particular sharing nodes in OBDDs across all labels, the availability of

industrial-strength OBDD libraries and the great success of OBDDs in diverse

application areas make the effort seem worthwhile.

We extend tree labelled unit superposition to OBDD labelled superposition

in a straightforward way. Instead of the AND/OR tree T (Definition 5.8) we use

an OBDD B, where each node is labelled with the propositional variable XC·θ

of a closure C · θ and B represents the formula ϕ (T ) of the tree label. The

ordering of the variables XC·θ is arbitrary but fixed across the OBDDs in all

labels. The set of closures
⋃

(B) of an OBDD label is the set of all closures C · θ
such that there is a node labelled XC·θ in B. We obtain the set of relevant

instances and relevant instantiators in analogy to tree labels of an OBDD label

from this set. Closures in the label of an OBDD labelled literal obey the same

variable-disjointness properties as in tree labelled literals. The initial labelling of

the literal L = sel (C) is the OBDD of the propositional variable XC·θ.

In the σ-instance of an OBDD label we replace in each node the propositional

variable XC·θ with the variable XC·θσ. However, this may require a reordering of

the nodes in the OBDD, which can be a computationally expensive operation.

Further, the structure of the OBDD changes if a substitution unifies two closures,

that is, for some closures C · θ and C · θ′ we have C · θσ = C · θ′σ. Subsequently

we must restore the property that in the σ-instance of the OBDD each formula

is represented by at most one node.

An OBDD labelled literal B : L is equal up to renaming to B′ : L′ if the liter-

als L and L′ are equal up to the renaming σ and there exists a renaming ρ such

that the OBDDs B and Bσρ are identical.

The inference rules of OBDD labelled unit superposition are identical to tree

labelled unit superposition in Definition 5.10, where tree labels are replaced with

OBDD labels and merging and superposition inferences create the disjunction

and conjunction of the OBDD labels of the premises, respectively.

As we have discussed, keeping a tree labels in the normal form of an OBDD is
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justified by the notion of UST-redundancy, hence all other definitions for the UST-

saturation process remain valid. We have also mentioned that UST-redundancy

covers choosing only one representative of all OBDD labelled literals equal up to

renaming. With a slightly modified proof the OBDD labelled merging inference

is shown to be an instance of simplification with UST-redundancy elimination.

Consequently, in particular an Inst-saturation process with OBDD labelled unit

superposition is fair and a refutationally complete procedure.

Let us discuss our running example, where tree labelled unit superposition

leads to non-termination, while OBDD labelled unit superposition terminates.

Example 5.8. We notice that the equation f(x, y) ' f(y, x) is not orientable.

If for the substitution θ = [a/x, b/y] and an ordering �gr we have

f(x, y)θ = f(a, b) �gr f(b, a) = f(y, x)θ,

then with θ′ = [b/x, a/y] we have

f(y, x)θ′ = f(a, b) �gr f(b, a) = f(x, y)θ′.

Since we regard equations as unordered multisets, we must consider both

literals f(x, y) ' f(y, x) and f(y, x) ' f(x, y). Let T1 and T2 be the initial tree

labels of L1 = f(x, y) ' f(y, x) and L2 = f(u, v) 6' g(z) from Example 5.3 on

page 100.

We draw a first superposition inference between the literals with the equation

in the first orientation

L1

T1 : f(x, y) ' f(y, x)

L2

T2 : f(u, v) 6' g(z)
[u/x, v/y]

T1[u/x, v/y] u T2 : f(v, u) 6' g(z)

(∗)

and merge the conclusion with the right premise

L2

T2 : f(u, v) 6' g(z)

(∗)
T1[u/x, v/y] u T2 : f(v, u) 6' g(z)

[v/u, u/v]
T2 t

(
T1[v/x, u/y] u T2[v/u, u/v]

)
: f(u, v) 6' g(z)

(‡)

The merged conclusion replaces the initially labelled literal T2 : L2 and we use the

abbreviation

T ′2 = T2 t
(
T1[v/x, u/y] u T2[v/u, u/v]

)
.
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A second superposition with the equation reversed

L1

T1 : f(y, x) ' f(x, y)

L2

T ′2 : f(u, v) 6' g(z)
[v/x, u/y]

T1[v/x, u/y] u T ′2 : f(v, u) 6' g(z)

(§)

results in the same literal in the conclusion with a different label. We merge it

with the right premise

L2

T ′2 : f(u, v) 6' g(z)

(§)
T1[v/x, u/y] u T ′2 : f(v, u) 6' g(z)

[v/u, u/v]
T ′2 t

(
T1[u/x, v/y] u T ′2 [v/u, u/v]

)
: f(u, v) 6' g(z)

. (‖)

We spell out the label of the conclusion of the proof as

T2 t
(
T1[v/x, u/y] u T2[v/u, u/v]

)
t(

T1[u/x, v/y] u
(
T2[v/u, u/v] t

(
T1[u/x, v/y] u T2

)))
.

Let us abbreviate this labelled conclusion as

T (‖)
2 : L2 = T 1

2 t
(
T −1

1 u T −1
2

)
t
(
T 1

1 u
(
T −1

2 t
(
T 1

1 u T 1
2

)))
: f(u, v) 6' g(z)

using the superscript 1 to denote the substitutions [] and [u/x, v/y] as well as −1

for [v/x, u/y] and [v/u, u/v]. In this notation the labelled literal T ′2 : L2, which is

the conclusion of (‡), is

T ′2 : L2 = T 1
2 t

(
T−1

1 u T−1
2

)
: f(u, v) 6' g(z).

We can see that the label T ′2 is contained in the top-level disjunction of the

label T (‖)
2 , hence the it is UST-redundant and a merging inference results in the

labelled literal T (‖)
2 : L2.

The corresponding set label is{
T 1

2 , T −1
2 , T 1

1 , T −1
1

}
.

It is now necessary to repeat inferences (∗) and (§) for the merged labelled

literal T (‖)
2 : f(u, v) 6' g(z). We note that for the substitutions applied to T2 in
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the merging, we have:

T −1
1 [v/u, u/v] = T 1

1

T 1
1 [v/u, u/v] = T −1

1

T −1
2 [v/u, u/v] = T 1

2

T 1
2 [v/u, u/v] = T −1

2 .

The label of the conclusion has the structure of T (‖)
2 , where T 1

2 is substituted

by T (‖)
2 and T −1

2 by T (‖)
2 with the substitution [v/u, u/v] applied.

T 1
2 t

(
T −1

1 u T −1
2

)
t
(
T 1

1 u T −1
2

)
t(

T −1
1 u

(
T −1

2 t
(
T 1

1 u T 1
2

)
t
(
T −1

1 u T 1
2

)))
t(

T 1
1 u

(
T −1

2 t
(
T 1

1 u T 1
2

)
t
(
T −1

1 u T 1
2

)))
The set label does not change as no new closures are added

in the tree label. We discard the conclusion, since there is

already a literal equal up to renaming.

As the tree labels of the conclusion and T (‖)
2 and have a

different structure from the way they were built up during the

inferences, they are not equal up to renaming and we would

continue with inferences, obtaining ever-growing labels in the

conclusion.

If we, however, transform both labels to an OBDD using the

same ordering, we obtain the relatively simple OBDD shown

to the right. Just as for set labels we do not need to generate

further inferences from here.

The features exhibited by the different label structures in the example and

preempting results from the evaluation in a later chapter strongly suggest a hybrid

approach to labelled unit superposition. The success of set and tree labelled

superposition in practice is thanks to the low complexity of the operations on their

labels during superposition and merging. However, both set and tree labelling

do miss a significant number of problems classified as simple, respectively due to

the weaker approximate elimination of redundancy in the flat set structure and

the lack of a normal form in the Boolean tree structure. Since OBDD labelled
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unit superposition trails behind the two simple label structures in the overall

experimental results, we are looking for label structures, which are efficient in

practice, with both a normal form and precise redundancy elimination.

However, we find some discouraging facts in this endeavour. The formulae of

tree labels are monotone Boolean formulae and some problems in propositional

logic are computationally easier if the formulae do not contain negations. Unfor-

tunately, deciding logical equivalence of monotone Boolean formulae is as hard

as if the formulae contained negations: Reith [2003] proves coNP-completeness.

While it was conjectured there that computing DNFs of monotone Boolean formu-

lae should be easier, we have already mentioned that Goldsmith et al. [2005] dis-

prove the conjecture and have shown that computing DNFs of monotone Boolean

formulae is as hard as computing DNFs of Boolean formulae with negations.

Unless P = NP, there is probably no generally efficient solution to decide

if the formulae of two tree labels are logically equivalent. However, there are

certainly a number of directions to investigate in further work, in order to obtain

more efficient labels in a normal form.

For OBDD labelled unit superposition it remains to conceive good heuristics,

exploiting the particular background of labels, to obtain variable orderings pro-

ducing small and tractable shared OBDDs. A heuristic variable ordering has to

be able to handle σ-instantiation of an OBDD in an efficient way. In a merging

inference a renaming σ is applied to the label of the right premise, while in a su-

perposition inference σ is an arbitrary substitution and applied to both premises.

In both cases the variable ordering may be violated in the OBDD label of the

conclusion, making a reordering necessary. Even worse, the substitution from

a superposition inference can make two previously distinct variables equal, thus

resulting in OBDDs which are not reduced.

A smart heuristic variable ordering would produce small OBDDs and min-

imise the impact of reordering the OBDDs after substitutions. However, we have

not taken up the challenge to define such heuristics in the present work. Our

implementation simply orders closures by the sequence they are inserted into the

shared OBDD.

There have been many variants of OBDDs introduced in the literature and

further work should evaluate some of these approaches, although due to results

mentioned above one cannot expect to find a generally efficient procedure. Future

work has to identify suitable candidates from the “alphabet soup” of acronyms
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[Bryant, 1995] in the context of literal labels and to evaluate them on real prob-

lems. Notable variants of OBDDs change assumptions such as using a different

function decomposition than the Shannon decomposition [Drechsler and Becker,

1998, Kebschull et al., 1992], relaxing the ordering requirement or the reduction

requirement as in zero-suppressed decision diagrams (ZDDs) Minato [1993].

The representation of Boolean formulae is also a relevant topic in areas like

logic synthesis and verification. One could expect to find promising approaches

that are adaptable for our purposes there; it might be useful to study techniques

on Boolean circuits [Abdulla et al., 2000, Andersen and Hulgaard, 2002], in par-

ticular verification and minimisation.

Another approach from model checking is described in Damm et al. [2007] and

could provide an efficient algorithm for checking logical equivalence of formulae of

tree labels. Boolean formulae with linear arithmetic are encoded as AND-Inverter

Graphs (AIGs) and in a hierarchical method, first quick checks for equivalence

are done with learnt test sets, if those are inconclusive, the non-canonical AIGs

are compared and ultimately an SMT solver is invoked.

Since the problem of deciding equivalence of monotone Boolean formula can be

reduced to a satisfiability problem and the Inst-Gen method modularly includes

a ground solver, a final attempt could be to delegate the task to this solver.

We have motivated and presented set, tree and OBDD labelled unit super-

position and we have discussed their main features on our running example. In

Chapter 8 we give a quantitative comparison of the three labelling approaches.

To conclude the chapter we look at the Bernays-Schönfinkel fragment of first-

order logic and the decision procedure property of the labelled unit superposition

calculi.

5.5 Deciding the Bernays-Schönfinkel Fragment

In the Bernays-Schönfinkel or “effectively propositional” fragment of first-order

logic, all function symbols are of arity zero, in other words all terms are constants.

For this reason, one also speaks of function-free clause logic and due to the lack

of function symbols, every clause has only a finite number of instances.

No restriction is placed on predicate symbols P , which are translated to func-

tion symbols fP in our pure equational approach. However, since we do not per-

mit such translated predicate symbols fP to occur in substitutions, only constants
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remain and our pure equations nevertheless have a finite number of instances.

This property makes instantiation-based methods a natural choice and most

methods decide this fragment. In this section we show that set and OBDD

labelled unit superposition are decision procedures for the Bernays-Schönfinkel

fragment, while tree labelled unit superposition not necessarily is.

As set and OBDD labels are in a normal form, we can show that there is

only a finite number of labelled literals in a given signature, which makes the

calculus terminate after at most a finite number of steps, since we consider only

one representative of all labelled literals equal up to renaming. However, as

demonstrated on Example 5.8, tree labels can grow ad infinitum.

Theorem 5.5. Inst-Gen-Eq with set labelled unit superposition is a decision pro-

cedure for the Bernays-Schönfinkel fragment of first-order logic with equality.

Proof. We have a finite signature Σ of function symbols, all of which are of arity

zero. Hence, there is a finite number of terms and a finite number of substitutions,

which are not equal up to renaming. Thus for a given set of clauses S the number

of ground and non-ground closures, which are instances of S and not equal up to

renaming, is finite. The power set of this finite set of closures is finite and hence

there is a finite set of possible set labels. Since the set of selected literals is finite,

the USL-saturation process {〈NLi,DLi〉}∞i=1 contains a finite set of set labelled

literals which are not equal up to renaming. A USL-saturation process stops after

a finite number of inference steps, when the USL-saturation is reached.

A fair Inst-saturation process
{〈
Si, I i⊥, seli

〉}∞
i=1

eventually makes all persis-

tent conflicts in a set of closures redundant. There is only a finite number of

ground closures, which are ground instances of S, and hence the number of per-

sistent conflicts is finite, therefore in a finite number of steps in the Inst-saturation

process all persistent conflicts are redundant. Since ground satisfiability modulo

equality is decidable and USL-saturation can be achieved in a finite number of

steps in the USL-saturation process, the fair Inst-saturation process with set la-

belled unit superposition stops after a finite number of steps with either the result

“unsatisfiable” or “satisfiable”.

We prove a variant of this theorem for OBDD labelled unit superposition.

Theorem 5.6. Inst-Gen-Eq with OBDD labelled unit superposition is a decision

procedure for the Bernays-Schönfinkel fragment of first-order logic with equality.
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Proof. From the proof of the previous theorem we know that the number of

ground and non-ground closures, which are instances of clauses in S and not equal

up to renaming, is finite. There is only a finite number of Boolean functions of n

variables and the number of possible OBDD labels is finite. As before, the UST-

saturation process {〈NT i,DT i〉}∞i=1 is finite in every state if we consider equality

of OBDD labelled literals up to renaming. Hence, a UST-saturation process with

OBDD labelled unit superposition inferences stops after a finite number of steps.

Since Inst-saturation with OBDD labelled unit superposition is fair, by the

same argument as above, this Inst-saturation process stops after a finite number

of steps with a result of “unsatisfiable” or “satisfiable”.

We note that the last theorem extends to any other labelled superposition

calculus that is a variant of tree labelled unit superposition such that equality up

to renaming of labels is considered not on the shape of tree labels but on logical

equivalence of formulae of tree labels.



132 CHAPTER 5. LABELLED UNIT SUPERPOSITION



Chapter 6

Exploiting Unit Clauses

The Inst-Gen-Eq calculus as presented so far is sound and complete for any set

of first-order clauses. In the previous chapter we have introduced a labelling

that allows us to simplify literals by merging variants. However, in the context

of equational reasoning stronger simplification inferences based on rewriting are

possible and necessary for efficiency in practice.

We now turn to mechanisms for simplification that are only applicable for

certain literals, due to the following observation. A unit clause in the input

clause set S contains exactly one literal L. For the ground abstraction S⊥ to be

satisfiable, the ground literal L⊥ must be true in every model I⊥. Therefore, the

literal L is always selected and relevant for the saturation process regardless of

the model I⊥.

Taking the special status of unit clauses into account is an important step,

since the vast majority of problems from applications does contain unit clauses.

For instance, about 97% of the problems in CNF form in the TPTP benchmark

library have at least one unit clause. Many algebraic properties like associativity

and commutativity are expressed in terms of unit equations, and treating in

particular those equations in a special way can provide a dramatic increase in

performance.

Simplifications with unit clauses that we are presenting in this chapter are

not possible with literals selected in non-unit clauses. Since in the incremental

instantiation process the selection function changes, the equational model induced

in the saturation process on literals can change. Hence, an equation that held once

can be withdrawn later and this would require backtracking the simplification

inferences with that equation. The necessary effort of undoing simplifications

133
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with non-unit clauses makes it not worthwhile considering such inferences.

In the Section 6.1 we first review the main features from the completeness

proof in Chapter 4 that enable treating literals from unit clauses specially. We

then show in Section 6.2 that proofs only with literals from unit clauses subsume

certain proofs from non-unit literals, thus leading to subsumption of literals by

literals from unit clauses. Finally, in Section 6.3 we introduce a demodulation

inference rule as in paramodulation-based reasoning to simplify literals.

6.1 Literals from Unit Clauses

The US-saturation process on literal closures {〈N i,Di〉}∞i=1 as introduced in Def-

inition 4.4 on page 50 contains in each state a pair 〈N i,Di〉, where N i is a set

of literal closures and Di is a set of positive literal closures. Let us highlight

how this definition provides hooks to justify the simplification inferences to be

presented in this chapter.

Inst-saturation of a set of clauses S in Definition 4.12 on page 53 means that

there is no contradiction � in the US-saturation 〈N ,D〉sat of the S-relevant literal

closures (Definition 4.7 on page 51). For a literal closure L · θ to be in N = N 1

it is necessary that there is a clause C with sel (C) = L, hence N depends on the

selection function, which may change in the incremental Inst-saturation process,

such that sel (C) = L′ for some L′ 6= L.

On the other hand, a literal closure is in D = D1 regardless of the selection

function. These literal closures are required to be consequences of S, that is,

every (l ' r) · θ ∈ D must satisfy S |= (l ' r) θ. The set Di in a state i of the

US-saturation process is modified by adding conclusions of unit superposition in-

ferences with both premises in Di or removing literal closures US-redundant in Di,
hence the set Di+1 in every successor state of the US-saturation process remains

independent of N i and the selection function. By induction we conclude that the

persistent closures D∞ (Definition 4.5 on page 50) and the set D∞ \ RUS (D∞),

which is a subset of the US-saturation 〈N ,D〉sat, are independent of the selection

function for S.

The partition of the US-saturation process into sets N and D makes it pos-

sible to simplify literal closures in N with literal closures from D, such that the

simplifications also hold if the selection function changes and literal closures are

added to and removed from N in the incremental instantiation process.
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Inst-saturation allows any S-relevant literal closure (l ' r) · θ to be in D
if S |= (l ' r) θ. Since this entailment is a complex problem to decide, in practice

we take D to contain literals for which the entailment is trivial: let C = l ' r ∈ S
be a unit clause, then for every ground instance (l ' r) · θ we have S |= (l ' r) θ.

We can lift the above remarks from literal closures to constrained literals

and labelled literals, since the arguments also hold in the contexts of the USD-

saturation process on constrained literals and the set and tree labelled USL- and

UST-saturation processes. For labelled unit superposition calculi we need an ini-

tial labelling for each literal. Since the Inst-saturation process allows to add any

clause that follows from the clause set S, we do not lose generality if we choose for

the set and tree labelled literals L : l ' r and T : l ' r the labels L = {(l ' r) · θ}
and T = (l ' r) · θ as the initial set and tree labels, respectively. We can implic-

itly add the unit clause l ' r to S.

There is an important restriction on literals from unit clauses that the follow-

ing simplification techniques impose. Neither subsumption by literals from unit

clauses nor demodulation is compatible with non-empty dismatching constraints

on unit clauses. We therefore assume unit clauses to be always unconstrained and

do not add a constraint when instantiating. We give reasons for the incompati-

bility of dismatching constraints in the context of the simplification techniques.

Dismatching constraints on unit clauses do not provide the great advantage

they have on non-unit clauses. In the instance Cσ of a non-unit clause C the

selection function does not necessarily select the instance Lσ of the selected lit-

eral L in C. In fact, it is precisely the intention of the Inst-saturation process to

trigger such adaptions of the selection function by refining the ground abstraction

on persistent conflicts by generating proper instances of clauses. If the clause C is

instantiated to Cσ, the constraint is extended with the dismatching constraint Dσ

of the instantiating substitution, such that all closures L ·σθ are eliminated from

the US-saturation process. If the selection function does not select the literal Lσ

in the clause instance Cσ, then the literal closures Lσ · θ are not relevant and not

in the US-saturation, either. In this way no ground literal Lσθ is represented by

any closure in the US-saturation process. Inferences requiring the grounding Lσθ

are then redundant and blocked by the dismatching constraint Dσ on C.

The situation is different for unit clauses. Since there is only one literal

to choose in the selection function, the literal instance Lσ is selected in every

σ-instance of the unit clause L. Blocking by dismatching constraints as for literals
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from non-unit clauses do not occur and it is expected that an implementation can

efficiently handle the duplication of ground literals represented by a literal and

an instance. Therefore, losing dismatching constraints on unit literals is not a

great issue.

6.2 Subsumption by Literals from Unit Clauses

Unit clauses have special status, since as facts they are true in every model.

Conclusions from facts also hold in every model and therefore it is not necessary

to derive those conclusions again from literals selected in non-unit clauses. We

formalise this idea and justify it in the framework of US-redundancy.

A state 〈N i,Di〉 of the US-saturation process can have a literal closure L · θ
in the set Di and a literal closure L′ · θ′ in N i, which represent the same ground

literal Lθ = L′θ′. We show that the literal closure L · θ ∈ Di makes the literal

closure L′ · θ′ ∈ N i US-redundant. Therefore labelled unit superposition calculi

can eliminate a set labelled or tree labelled literal in NLi or NT i if a variant of

the literal is in DLi or DT i, respectively. Merging inferences are only necessary

between literal variants in NLi or NT i, a literal in DLi or DT i subsumes its

variants in NLi or NT i, resulting a shorter labels.

By Definition 4.2 on page 47, the total ordering �l on literal closures allows

to arbitrarily choose either L · θ �l L
′ · θ′ or L′ · θ′ �l L · θ if neither Lθ �gr L

′θ′

nor L′θ′ �gr Lθ. We can therefore make the literal closure L · θ ∈ Di smaller

than the literal closure L′ · θ′ ∈ N i and exploit US-redundancy in Definition 4.3

on page 48, where a literal closure is redundant if it follows from smaller literal

closures. Since the literals in each Di are independent of the actual selection

function, every literal closure L′ · θ′ ∈ N i is always redundant.

Definition 6.1. Let 〈N ,D〉 be a partition of ground literal closures. Let �〈N ,D〉l

be an arbitrary total well-founded extension of �gr from ground literals to ground

literal closures such that L · θ �〈N ,D〉l M · ρ if

(i) Lθ �gr Mρ or

(ii) Lθ = Mρ and L · θ ∈ N and M · ρ ∈ D.

Now US-redundancy can use the refined and stronger ordering �〈N ,D〉l on

literal closures and we have the following theorem.
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Theorem 6.1. Let (l ' r) · θ ∈ N and (s ' t) · ρ ∈ D be literal closures such

that l ' r and s ' t are equal up to renaming and (l ' r) θ = (s ' t) ρ. The first

literal closure (l ' r) · θ is US-redundant in N ∪D.

Proof. Let R be a rewrite system oriented with respect to �gr such that the sub-

stitution θ from the literal closure (l ' r) · θ is irreducible. There is a renaming τ

such that l ' r = (s ' t) τ and we have (s ' t) ρ = (l ' r) θ = (s ' t) τθ. The

literal closures (l ' r) · θ and (s ' t) · ρ are well-defined, hence rng (τθ) = rng (ρ)

and we conclude irreducibility of ρ in R. Further, we have (l ' r) θ |= (s ' t) ρ

and (l ' r) · θ �〈N ,D〉l (s ' t) · ρ, therefore

R ∪ irredR

({
L · θ ∈ N ∪ D | (l ' r) · θ �〈N ,D〉l L · θ

})
|= (l ' r) θ.

As a consequence (l ' r) · θ is US-redundant in N ∪D.

We lift the theorem from literal closures to constrained first-order literals.

Theorem 6.2. Let l ' r | D ∈ ND and s ' t ∈ DD be a constrained and an

unconstrained literal, where l ' r and s ' t are equal up to renaming. The con-

strained literal l ' r | D is USD-redundant in ND ∪ DD.

Proof. Let (l ' r) · θ ∈ Cl (l ' r | D) be a literal closure of the constrained literal,

then there is a literal closure (s ' t) · ρ ∈ Cl (s ' t) of the unconstrained literal

such that (l ' r) θ = (s ' t) ρ. By Theorem 6.1 the latter literal closure makes

the former US-redundant. Since every literal closure (l ' r) · θ ∈ Cl (l ' r | D) is

US-redundant in this way, the constrained literal l ' r | D is USD-redundant.

As we have noted before, unit clauses must have an empty dismatching con-

straint. For a literal closure (l ' r) · θ to be US-redundant we have to take

into account all ground rewrite systems R that do not reduce a term in rng (θ).

Then (l ' r) · θ is US-redundant if it follows from literal closures with irreducible

substitutions in R. In order to satisfy this irreducibility requirement we take the

unit clause s ' t to be unconstrained and, as shown in the proof, the closures of

the unconstrained literal are sufficient to make l ' r | D USD-redundant.

Let us give an example to illustrate the benefits of subsumption by literals

from unit clauses in the unlabelled unit superposition calculus.
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Example 6.1. The following set of clauses is unsatisfiable.

f(x, f(y, z)) ' a ∨ z 6' a (1)

f(u, a) ' a (2)

f(a, a) 6' a (3)

The ground abstraction is satisfiable and we select the first literals in each

clause. We find a contradiction with the following unlabelled unit superposition

proof from literals in unit clauses only.

L2

f(u, a) ' a

L3

f(a, a) 6' a
[a/u]

a 6' a
�

(∗)

After adding the ground instance of clause (2)

f(a, a) ' a (4)

to the clause set, its ground abstraction becomes unsatisfiable.

There is another proof of a contradiction involving the non-unit clause (1).

L2

f(u, a) ' a

L1

f(x, f(y, z)) ' a
[u/y, a/z]

f(x, a) ' a

L3

f(a, a) 6' a
[a/x]

a 6' a
�

(†)

The only relevant instance in this proof that is proper is

f(a, f(w, a)) ' a ∨ a 6' a. (5)

The ground abstraction of clauses (1), (2), (3) and (5) is unsatisfiable.

Since (2) is a unit clause, its single literal f(u, a) ' a is in DD and upon

deriving the literal f(x, a) ' a in proof (†), which would be added to ND, we

have a variant of a unit literal in DD, which is USD-redundant. We abandon

proof (†) at this point and do not need to generate clause (5).

Subsumption by literals from unit clauses finds proofs, where relevant in-

stances are unit clauses. Such clauses are more useful for the ground solver than
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instances of non-unit clauses, since they force a particular literals to be in a model

of the ground abstraction.

If a contradiction is derived from literals from unit clauses only, every other

contradiction is a variant and US-redundant. In this case the Inst-saturation

process can terminate with the result “unsatisfiable”. Since the instances of the

literals at the leaves of a USD-proof are in a conflict and unsatisfiable together,

we have found a set of unsatisfiable clause instances and the ground solver would

fail to find a model of the ground abstraction. Therefore we can skip actually

generating the instances and invoking the ground solver.

The subsumption by literals from unit clauses can be lifted to labelled calculi,

where we do not eliminate proofs, but discard literals which are equal up to

renaming instead of merging them.

Theorem 6.3. Let L : l ' r ∈ NL and {s ' t · [] : s ' t} ∈ DL be two set labelled

literals, where l ' r and s ' t are equal up to renaming. The first set labelled

literal L : l ' r is USL-redundant in NL ∪ DL.

Proof. Let l ' r | D be a constrained literal from DLit (L : l ' r). Since the

unit clause s ' t is unconstrained, DLit ({s ' t · []} : s ' t) contains only the

unconstrained literal s ' t. By Theorem 6.2 each constrained literal l ' r | D
in DLit (L : l ' r) is USD-redundant and therefore the set labelled literal L : l ' r

is USL-redundant in NL ∪ DL.

Theorem 6.4. Let T : l ' r ∈ NT and s ' t · [] : s ' t ∈ DT be two tree labelled

literals, where l ' r and s ' t are equal up to renaming. The first tree labelled

literal T : l ' r is USL-redundant in NT ∪ DT .

Proof. Let l ' r | D be the constrained literal DLit (T : l ' r). Since the unit

clause s ' t is unconstrained, DLit (s ' t · [] : s ' t) is simply the unconstrained

literal s ' t. By Theorem 6.2 the constrained literal l ' r | D = DLit (L : l ' r) is

USD-redundant and therefore the tree labelled literal T : l ' r is UST-redundant

in NT ∪ DT .

While subsumption by unit literals is an efficient simplification by itself, it is

most powerful when combined with the demodulation inference we describe next.
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6.3 Demodulation

The concept of demodulation in paramodulation-based theorem proving was in-

troduced as early as in Wos et al. [1967] and treated, for instance, by Bachmair

and Ganzinger [1994] in a framework of redundancy elimination.

The idea of demodulation is to use certain equations to reduce literals to

smaller literals in a way so that the reduced literal becomes redundant. However,

equations in first-order clausal logic do not occur independently, but in clauses,

which are disjunctions of literals. Hence a reduction by an equation has to be seen

under the condition of the literals in a clause. Nevertheless, demodulations with

equations from unit clauses hold unconditionally and are therefore particularly

interesting. In practice demodulation is usually restricted to equations from unit

literals.

The situation is no different for the instantiation-based Inst-Gen-Eq. We

cannot use every equation in a state of the US-saturation process 〈N i,Di〉 for

demodulation, since a change of the selection function can subsequently remove

the equation and invalidate the reductions that have been made with it. Therefore

we only consider equations in D, since this set is independent of the selection

function and thus demodulations hold unconditionally.

A demodulation inference rule with a non-proper matching substitution be-

tween the demodulating equation and the demodulated literal is already defined

in the original Inst-Gen-Eq calculus of Ganzinger and Korovin [2004]. In this sec-

tion we first present this non-proper demodulation and then extend it to proper

demodulation, allowing for unrestricted matching substitutions. If the substitu-

tion in a demodulation inference is proper, it is necessary to generate instances

of the demodulating equation and we prove completeness of proper demodulation

in this way.

Let us begin with non-proper demodulation on literal closures.
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Definition 6.2 (Non-proper Demodulation [Ganzinger and Korovin, 2004]).

Non-proper Demodulation

(l ' r) · σθ (s[l′] ' t) · θ
(σ)

(s[rσ] ' t) · θ|var({s[rσ],t})

(l ' r) · σθ (s[l′] 6' t) · θ
(σ)

(s[rσ] 6' t) · θ|var({s[rσ],t})

where

(i) lσ = l′,

(ii) σ is not proper

(iii) l′ is not a variable,

(iv) lσθ �gr rσθ,

(v) (s[l′] ' t) θ �gr

(l ' r)σθ,

(vi) var(r) ⊆ var(l),

(vii) var ({l, r}) ∩
var ({s[l′], t}) = ∅.

A demodulation inference is similar in structure to a superposition inference

(Definition 4.1 on page 45) with some notable differences. As before, the left

premise is a positive equation, whereas the right premise is either a positive or

a negative equation. However, the substitution σ is a matching, not a unifier,

between the left-hand side of the equation l ' r in the left premise and a sub-

term l′ of the right premise. No substitution is applied to the right premise. In

this first variant of demodulation the substitution σ must not be proper, that

is, all terms in the range of σ are variables. We remind ourselves that a non-

proper substitution is not necessarily a renaming by considering the example of

the substitution [z/x, z/y].

The equation in the left premise must be ordered according to �gr, while in

contrast to superposition inferences tθ �gr s[l
′]θ is permitted in the right premise.

This is a desirable property, since a simplification inference rule should be appli-

cable as often as possible, while inferences like superposition, which add a new

literal or literal closure, should be limited as much as possible.

Since a closure C · θ is only well-defined if var (C) = dom (θ) we have to re-

strict the substitution θ in the conclusion to the actual variables of C. Further,

no substitution is applied to the right premise and new variables must not be

introduced into the conclusion, hence the condition var (r) ⊆ var (l).

Lemma 6.5 (Ganzinger and Korovin [2004]). Non-proper demodulation is a sim-

plification rule, that is, the left premise and the conclusion make the right premise

US-redundant.
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Proof. Let R be a ground rewrite system oriented with respect to �gr such

that θ is irreducible in R. The substitution σ is non-proper due to (ii), there-

fore rng (σθ) = rng (θ) and the composed substitution σθ is also irreducible in R.

Let

L =
{

(l ' r) · σθ, (s[rσ] ' t) · θ|var({s[rσ],t})
}

consist of the left premise and the conclusion of a demodulation of a positive right

premise and we have

irredR (L) = L.

By condition (v) on the demodulation inference (s[l′] ' t) · θ �l (l ' r) · σθ
and we also have (s[l′] ' t) · θ �l (s[rσ] ' t) · θ|var({s[rσ],t}), because conditions (i)

and (iv) lead to l′θ = lσθ �gr rσθ. The left premise and the conclusion are there-

fore smaller than the positive right premise in �l and

irredR
(
L(s[l′]'t)·θ�l

)
= L.

By condition (i) lσ = l′ holds and hence

{
(l ' r)σθ, (s[rσ] ' t) θ|var({s[rσ],t})

}
|= (s[l′] ' t) θ.

Altogether we conclude

R ∪ irredR
(
L(s[l′]'t)·θ�l

)
|= (s[l′] ' t) θ.

By Definition 4.3 on page 48 the positive right premise is US-redundant with the

left premise and the conclusion.

A similar proof holds for the negative right premise (s[l′] 6' t) · θ.

We can show that naively extending demodulation to non-proper matching

substitutions σ by removing side condition (ii) fails.

Example 6.2 (Modified from Ganzinger and Korovin [2004]1). Let us consider

1In their example literal closure (2) is (g(f(x)) ' c) · [d/x] and hence

(2) = (g(f(x)) ' c) · [d/x] = g(f(d)) ' c 6�gr g(f(d)) ' c = (g(x) ' c) · [f(d)/x] = (1).

A demodulation inference between the literal closures (1) and (2) is not applicable, since side
condition (iv) is violated. This ordering constraint in the demodulation inference holds in our
modified example.
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the set of literal closures

(g(x) ' c) · [f(d)/x] (1)

(g(g(f(y))) ' g(c)) · [d/y] (2)

(f(d) ' m) · [] (3)

(g(g(m)) 6' g(c)) · [] (4)

A contradiction follows in a US-proof in the unit superposition calculus.

(2)

(g(g(f(y))) ' g(c)) · [d/y]

(3)

(f(d) ' m) · []
[d/y]

(g(g(m)) ' g(c)) · []
(4)

(g(g(m)) 6' g(c)) · []
[]

(g(c) 6' g(c)) · []
[]

�

Instead of using the above proof, let us first simplify the literal closure (2)

with a demodulation inference, despite the fact that the substitution σ is proper.

(1)

(g(x) ' c) · [f(d)/x]

(2)

(g(g(f(y))) ' g(c)) · [d/y]
[f(y)/x]

(g(c) ' g(c)) · []

We have σθ = [f(d)/x] = [f(y)/x][d/y] and all side constraints on the demodu-

lation except (ii) are satisfied.

We omit the tautological literal closure obtained as the conclusion and also

the right premise (2), wrongly assuming its US-redundancy.

(g(x) ' c) · [f(d)/d] (1)

(f(d) ' m) · [] (3)

(g(g(m)) 6' g(c)) · [] (4)

We now fail to derive a contradiction, in fact we cannot perform any inference

between the above literal closures. Since superposition into a variable in the right

premise is not allowed, no inference applies between (1) and (3). The substitution

of the literal closures blocks a possible inference between (1) and (4) and, finally,

no subterms of (3) and (4) can be unified.

The reason for the failure to find the contradiction is that we have removed

the demodulated literal closure (2) although it is not US-redundant. While we
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have

g(f(d)) ' c |= g(g(f(d))) ' g(c)

and also

g(g(f(d))) ' g(c) �gr g(f(d)) ' c,

irreducibility of the substitution [f(d)/x] in the demodulating literal closure does

not hold.

Consider for instance the rewrite system R that contains the rule f(d)→ m,

which is generated from literal closure (3) if R is a candidate model of the literal

closures (1), (3) and (4) by Definition 4.13 on page 54. The substitution [d/y] in

the demodulated literal closure (2) is irreducible in R, but the substitution in the

demodulating literal closure (1) can be reduced. Hence (1) is not in irredR (L)

and (2) is not US-redundant.

As the example shows, it is essential that the matching substitution is non-

proper. In the proof of Lemma 6.5 irreducibility of the substitution σθ in the left

premise depends on the matching substitution σ not being proper.

Although non-proper demodulation reduces redundancy in the US-saturation

process by some amount, the benefits are limited. If the demodulating equation

contains variables, it cannot simplify ground terms in literals. Such equations

cannot be used by the ground solver, either, since in the ground abstraction

variables are mapped to the distinct constant ⊥, which does not occur in the

input. We therefore need to find ways to work around the restriction to non-

proper matching substitutions.

One way to turn a demodulation with a proper substitution into a non-proper

demodulation is by instantiating the demodulating equation. Since the candidate

equations for demodulation inferences come from the set Di in the US-saturation

process {〈N i,Di〉}∞i=1, the equation l ' r in each literal closure (l ' r) · θ ∈ Di

follows from the input clause set S, that is, S |= l ' r. We also have S |= (l ' r)σ

for each instance of l ' r. The US-saturation process starts with a fixed initial

state 〈N ,D〉 (Definition 4.12 on page 53), which consists of the S-relevant literal

closures, whereas in the Inst-saturation (Definition 4.14 on page 59) process we

may add any set of clauses N to S, if S |= N . Thus, in order to effectively add

an instance (l ' r)σ · θ of a literal closure (l ' r) · σθ to D in the US-saturation

process we add the unit clause (l ' r)σ to S in the Inst-saturation process.

We modify the demodulation inference rule by requiring a suitable instance
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of the demodulating equation to be generated and dropping the restriction to

non-proper matching substitutions. The following inference rule first derives an

instance (l ' r)σ · θ of the demodulating literal closure and then performs a non-

proper demodulation inference with the instantiated demodulating literal closure.

The unit clause (l ' r)σ of the instantiated literal closure is to be added to the

Inst-saturation process, thus the literal closure (l ' r)σ · θ becomes relevant in

the US-saturation process.

Definition 6.3 (Demodulation with Instantiation, Literal Closures).

Demodulation

(l ' r) · σθ
(l ' r)σ · θ (s[l′] ' t) · θ

(σ)
(s[rσ] ' t) · θ|var({s[rσ],t})

(l ' r) · σθ
(l ' r)σ · θ (s[l′] 6' t) · θ

(σ)
(s[rσ] 6' t) · θ|var({s[rσ],t})

where

(i) lσ = l′,

(ii) l′ is not a variable,

(iii) lσθ �gr rσθ,

(iv) (s[l′] ' t) θ �gr

(l ' r)σθ,

(v) var(r) ⊆ var(l),

(vi) var ({l, r}) ∩
var ({s[l′], t}) = ∅.

We decompose the substitution of the left premise into σ and θ in order to

factor out the matching substitution σ. After instantiating the left premise with σ

there is a non-proper demodulation inference possible with an empty matching

substitution between the instantiated left-hand side of the equation lσ and the

subterm l′, since by condition (i) lσ = l′ already holds.

The side conditions in the instantiating demodulation inference rule are iden-

tical to the side conditions of the non-proper demodulation inference rule in Def-

inition 6.2, except for the missing (ii). We prove that simplification with proper

demodulation is covered by US-redundancy.

Lemma 6.6. Proper demodulation with instantiating the demodulating equation

is a simplification rule, that is, the instantiated demodulating equation and the

conclusion make the right premise US-redundant.
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Proof. We have lσ = l′ and therefore a matching substitution σ′ = [] between

the left-hand side lσ of the instantiated literal closure (l ' r)σ · θ and the sub-

term l′ of (s[l′] ' t) · θ. Since this σ′ is non-proper, the demodulation inference

between (l ' r)σ · θ and (s[l′] ' t) · θ is a non-proper demodulation as in Def-

inition 6.2. Due to Lemma 6.6 the conclusion (s[rσ] ' t) · θ|var({s[rσ],t}) and the

instantiated left premise (l ' r)σ · θ make the right premise (s[l′] ' t) · θ US-

redundant.

Example 6.3. We resume Example 6.2 and repeat the proper demodulation

inference, this time instantiating the demodulating equation.

(1)

(g(x) ' c) · [f(d)/x]
[f(y)/x]

(g(f(y)) ' c) · [d/y]

(2)

(g(g(f(y))) ' g(c)) · [d/y]
[]

(g(c) ' g(c)) · []

In the inference the substitutions are σ = [f(y)/x] and θ = [d/y]. We discard

the tautological conclusion, add the instance of the demodulating equation as (1′)

and remove the US-redundant literal closure (2).

(g(x) ' c) · [f(d)/x] (1)

(g(f(y)) ' c) · [d/y] (1′)

(f(d) ' m) · [] (3)

(g(g(m)) 6' g(c)) · [] (4)

A contradiction can be derived with inferences from the unit superposition

calculus from these literal closures.

(3)

(f(d) ' m) · []
(1′)

(g(f(z)) ' c) · [d/z]
[d/z]

(g(m) ' c) · []
(4)

(g(g(m)) 6' g(c)) · []
[]

(g(c) 6' g(c)) · []
[]

�

In Example 6.2 the instantiated demodulating equation (1′) was missing and

no US-proof of a contradiction could be found. In the proof above all inferences

can actually be regarded as demodulation inferences. In particular the demodu-

lating equation (1′) is itself demodulated with the equation (f(d) ' m) · [].
Since the substitutions in the instantiated demodulating literal closure (1′)
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and the right premise (2) are identical, the former is irreducible if the latter is.

Since (2) follows from (1′), where the substitution is reducible if the substitution

of (2) is, US-redundancy of (2) with (1′) follows.

We now lift the demodulation inference rule with instantiation from literal

closures to first-order literals. It is important to note that demodulation of first-

order literals is not compatible with dismatching constraints on demodulating

equations.

As before, satisfying USD-redundancy requires an instance of the demodulat-

ing equation to be in the setDDi of the USD-saturation process {〈NDi,DDi〉}∞i=1.

For every constrained literal l ' r | D ∈ DDi we have S |= Unc (l ' r | D) (Def-

inition 4.33 on page 83) and hence also S |= (l ' r)σ for any substitution σ. In

analogy to the approach in the US-saturation process we can thus effectively add

the required instance of the demodulating equation to DD in the USD-saturation

process by adding the unit clause (l ' r)σ to the set S in the Inst-saturation pro-

cess.

Definition 6.4 (Proper Demodulation).

Demodulation

l ' r
(l ' r)σ s[l′] ' t | D

(σ)
s[rσ] ' t | D

l ' r
(l ' r)σ s[l′] 6' t | D

(σ)
s[rσ] 6' t | D

where for all grounding substitutions θ with dom (θ) = var ({lσθ, rσθ, s[l′]θ, rθ})

(i) lσ = l′,

(ii) l′ is not a variable,

(iii) lσθ �gr rσθ,

(iv) (s[l′] ' t) θ �gr

(l ' r)σθ,

(v) var(r) ⊆ var(l),

(vi) var ({l, r}) ∩
var ({s[l′], t}) = ∅.

In contrast to the lifted unit superposition inference rule in Definition 4.24 on

page 78, it is not sufficient if the equation l ' r can be oriented for some grounding

substitutions only. All ground instances of the conclusion and all ground instances

of the left premise must be smaller than the right premise. Therefore for all

substitutions θ grounding (l ' r)σ and s[l′] ' t we require conditions (iii) and (iv)

to hold.
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In order to prove completeness of unit superposition with the demodulation

inference on first-order literals, we need to show that all literal closures of the

right premise become redundant.

Theorem 6.7. Proper demodulation is a simplification rule, that is, the instan-

tiated demodulating equation and the conclusion make the right premise USD-

redundant.

Proof. Let (s[l′] ' t) · θ be a literal closure of the constrained literal s[l′] ' t | D.

The instantiated demodulating equation (l ' r)σ is unconstrained, hence there

is a literal closure (l ' r)σ · θ.

By Lemma 6.6 the literal closures (l ' r)σ · θ and (s[rσ] ' t) · θ make the

literal closure (s[l′] ' t) · θ US-redundant. We conclude that in a demodulation

inference the constrained literal s[rσ] ' t | D in the conclusion together with

the unconstrained instantiated left premise (l ' r)σ make the constrained right

premise s[l′] ' t | D USD-redundant (Definition 4.27 on page 81).

A similar proof holds for a negative right premise s[l′] 6' t | D.

The reason why the demodulating equation must be unconstrained lies once

more in the requirement of irreducibility of the substitution of a literal closure for

US-redundancy. We have to consider rewrite systems R such that the substitu-

tion θ is irreducible and have to provide literal closures in DD with a substitution

irreducible in R, which are smaller than the demodulated literal closure and to-

gether entail the demodulated literal closure. Unless the dismatching constraint

on the demodulating equation is empty, we cannot guarantee that there are such

literal closures in DD that make the demodulated literal USD-redundant.

We now extend the demodulation inference rule to both set and tree labelled

literals.
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Definition 6.5 (Set Labelled Demodulation).

Demodulation

l ' r

(l ' r)σ L : s[l′] ' t
(σ)

L : s[rσ] ' t

l ' r

(l ' r)σ L : s[l′] 6' t
(σ)

L : s[rσ] 6' t

where for all grounding substitutions θ with dom (θ) = var ({lσθ, rσθ, s[l′]θ, rθ})

(i) lσ = l′,

(ii) l′ is not a variable,

(iii) lσθ �gr rσθ,

(iv) (s[l′] ' t) θ �gr

(l ' r)σθ,

(v) var(r) ⊆ var(l),

(vi) var ({l, r}) ∩
var ({s[l′], t}) = ∅.

Definition 6.6 (Tree Labelled Demodulation).

Demodulation

l ' r

(l ' r)σ T : s[l′] ' t
(σ)

T : s[rσ] ' t

l ' r

(l ' r)σ T : s[l′] 6' t
(σ)

T : s[rσ] 6' t

where for all grounding substitutions θ with dom (θ) = var ({lσθ, rσθ, s[l′]θ, rθ})

(i) lσ = l′,

(ii) l′ is not a variable,

(iii) lσθ �gr rσθ,

(iv) (s[l′] ' t) θ �gr

(l ' r)σθ,

(v) var(r) ⊆ var(l),

(vi) var ({l, r}) ∩
var ({s[l′], t}) = ∅.

Theorem 6.8. Set labelled demodulation is a simplification rule, that is, the

instantiated demodulating equation and the conclusion make the right premise

USL-redundant.

Proof. Let

DLit (L : s[l′] ' t) = {s[l′] ' t | D1, . . . , s[l
′] ' t | Dn}

be the set of constrained literals of the right premise (Definition 5.4 on page 104).

The label of the conclusion is the same as the label of the right premise, hence
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we have

DLit (L : s[rσ] ' t) = {s[l′] 6' t | D1, . . . , s[l
′] ' t | Dn}

as the set of constrained literals of the conclusion.

By Theorem 6.7 the literal (l ' r)σ and a constrained literal s[rσ] 6' t | Di

make the constrained literal s[l′] 6' t | Di USD-redundant. All constrained literals

in DLit (L : s[l′] ' t) are USD-redundant in this way and therefore the set labelled

literal L : s[l′] ' t is USL-redundant in the presence of the set labelled left premise

and the conclusion.

A similar proof holds for a negative right premise L : s[l′] 6' t.

Theorem 6.9. Tree labelled demodulation is a simplification rule, that is, the

instantiated demodulating equation and the conclusion make the right premise

UST-redundant.

Proof. We proceed in a similar way as in the previous theorem. The tree label

of the right premise and the tree label of the conclusion are identical and the

instantiated left premise is unconstrained. We have

DLit (T : s[l′] ' t) = s[l′] ' t | DC (T )

and

DLit (T : s[rσ] ' t) = s[rσ] ' t | DC (T ) .

With the argument as in the proof of the previous theorem, by Theorem 6.7

the left premise (l ' r)σ and the conclusion s[rσ] ' t | DC (T ) make the right

premise s[l′] ' t | DC (T ) USD-redundant.

We conclude that the left premise (l ' r)σ and the tree labelled conclu-

sion T : s[rσ] ' tmake the tree labelled right premise T : s[l′] ' tUST-redundant.

A similar proof holds for a negative right premise T : s[l′] 6' t.

Demodulation is a simplification inference, that is, a conclusion s[rσ] ' t re-

places the right premise s[l′] ' t in the US-saturation process. In order to show

that fairness of the Inst-saturation process is preserved when using demodulation

in the US-saturation process, we have to consider the relevant instances generated

from proofs of contradictions in the US-saturation process.

We proceed in a similar way to Section 4.3, where we have introduced the

concept of relevant instantiators from proofs. We are first concerned with proofs
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of contradictions from literal closures, using inferences in the unit superposition

calculus and demodulation inferences. The key to fairness of the Inst-saturation

process is that in every proof of a contradiction from literal closures in a persistent

conflict there is at least one proper instantiator. We show that this property of

proofs is maintained when demodulating literal closures. We then lift proofs with

demodulation to first-order literals and to set labels and tree labels.

Definition 6.7. A US-proof with demodulation is a binary tree drawn with the

root at the bottom, where each node is labelled with a sequence of literal clo-

sures [L1 · θ, . . . , Ln · θ] of a US-saturation process. For each 1 ≤ i < n the literal

closure Li+1 · θ is the conclusion of a demodulation inference from the literal Li · θ
and some demodulating literal closure (l ' r)σ · τ ∈ D∞.

In each leaf node [L1 · θ1, . . . , Ln · θn] the closure L1 · θ1 is S-relevant.

Inner nodes [L1 · θ, . . . , Lk · θ] have exactly two children [L′1 · θ′, . . . , L′m · θ′]
and [L′′1 · θ′′, . . . , L′′n · θ′′], where L′m · θ′ and L′′n · θ′′ are the premises of a unit

superposition inference with the conclusion L1 · θ.
The root node is either derived in a unit superposition inference like an inner

node or is a contradiction �, in which case the root node has only one child

node [L1 · θ, . . . , Ln · θ] such that an equality resolution inference is applicable

to Ln · θ.
Each edge in the tree is labelled with the substitution σ from the unit super-

position or the equality resolution inference.

In US-proofs without demodulation (Definition 4.18 on page 65) each node is

labelled with a literal closure, whereas in the above definition a node is labelled

with a sequence of literal closures. A demodulation inference does not change

the structure of a US-proof tree, the conclusion of the demodulation inference is

only appended to the sequence of the root node. We think of a node as being

represented by the last literal closure in its sequence.

Since US-proofs with and without demodulation are isomorphic, the definition

of relevant instances from a US-proof remains virtually unchanged from Defini-

tion 4.19 on page 66.

Definition 6.8. Let P be a US-proof with demodulation with a leaf node labelled

with the sequence N = [L1 · θ, . . . , Ln · θ]. Let σ1, . . . , σn be the substitutions

labelling the edges along the branch of P from the leaf N to the root. We call the

composition σ = σ1, . . . , σn the P -relevant instantiator and the closure L1σ · ρ
the P -relevant instance of the leaf node, where L1σρ = L1θ1.
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We now prove a variant of Theorem 4.19 on page 66.

Theorem 6.10. Let P be a US-proof with demodulation with a root node �

or [L′1 · θ′, . . . , L′k · θ′] and the literal closures L1·θ1, . . . , Ln·θn as the first elements

in the sequences labelling the n leaf nodes. Let L1σ1 · ρ1, . . . , Lnσn · ρn be the

P -relevant instances of the leaf nodes. Let D∞ be the set of persistent literals in

the US-saturation process.

For some finite subset {D1 · τ1, . . . , Dm · τm} of D∞ and for every substitu-

tion ρ grounding the literals L1σ1, . . . , Lnσn and D1, . . . , Dm

D1ρ, . . . , Dmρ, L1σ1ρ, . . . , Lnσnρ |= L′iρ

for all 1 ≤ i ≤ k and

D1ρ, . . . , Dmρ, L1σ1ρ, . . . , Lnσnρ |= �,

respectively.

Proof. Let us first consider a US-proof with demodulation, where each node is

labelled with a singleton sequence of exactly one literal closure. This US-proof

is isomorphic to a US-proof without demodulation (Definition 4.18 on page 65),

where each node is labelled with the single literal of the sequence and by Theo-

rem 4.19 on page 66 we have

L1σ1ρ, . . . , Lnσnρ |= L′1ρ

and

L1σ1ρ, . . . , Lnσnρ |= �,

respectively, for every substitution ρ grounding the literals L1σ1, . . . , Lnσn.

We now let
[
L′1 · θ, . . . , L′k · θ, L′k+1 · θ

]
be the sequence at the root of a US-

proof with demodulation and assume the theorem holds for sequences up to

length k. Consequently there is a finite subset {D1 · τ1, . . . , Dm · τm} of D∞ such

that for all substitutions ρ grounding D1, . . . , Dm, L1σ1, . . . , Lnσn

D1ρ, . . . , Dmρ, L1σ1ρ, . . . , Lnσnρ |= L′kρ.
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Let Lk+1 · θ = (s[rσ] ' t) · θ be the conclusion of a demodulation inference be-

tween the literal closure Lk · θ = (s[l′] ' t) · θ and some demodulating literal clo-

sure (l ' r)σ · θ ∈ D∞. We have

(l ' r)σρ, (s[l′] ' t) ρ |= (s[rσ] ' t) ρ

for all substitutions ρ and therefore

(l ' r)σρ,D1ρ, . . . , Dmρ, L1σ1ρ, . . . , Lnσnρ |= L′k+1ρ.

A similar argument holds for the demodulation of a negative literal clo-

sure Lk+1 · θ = (s[rσ] 6' t) · θ and by induction we conclude that the theorem

holds for every US-proof with demodulation.

In contrast to Theorem 4.19, if the US-proof contains demodulation inferences,

the implication of the literal at the root by the literals at the leaves only holds

together with a subset of the demodulating inferences. Considering the special

grounding substitution ρ = ⊥ we arrive at a variant of Corollary 4.20 on page 67.

Corollary 6.11. Let L1 ·θ1, . . . , Ln ·θn be the literals at the leaves of a US-proof P

with redundancy elimination, where the root is a contradiction �. Let σ1, . . . , σk

be the respective P -relevant instantiators for the leaf literal closures. With some fi-

nite subset {D1 · τ1, . . . , Dm · τm} of D∞ the set {D1⊥, . . . , Dm⊥, L1σ1⊥, Lnσn⊥}
is unsatisfiable.

Proof. SinceD1ρ, . . . , Dmρ, L1σ1ρ, . . . , Lnσnρ |= � for each substitution ρ ground-

ing D1, . . . , Dm, L1σ1, . . . , Lnσn, we choose ρ = ⊥. Then, a contradiction follows

from {D1⊥, . . . , Dm⊥, L1σ1⊥, Lnσn⊥} and hence it is unsatisfiable.

We use the above corollary to prove that, as required, we can obtain proper

instantiators from a US-proof with demodulation.

Theorem 6.12. Let 〈K,L〉 be a persistent conflict and P be a US-proof with de-

modulation of a contradiction from L. At least one of the P -relevant instantiators

is proper.

Proof. As in Theorem 4.21 on page 68 we have that all Li⊥ ∈ L are true in the

model I i⊥ in all states i ≥ i0 from some i0 on. The same holds for each literal

closure (l ' r) · θ ∈ D. Since the US-saturation contains a contradiction, there is

a US-proof with demodulation with � at the root.
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Corollary 6.11 states that the set {D1⊥, . . . , Dm⊥, L1σ1⊥, Lnσn⊥} is unsatis-

fiable. If no relevant instantiator σ1, . . . , σn were proper, then for each 1 ≤ i ≤ n

we would have Liσi⊥ = Li⊥ and {D1⊥, . . . , Dm⊥, L1σ1⊥, Lnσn⊥} would be un-

satisfiable, since a contradiction can be derived from it. However, L is satisfiable

and each (l ' r) · θ ∈ D is true in the model I i⊥. Hence, there must be at least

one proper instantiator in σ1, . . . , σn.

With this theorem we can justify the following fair Inst-saturation process.

Relevant literal closures are partitioned into 〈N ,D〉 and this set is saturated

under inferences in the unit superposition calculus in a US-saturation process.

In addition, demodulation inferences are performed such that the conclusion re-

places the demodulated premise, while at the same time an instance of the de-

modulating equation is added to the Inst-saturation process. In each US-proof

with demodulation of a contradiction there is at least one proper instantiator,

hence instantiating the clause of a relevant literal at the leaf of a US-proof makes

the conflict irrelevant.

Lifting this US-saturation process from literal closures to first-order literals is

not complicated. The proof of Theorem 4.22 on page 72 uses the fact that a US-

proof on literal closures can be simulated by a US-proof on first-order literals. We

have already lifted the demodulation inference to first-order literals, showing that

the first-order conclusion makes each literal closure US-redundant. Together, a

variant of the lifting theorem 4.22 holds and we can generate instances for a fair

Inst-saturation process from US-proofs with demodulation of first-order literals.

Extending first-order clauses and literals with dismatching constraints is easy.

We have to note that demodulating equations cannot be constrained with dis-

matching constraints. The lifting in Lemma 4.27 on page 84 holds without mod-

ification.

In labelled calculi labels take the role of proofs and relevant instances are

extracted from there. It is not necessary to modify the extraction of relevant

instances from labels for the proofs of completeness in Theorem 5.2 on page 106

for set labels and Theorem 5.4 on page 118 for tree labels. Both refer to USD-

redundancy, which covers dismatching constraints and redundancy elimination

with demodulation, hence they do not need to be adapted.

We conclude that the labelled unit superposition calculi with demodulation

lead to a fair Inst-saturation process. Saturating the set of initially labelled literals

under unit superposition and equality resolution inferences and adding clause
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instances from labels of contradictions to the Inst-saturation process eventually

makes all persistent conflicts irrelevant. In the labelled calculi the merging and

demodulation inferences are available in order to eliminate redundancy, the latter

is only valid if an instance of the demodulating equation is added to the Inst-

saturation process.

In practice, every demodulation inference generates a new clause to be added

to the Inst-saturation process, which in turn results in a new literal in the

US-saturation process. Usually only few of the demodulation inferences per-

formed contribute to US-proofs of contradictions. Since for completeness it suf-

fices to make persistent conflicts in the Inst-saturation irrelevant, where most

of the instances of demodulating equations are not required, a lazy approach

to these instantiations is possible and beneficial. Moreover, in the incremental

Inst-saturation process the selection function can change, thus literals previously

selected are removed from the US-saturation process or dismatching constraints

block inferences. As discussed, in these cases parts of a literal label, corresponding

to a then redundant proof, can be eliminated and the instances from demodula-

tion inferences produced in those proofs are not required, either.

Lazy instantiation of demodulating equations can be uniformly integrated into

the instantiation process of labels of contradictions and benefit from redundancy

elimination in labels.

Definition 6.9 (Set Labelled Demodulation with Lazy Instantiation).

Demodulation

{l ' r · []} : l ' r L : s[l′] ' t
(σ)

{l ' r · σ} ∪ L : s[rσ] ' t

{l ' r · []} : l ' r L : s[l′] 6' t
(σ)

{l ' r · σ} ∪ L : s[rσ] 6' t

where for all grounding substitutions θ with dom (θ) = var ({lσθ, rσθ, s[l′]θ, rθ})

(i) lσ = l′,

(ii) l′ is not a variable,

(iii) lσθ �gr rσθ,

(iv) (s[l′] ' t) θ �gr

(l ' r)σθ,

(v) var(r) ⊆ var(l),

(vi) var ({l, r}) ∩
var ({s[l′], t}) = ∅.
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Definition 6.10 (Tree Labelled Demodulation with Lazy Instantiation).

Demodulation

l ' r · [] : l ' r T : s[l′] ' t
(σ)

l ' r · σ u T : s[rσ] ' t

l ' r · [] : l ' r T : s[l′] 6' t
(σ)

l ' r · σ u T : s[rσ] 6' t

where for all grounding substitutions θ with dom (θ) = var ({lσθ, rσθ, s[l′]θ, rθ})

(i) lσ = l′,

(ii) l′ is not a variable,

(iii) lσθ �gr rσθ,

(iv) (s[l′] ' t) θ �gr

(l ' r)σθ,

(v) var(r) ⊆ var(l),

(vi) var ({l, r}) ∩
var ({s[l′], t}) = ∅.

Since dismatching constraints are not compatible with demodulation, we mark

the closures from an instantiation of a literal label and only check dismatching

constraints in unit superposition and equality resolution inferences on unmarked

closures.

In Theorem 6.10 the substitution ρ for grounding the literals at the leaves of

a US-proof tree is arbitrary. The literals L1σ1, . . . , Lnσn at the leaves of the proof

tree and the instances of the demodulating equations D1, . . . , Dm are pairwise

variable-disjoint. Although in Corollary 6.11 all literals are grounded with the

substitution ρ = ⊥, we can choose any other substitution σ⊥ for literals in D
instead without losing generality of the theorem. Therefore, besides consider-

ing the dismatching constraint to be empty, literal closures from demodulation

inferences do not need to be treated different from other closures in labels and

it is in particular sound to instantiate the closure representing an instance of a

demodulator when instantiating a label.

Having derived a contradiction in a labelled unit superposition calculus with

the above demodulation inference rule, the relevant instances of the label also

contain the instances of demodulators to be added to the Inst-saturation process.

We therefore do not need to find separately instances of demodulating equations

and adding the instances only together with the relevant instanced from the label

of a contradiction prevents generating unnecessary instances of demodulating

equations.

With the above inference rules we conclude this chapter. We have introduced
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a demodulation inference rule for redundancy elimination, based on the non-

proper demodulation inference from Ganzinger and Korovin [2004]. In order to

allow proper substitutions in a demodulation inference, we need to generate an

instance of the demodulating equation in the Inst-saturation process. We have

lifted this approach to labelled calculi, where we can uniformly integrate the

instantiation of demodulating equations into the generation of relevant instances

from labels of contradictions. This lazy instantiation has the additional benefit of

avoiding unnecessary instances when a derivation does not lead to a contradiction

or a part of a label is eliminated.

Demodulation is only a valid simplification if the demodulating equation is a

literal from a unit clause. In the framework of the US-saturation process there is

a further simplification possible that is in practice particularly efficient together

with demodulation. Literals derived from literals in unit clauses make variants of

literals derived from non-unit literals redundant. In this way merging inferences,

where one set or tree labelled literal is in NL or NT and the second literal is

in DL or DT , respectively, are avoided. Literals in NL and NT subsume other

variants.
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Chapter 7

The iProver-Eq System

In the preceding chapters we have described the contributions of the thesis to the

theory of instantiation-based reasoning and the Inst-Gen-Eq calculus. All aspects

presented are implemented in the iProver-Eq1 system, which we describe in this

chapter and evaluate in the next.2

The iProver-Eq system is an experimental branch of the iProver system [Ko-

rovin, 2008], which is separately maintained. iProver treats equations only ax-

iomatically, iProver-Eq reasons on pure equational first-order logic with labelled

unit superposition calculi as described in this work. While iProver-Eq is an ex-

tension of the iProver system and reuses and refines the basic structure and code,

it does represent a significant development effort as this chapter details.

The implementation addresses the combination of three components:

(i) Deciding satisfiability of a ground abstraction by an SMT solver,

(ii) Literal selection on first-order clauses based on a model of the ground ab-

straction and

(iii) First-order equational reasoning on literals with a labelled unit superposi-

tion calculus and generation of instances from labelled contradictions.

Parts (ii) and (iii) represent the Inst-saturation and the US-saturation process,

respectively. Both saturation processes are based on the concept of the so-called

given clause algorithm. It has become the standard approach in saturation-based

theorem proving since it was made popular in two variants, both named after the

1iProver-Eq is available from http://www.cs.man.ac.uk/~sticksec/iprover-eq
2Parts of this chapter were published as Korovin and Sticksel [2010b]

159

http://www.cs.man.ac.uk/~sticksec/iprover-eq


160 CHAPTER 7. THE IPROVER-EQ SYSTEM

provers that first implemented them: the DISCOUNT loop by Denzinger et al.

[1997] and the Otter loop by McCune and Wos [1997]. Contemporary successful

theorem provers for first-order logic modulo equality employing a given clause

algorithm are, for instance, Vampire by Riazanov and Voronkov [2003], E by

Schulz [2002] and SPASS by Weidenbach et al. [2007].

A given clause algorithm saturates a set of clauses under inferences in the

following way. The current set of clauses is partitioned into two disjoint sets,

commonly called the active and passive clauses. Initially all clauses are passive

and the active set is empty. In one step of the saturation procedure, for some

clause from the passive set, called the given clause, all inferences with clauses in

the active set are performed and the conclusions are added to the passive set.

The given clause then becomes active and the process takes a new given clause

from the passive set until the passive set is empty. The invariant maintained

by the procedure is that the active set is saturated under inferences. If the

given clauses are taken from the passive clauses in a fair way, that is, every

clause becomes the given clause in some iteration of the procedure, the algorithm

implements a fair saturation process in the sense that every inference between two

clauses is performed eventually. It is possible to integrate redundancy elimination

strategies into the given clause algorithm and this is the main aspect variants of

the algorithm differ in.

The Inst-Gen-Eq method contains the nested Inst-saturation process and the

US-saturation process and iProver-Eq implements this nesting with two inter-

leaved given clause procedures we are calling the Inst-Gen-Eq-loop and the US-

loop in the following. The Inst-Gen-Eq-loop maintains an Inst-active and an

Inst-passive set of clauses, in the beginning the former is empty and the lat-

ter contains the entire input clause set S. In parallel the US-loop deals with a

US-active and a US-passive of labelled literals, both sets are initially empty.

Let us first sketch the Inst-Gen-Eq-loop (Figure 7.1), the US-loop and the

integration of ground solving before we give details about the implementation of

each component.

In every step the Inst-Gen-Eq-loop takes a given clause from the Inst-passive

set, selects one literal based on a model of the ground abstraction, adds the literal

with an initial labelling to the US-passive set and the given clause to the Inst-

active set. The invariant of the Inst-Gen-Eq-loop is that the selection function

on the Inst-active clauses is based on some model of the ground abstraction and
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Figure 7.1: The Inst-Gen-Eq-loop

each literal selected in an Inst-active clause is US-passive or US-active.

The US-saturation process in turn takes a given literal from the set of US-

passive literals, first adds the given literal to the US-active set and then performs

all unit superposition inferences between the given literal and US-active literals,

which now include the given literal itself. If an equality resolution inference can-

not be applied to a conclusion of a unit superposition inference, the conclusion

is added to the US-passive set. Otherwise, the relevant clause instances from the

label of the contradiction are added to the Inst-passive set and their abstractions

to the ground solver. In the US-loop the invariant is that the US-active literals

are closed under unit superposition inferences and relevant instances from each

contradiction resulting from an equality resolution with a literal in the US-active

set are in the Inst-passive or Inst-active set. Merging and demodulation infer-

ences for redundancy elimination are performed on the given literal, on UP-active

literals and on the conclusions of unit superposition inferences.

The iProver-Eq system interleaves the three components for Inst-saturation,

US-saturation and ground solving as described in Section 4.7. The input clauses

are abstracted and passed to the ground solver to check satisfiability. If the

ground solver finds the ground abstraction to be unsatisfiable the system termi-

nates with the result unsatisfiable. Otherwise, the Inst-Gen-Eq-loop processes a

fixed number of given clauses from the Inst-passive set, subsequently the US-loop

takes a fixed number of given literals from the US-passive set and returns to the

Inst-Gen-Eq-loop. After a fixed number of given clauses in the Inst-Gen-Eq-loop
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the ground solver is invoked to return an updated model of the ground abstrac-

tion. If both the Inst-passive and the US-passive sets are empty and the ground

abstraction is satisfiable, iProver-Eq returns with the result satisfiable.

We now separately turn to the three components, describe some details of

their respective implementations and highlight the contributions of this work to

the iProver-Eq system.

7.1 Ground Satisfiability Solving

The most visible change in the iProver-Eq system in the ground solving compo-

nent is the use of a solver for satisfiability modulo theories (SMT) instead of a

propositional satisfiability (SAT) solver. Since the ground abstraction has to be

considered modulo equality, a SAT solver is not sufficient and also the integration

of the solver has to be adapted.

The iProver-Eq system integrates a full SMT solver for ground equational

satisfiability, although SMT solving is more powerful and solvers have more fea-

tures than strictly necessary. Future work will extend the Inst-Gen-Eq calculus

to first-order reasoning modulo theories as proposed in Ganzinger and Korovin

[2006]. Since this requires ground solving modulo theories, the approach of this

work can be extended without much effort.

A central rationale behind the Inst-Gen(-Eq) method is to employ an off-the-

shelf tool for ground solving. However, only a few specialised tools for ground

solving modulo equality are available (DPT by Krstić and Goel [2007] and EufDpll

by Tveretina and Wesselink [2009]), while on the other hand SMT solving is a

highly active field of research. Theories of interest in the SMT community are

several variants of arithmetic (linear, real, integer, for example), bit vectors and

data structures like arrays. All theories include the core theory of equality and

speaking in SMT terminology we are interested in the theory of “unquantified

formulae over uninterpreted function symbols” (QF UF) [Barrett et al., 2010].

Stimulated by an annual competition (SMT-COMP 2005-2011, see Barrett

et al. [2008]) and by demand from applications, performance and ease of inte-

gration are of prime concern to developers of SMT solvers. Several stable and

mature tools have been developed and are available to solve the QF UF theory

as we require. In the first instance we have chosen the CVC3 solver [Barrett
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and Tinelli, 2007], since it serves as a reference implementation for the SMT-

LIB benchmark library and is freely available with an appropriate open source

licence. Nevertheless, the integration is modular enough to connect other SMT

solvers like OpenSMT [Bruttomesso et al., 2010], veriT [Bouton et al., 2009] or

Z3 [de Moura and Bjørner, 2008b] in further work.

The ground SMT solver has to provide the following operations.

Assert(C) Add the ground clause C to the solver.

Push()/Pop() Increase the level of the assertion stack (Push) and return to the

previous level (Pop), undoing all assertions made on higher stack levels.

CheckSat() Return whether the clause set is satisfiable and compute a model.

GetValue(L) Return the truth value of the ground literal L in the model com-

puted in the last CheckSat() operation.

The SMT solver is regarded as a black box and only used with these op-

erations, which are usually exposed in its API and also part of the command

language in the SMT-LIB v2.0 standard [Barrett et al., 2010]. It is expected that

the SMT solver provides a fast response to the operations Assert(C), Push(),

Pop() and LiteralValue(L), while CheckSat() is computationally expensive. The

next section discusses the ways the Inst-Gen-Eq-loop uses the SMT solver and

how the impact of the expensive CheckSat() operation is minimised.

7.2 Literal Selection on First-Order Clauses

The main purpose of the Inst-Gen-Eq-loop is the selection of literals in clauses and

the propagation of selected literals to the US-loop. A step in the procedure mainly

consists of taking a given literal from the Inst-passive set, selecting a literal based

on a model of the ground abstraction and adding the initially labelled selected

literal to the US-passive literals.

Checking satisfiability of the ground abstraction and computing a model is

an expensive operation for the SMT solver and, what is worse, a changed model

of the ground abstraction induces changes to the selection function and requires

a number of actions in the saturation processes. Selecting a different literal in

a clause removes the previously selected literal from the US-loop and causes all

inferences with this literal to become invalid. In turn new inferences become
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necessary when the newly selected literal is inserted into the US-passive set.

In order to ease the impact of these potentially significant consequences, the

Inst-Gen-Eq-loop takes a lazy approach to checking satisfiability and changing the

selection function, as long as possible both deferring the former and attempting

to preserve the latter.

Invoking the satisfiability check of the ground solver is only necessary if new

clauses have been added to the passive set. Since the ground solver works in

an incremental way, we can expect that most of the model remains identical to

the previous model and changes are only local. Further, for fairness of the Inst-

saturation process it is enough if the literal selection of the Inst-active clauses is

based on a model of the ground abstraction only eventually. It does not harm

soundness nor completeness to perform inferences with literals not actually se-

lected, that is, their ground abstraction is not true in the current model of the

ground abstraction. This allows to arbitrarily defer ground satisfiability checks

and in the Inst-Gen-Eq-loop CheckSat() in the SMT solver is only called in in-

tervals after a fixed number of given clauses has been taken from the Inst-passive

set.

For this reason, clause instances from contradictions in the US-loop are not

immediately added to the passive set, but to a separate “unprocessed” set of

clauses, such that no unprocessed clause is eligible to become the given clause.

An unprocessed clause instance is not in the ground abstraction, not for all literals

of the unprocessed clause there is a truth value defined in the model of the ground

abstraction, hence, in order to be able to select a literal, a CheckSat() operation

is necessary. Not inserting unprocessed clauses into the Inst-passive set and

deferring updating the ground abstraction with the unprocessed clauses until the

next scheduled CheckSat() can save a number of such expensive computations of a

ground model, which is done en bloc without losing fairness of the Inst-saturation

procedure.

When the model of the ground abstraction has changed, it is possible that for

some clause in the Inst-active set the selection is not based on the new model of the

ground abstraction. Nevertheless, we defer moves to the Inst-passive set necessary

due to changes in the literal selection of Inst-active clauses until saturation has

been achieved, that is, the Inst-passive set is empty. As before, we assume that

changes in the model of the ground abstraction are limited to few literals and

most of the selection remains constant.
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Models of the ground abstraction are in general not unique and since the

ground solver in our black box view non-deterministically chooses a model, we

attempt to influence the model search in our favour through the mechanism of

the Push() and Pop() operations in two ways.

Upon saturation we have to move Inst-active clauses to Inst-passive, where

the selection is not based on a model of the ground abstraction. In order to

minimise the number of those moves we do not rely on the model as calculated

by the solver, but search for a maximal satisfiable set of literals in the following

way. We increment the assertion stack level with a Push() operation and assert

a selected literal. If CheckSat() finds the ground abstraction to be satisfiable,

we Push() again and assert the next literal. If CheckSat() returns unsatisfiable,

we decrement the stack level, backtracking the assertion of the last literal and

move the clause the literal is selected in to Inst-passive. When all selected literals

have been asserted, we have moved only clauses where literals were selected that

cannot be in a ground abstraction together with the literals that remained in

clauses kept Inst-active. To clean up we decrement the assertion stack level to

the initial level, backtracking all literal assertions.

Due to the moves of Inst-active clauses back to Inst-passive, it is possible

that a given clause has been Inst-active before. Instead of selecting a literal

which is true in the ground abstraction, we try to influence the computed model

in a similar way as described above. We increment the assertion stack, assert

the literal that was previously selected and check the satisfiability of the ground

abstraction with the literal. If there is a model such that the literal is true,

we backtrack the assertion of the literal and keep the selection. If the ground

abstraction together with the literal is unsatisfiable, we backtrack the assertion

of the literal and have the solver compute the previous model once again. We

then select a different literal that is true in the ground abstraction.

Invoking the ground solver only in larger intervals, keeping new clauses in a

separate set of unprocessed clauses and trying to preserve the previous selection

of a clause are techniques already implemented in the iProver system that had to

be only slightly modified for iProver-Eq. However, in the non-equational case it

is not possible that the selected literals are inconsistent upon saturation if it is

ensured that the selection function does not select a literal and its complement.

Checking the selection function for inconsistency upon saturation is necessary in

iProver-Eq and our evaluation in the following Chapter 8 shows its efficiency.
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To conclude the presentation of the Inst-Gen-Eq-loop we mention heuristics in

the selection process and techniques for simplification of clauses that were already

present in the iProver system and that persist in the iProver-Eq system.

Choosing the given clause from the Inst-passive set has to be fair, that is, every

clause has to become given eventually. However, there are clauses that are more

promising to lead to a refutation of the input clause set than others. Therefore,

iProver and iProver-Eq maintain the Inst-passive clauses in two priority queues

from which a given clause is alternatively chosen in a fixed ratio. The first priority

queue ensures fairness of the saturation process and clauses are ordered by their

age, that is, the point in time when they were generated. Initially all input

clauses are in the queue and instances from conflicts are appended to the end of

the queue. From clauses of the same age, the smallest clause is selected first. The

second queue can follow an arbitrary heuristic, by default clauses are preferred

that are closer to some distinguished conjecture clauses in the input, that contain

a symbol that occurs in these conjecture clauses and that have fewer variables.

Since the clause length remains constants when instantiating, it is vital for

the success of the iProver system to employ methods to obtain shorter clauses.

These methods have a similar beneficial effect in the iProver-Eq system although

they have not been adapted to equational reasoning. The technique of global

propositional subsumption described in Korovin [2009] uses the ground solver to

shorten ground and non-ground clauses. The iProver system further contains a

prover using the non-equational resolution calculus, which is run in parallel to

the instantiation process, and adds clauses to the ground solver that enhance the

global propositional subsumption. Another reduction of clause lengths is achieved

by ground splitting clauses. These techniques for simplifying clauses are applied

to the given clause before selecting a literal.

7.3 Labelled Unit Superposition

We now turn to the implementation of the US-saturation process that was in-

troduced and proved complete in Chapter 4, extended to a labelled approach in

Chapter 5 and enhanced with redundancy elimination inferences in Chapter 6.

The US-loop is a variant of a given clause algorithm and maintains a set of

US-active and a set of US-passive literals. Both sets are maximally reduced with

respect to merging inferences, hence there is at most one literal variant of each
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literal in the US-loop. In the implementation, potential duplication of storing a

US-passive and a US-active variant is eliminated by labelling a literal with both

an active and a passive label. When a new labelled literal is to be added to the

US-passive or US-active set and a variant of the literal is in the US-loop, its label

is merged with the active or passive label of the single variant of the literal in the

US-loop.

The input to the US-loop are initially labelled literals selected in clauses by

the Inst-Gen-Eq-loop. Demodulation and equality resolution inferences are al-

ways applied eagerly to a literal in order to detect contradictions early and to

keep the number of literals small. Hence, a labelled literal propagated from the

Inst-Gen-Eq-loop is only added to the US-passive set after it has been demodu-

lated with equations from the US-active set and if no equality resolution inference

can be applied. In the latter case, relevant instances are generated from the label

of the contradiction and passed to the Inst-Gen-Eq-loop, where they are stored

in the unprocessed clause set.

After the Inst-Gen-Eq-loop has selected literals in a fixed number of clauses

and initially filled the US-passive set, control is handed over to the US-loop, where

a fixed number of US-passive literals is processed. If the US-passive set becomes

empty, the US-loop returns to the Inst-Gen-Eq-loop, since Inst-saturation has

not been achieved unless the Inst-passive set is also empty.

As in the Inst-Gen-Eq loop, there are two priority queues, which the given

literals are alternatively chosen from with a fixed ratio. Again, the first queue

of literals is sorted by age and draws are resolved by considering smaller literals

first. The age of a selected literal is equal to the age of the clause it is selected in,

the age of a literal derived in a unit superposition inference from two premises is

the age of the oldest premise incremented by one. Simplification by demodulation

does not increment the age of the demodulated literal and when merging literal

variants the age of the conclusion is the least age of the two variants. Therefore,

the first priority queue ensures fairness of the procedure, since no literal is chosen

as the given literal before all literals it is derived from have been taken.

The second priority queue prefers literals with characteristics that are ex-

pected to produce contradictions earlier and to yield smaller relevant instantia-

tors. By default, the priority queue is ordered by a lexicographic combination of

the literal sign, preferring negative literals, groundness, preferring ground literals,

the number of variables and the number of symbols, preferring smaller literals in
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both cases.

Literals in the US-active set are not explicitly listed, but stored in term indexes

for efficient retrieval of unifiable literals and subterms, see Graf [1996] or Sekar

et al. [2001]. iProver-Eq reuses and adapts the implementation of non-perfect

discrimination trees in iProver. A discrimination tree is a data structure similar

to a trie used for string search and the main feature is that common prefixes of

terms are shared. A term index consists of one discrimination tree that contains

all terms it indexes. Querying a perfect discrimination tree finds all terms stored

in the tree that are unifiable with the query term. In non-perfect discrimination

trees all variables are considered equal and the query finds only terms that are

potentially unifiable, thus for each candidate term an additional check is necessary

if it is actually unifiable with the query term. Since matching is a subproblem of

unification with a small modification a term indexing discrimination tree can be

used to query terms matching a given term or terms that the given term matches.

The following three term indexes are maintained:

Literal index If a positive US-active literal l ' r is orientable, that is, lθ �gr rθ

for each grounding substitution θ, only the left-hand side l is stored in the

literal index. Otherwise, there are grounding substitutions θ and ρ such

that lθ �gr rθ and rρ �gr lρ, and both sides l and r are stored in the index.

Demodulation index The demodulation index is similar to the literal index,

but it only contains positive equations that can be used as demodulating

equations, that is, literals from unit clauses. Since demodulating equations

have to be orientable, only the greater left-hand side terms of the equations

are in the index.

Subterm index For every positive literal l ' r and every negative literal l 6' r

every subterm of l and r is added to the index, the terms l and r themselves

are also in the subterm index.

The term indexes facilitate the search for candidates for forward and back-

ward of demodulation and unit superposition inferences. Every new literal is

demodulated with US-active equations stored in the demodulation index. In this

forward demodulation we try to demodulate each subterm of the new literal in a

bottom-up manner starting with the deepest subterms. For each subterm l′ of the

literal, which is not a variable, we query the demodulation index to find a demod-

ulating equation l ' r where l matches l′ with a substitution σ. We then perform



7.3. LABELLED UNIT SUPERPOSITION 169

the demodulation inference, replacing the subterm l′ with the term rσ and con-

tinue demodulating other subterms until we ultimately attempt to demodulate

the literal itself. Since we keep the demodulating equations in the US-active set

maximally reduced, the demodulation of a term is unique and we can use caching

to store and even quicker retrieve the demodulation of a term, without the need

to query the index for each position in the term.

In order to keep the set of US-active demodulating equations interreduced, we

have to employ backward demodulation if a new demodulating equation l ' r is

added to the US-active set. We extend backward demodulation and reduce not

only demodulating equations but in addition each US-active literal. We query

the subterm index for literals containing a subterm l′ that the left-hand side l of

the new demodulating equation can be matched to with a substitution σ. We

then demodulate each literal, replacing the subterm l′ with the term rσ.

In order to saturate the US-active set under unit superposition inferences we

have to apply inferences between the given literal and literals in the US-active

set forward and backward in the above sense and in a similar way. In a backward

superposition the given literal is the left premise and therefore has to be a positive

equation l ' r. We query the subterm index for literals containing a subterm l′

unifiable with l and perform the unit superposition inference if the side conditions

are satisfied. If the equation in the given literal is not orientable, that is, there

are substitutions θ and ρ such that lθ �gr rθ and rρ �gr lρ, we also search for

literals with a subterm l′ unifiable with the right-hand side r of the equation.

Forward unit superposition is applicable for positive and negative given lit-

erals, for each subterm l′ we query the literal index for equations l ' r unifiable

with l′. Since the literal index contains the left-hand side of each US-active

equation and additionally the right-hand of unorientable equations, one query is

sufficient. If the side conditions of the unit superposition inference are satisfied

for the given literal and the US-active equations retrieved from the index we

perform the inference.

Figure 7.2 gives an overview of the complete US-loop, showing in particular

where simplification by demodulation is performed.

Before an initially labelled literal that is propagated from a selection in the

Inst-Gen-Eq loop is inserted into the US-passive set, it is demodulated using

the demodulation index of US-active demodulating equations. If an equality

resolution inference is applicable to the simplified selected literal, the relevant
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Figure 7.2: The US-loop

instances from the contradiction derived in the inference are propagated back to

the unprocessed set of the Inst-Gen-Eq-loop. If a variant of the literal is US-

active or US-passive, the label of the simplified selected literal is merged with the

possibly empty passive label. Otherwise, the selected literal is inserted into the

US-passive set and into the two priority queues the given literal is taken from.

An iteration of the US-loop takes a literal from one of the priority queues,

honouring the fixed ratio to maintain fairness. Similar to the way a selected literal

is treated, the given literal is demodulated as far as possible and if an equality

resolution inference can be applied, the relevant instances are propagated to the

Inst-Gen-Eq-loop. In this case the passive label is emptied and the next iteration

of the US-loop starts.

Otherwise, the passive label is merged with the possibly empty active label.

If the active label is unchanged after merging the passive label, the US-active

labelled literal is equal up to renaming and subsumes the given labelled literal.

Since this is redundant we continue with the next iteration of the US-loop without

further inferences.

The given literal is now US-active and we perform all forward and backward
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unit superposition inferences between the given literal with the passive label and

US-active literals with the active label, which also enables inferences with the

given literal itself. Each derived conclusion is demodulated, here not by querying

the demodulation index but using the cached demodulations, since a significant

number of conclusions is generated and accessing the demodulation index for

each is computationally too expensive. Unless an equality resolution can be

applied to the conclusion, in which case relevant instances of the label of the

contradiction are propagated to the Inst-Gen-Eq-loop, the simplified conclusion

is either added to the US-passive set and the priority queues or its label is merged

with the passive label of an already US-passive variant. Since US-passive literals

are demodulated again when they become the given literal, it is sufficient to

approximate demodulation using caching. However, it is essential to demodulate

conclusions to a certain degree, since this drastically reduces the number of US-

passive literals.

We finish the description of the US-loop with remarks on the implementation

of literal labels. Literal labels contain non-ground closures and each such closure

is given a sequential integer number. Set labels are treated with a built-in im-

plementation of sets. For tree and OBDD labels, in order to conserve memory,

we maximise structure sharing with the mechanism of hash-consing described in

Filliâtre and Conchon [2006], a familiar approach to structure sharing in func-

tional programming.

Common subtrees of tree labels are shared across different labels and also

within one tree label if possible. Maximal sharing of subtrees or subgraphs is a

key implementation technique to achieve reduced OBDDs and we base our OBDD

implementation on the one by Filliâtre and Conchon [2006].

We have implemented two additional operations with OBDDs that are neces-

sary in our labelling approach. In order eliminate a closure from an OBDD we

eliminate all nodes labelled with the contradiction by replacing the edge from the

parent node with the edge to the low node and subsequently recursively reduce

the OBDD.

When applying a substitution to an OBDD the ordering of the OBDD can

become violated and it is also possible that a node occurs twice on a path from the

root. Therefore we recurse into the OBDD, ordering the nodes in a bubblesort-

like way bottom-up from the terminal nodes. We merge nodes that occur twice

on a path in this process. The assumption is that applying the substitution to an
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OBDD has only a local effect such that the bubblesort approach is advantageous

over other sorting algorithms.

7.4 Using the System

iProver-Eq is implemented in the functional language OCaml and uses CVC3 as

ground SMT solver via its C/C++ API. Given a problem that does not contain

equations it falls back to the Inst-Gen calculus of the iProver version it was forked

from. Since no SMT solver is required in this case, the SAT solver MiniSat is

used for ground solving instead.

The input to iProver-Eq are files in TPTP format, in either first-order form

(FOF) or conjunctive normal form (CNF). Clausification of FOF problems is

delegated to the Vampire theorem prover.

After installation and compilation the executable file iprover-cvc-eq-nc is

generated. The behaviour of the prover can be changed through close to 100

command line options, whose defaults are tuned to the TPTP benchmark library.

We list the most relevant settings for features discussed in this work. All options

can be obtained by calling iprover-cvc-eq-nc --help.

- -time out real 〈int〉 Time limit for iProver-Eq in seconds

- -up literal labels 〈set | tree | bdd〉 The type of literal labels

- -up superposition 〈bool〉 Unit superposition (true) or unit paramodulation

(false), where condition (iv) s[l′]σθ �gr tσθ is not enforced on the right-

hand side (Definition 4.24 on page 78)

- -up orient after subst 〈bool〉 Orientability of the premises with the substi-

tution σ applied (true) as in conditions of (iii) and (iv) in Definition 4.24 or

weakening orientability (false) without regard to σ, that is, only lθ �gr rθ

and s[l′]θ �gr tθ for some grounding substitution θ.

- -up unit lit proof 〈bool〉 Subsumption by unit clauses (Section 6.2)

- -up use demod 〈bool〉 Demodulation with equations from unit clauses (Sec-

tion 6.3)

- -up demod proper 〈bool〉 Proper matching substitutions in demodulation

(true) or only non-proper demodulation (false)
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--up demod concl cached 〈bool〉 Cached demodulation for conclusions (true)

or full demodulation with demodulation index (false)

--comb up mult 〈int〉 Number of given literals to process in the US-loop before

switching to the Inst-Gen-Eq-loop

--comb inst mult 〈int〉 Number of given clauses to process in the Inst-Gen-Eq-

loop before switching to the US-loop

--comb res mult 〈int〉 Number of given clauses to process in the resolution

prover before switching to the Inst-Gen-Eq reasoning

--inst solver per active 〈int〉 Number of given clauses in the Inst-Gen-Eq-

loop before invoking the ground solver

--up pass queue1 mult 〈int〉 Ratio for selection of US-passive literals from

the first priority queue in the US-loop

--up pass queue2 mult 〈int〉 Ratio for selection of US-passive literals from

the second priority queue in the US-loop

--up pass queue1 〈str〉 Configuration of the first priority queue in the US-loop

--up pass queue2 〈str〉 Configuration of the second priority queue in the US-

loop

--inst pass queue1 mult 〈int〉 Ratio for selection of Inst-passive clauses from

the first priority queue in the Inst-Gen-Eq-loop

--inst pass queue2 mult 〈int〉 Ratio for selection of Inst-passive clauses from

the second priority queue in the Inst-Gen-Eq-loop

--inst pass queue1 〈str〉 Configuration of the first priority queue in the

Inst-Gen-Eq-loop

--inst pass queue2 〈str〉 Configuration of the second priority queue in the

Inst-Gen-Eq-loop

--inst loop 〈lazy | lazy with renewal | lazy with eager renewal〉 Type of

Inst-Gen-Eq-loop: no moving of clauses with inconsistently selected liter-

als to Inst-passive (incomplete), move clauses upon saturation (default) or

move clauses after each CheckSat()



174 CHAPTER 7. THE IPROVER-EQ SYSTEM

- -inst lit sel 〈str〉 Configuration of literal selection in clauses

After iProver-Eq has terminated, timed out or is interrupted, statistics are

output that can be used to explain the result on the particular problem. We list

the most relevant statistics for this work.

prop solver calls Number of calls of to CheckSat()

prop solver time sum Accumulated time in seconds taken by the ground solver

inst num of clauses Number of clauses in the Inst-Gen-Eq-loop

inst num in active Number of Inst-active clauses

inst num in passive Number of Inst-passive clauses

inst num in unprocessed Number of unprocessed clauses

inst num of loops Number of iterations of the Inst-Gen-Eq-loop

inst num of selection renewals Number of times the Inst-passive set became

empty and clauses with inconsistently selected literals were moved to Inst-

passive

inst num moves active passive Number of Inst-active clauses moved to Inst-

passive due to an inconsistently selected literal

num of splits Number of ground splits of given clauses

prop fo subsumed Number of propositional subsumptions of a given clause

up num of loops Number of US-loop iterations

up num of literals Number of literals in the US-loop

up num in active Number of US-active literals

up num in passive Number of US-passive literals

up given demodulated Number of given literals simplified by forward demod-

ulation

up active demodulated Number of active literals simplified by backward de-

modulation with the given literal
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up conclusions demodulated Number of conclusions simplified by forward

demodulation

up input demodulated Number of selected literals from the Inst-Gen-Eq-loop

simplified with forward demodulation

up inferences Number of unit superposition inferences

up tautologies Number of tautologies derived

up contradictions Number of equality resolution inferences

up eq orient after subst Number of inferences with left premises only ori-

entable after application of the substitution in an inference and blocked

by condition (iii) in Definition 4.24 on page 78

up lit orient after subst Number of inferences with right premises only ori-

entable after application of the substitution in an inference and blocked by

condition (iii) in Definition 4.24 on page 78

up dismatched inferences Number of conclusions of unit superposition infer-

ences blocked by dismatching constraints

up dismatched literals Number of given literals blocked by dismatching con-

straints

up dismatched contradictions Number of equality resolutions blocked by dis-

matching constraints

up closures in bdd labels Number of closures in OBDD labels

up nodes in bdd labels Number of distinct nodes all OBDD labels
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Chapter 8

Evaluation

In this chapter we present an empirical evaluation of the iProver-Eq system.

We are in particular interested in validating the contributions of this work and

therefore focus on the labelled calculi, redundancy elimination with unit clauses

and the SMT solver for ground satisfiability modulo equality.

The evaluation of the features of iProver-Eq is based on the TPTP benchmark

library, which we introduce first. We have used a cluster of Intel Xeon Quad Core

machines with 2.33GHz and 2GB of memory limit and ran each problem for at

most 120 seconds.

We also report on the results of the CADE Automated Theorem Prover Sys-

tem Competition (CASC) iProver-Eq recently participated in and show how the

system compares with state-of-the-art systems and in particular the implemen-

tations of other instantiation-based methods.

8.1 The TPTP Benchmark Library

The Thousands of Problems for Theorem Provers (TPTP) problem library [Sut-

cliffe, 2009] is a collection of literally thousands of benchmark problems in first-

order logic that has become the de facto standard set of test problems for evalu-

ation of automated theorem proving. Since the first release in 1993 it has contin-

ually received relevant new problems from the automated reasoning community,

contributed both from developers of automated reasoning systems as well as from

a large variety of applications. The problems are formulated in a common lan-

guage that has become a standard by itself and is recognised by most theorem

provers, with iProver-Eq being no exception. The benchmark library is actively

177



178 CHAPTER 8. EVALUATION

curated and the problems form the basis of the annual CADE Automated Theorem

Prover System Competition (CASC) [Sutcliffe and Suttner, 2006].

TPTP problems are classified in a domain structure according to their subject

area, which exhibits a diversity of backgrounds, such as mathematics, including

problems from algebra and geometry, software and hardware verification and

knowledge representation and reasoning. Since iProver-Eq is meant to be a gen-

eral purpose theorem prover and the TPTP in its largest part is made up of

problems from relevant application domains for automated reasoning, we base

the evaluation of iProver-Eq on the TPTP benchmark library.

Our results were obtained in compliance with the guidelines for use of the

TPTP as given in Sutcliffe [2009]. We have used the TPTP in version 5.1.0 and

have not changed the problems from the distribution. iProver-Eq does not use

other information than the formulae of the problems and in particular does not

make use of information in the problem headers.

The TPTP library contains 14 771 problems in plain first-order logic syntax,

of those there are 10 945 problems (74%) with at least one equation and 2 176

problems (15%), which consist entirely of equations. Another subclass are unit

equational problems, where all clauses consist of exactly one positive or negative

equation, overall 1 092 problems (7%).

For the evaluation in this chapter we focus on 10 049 equational problems,

leaving out a number of extremely large problems like those from the Cyc TPTP

Challenge Problem Set. Each such problem includes the entire OpenCyc knowl-

edge base of about 3 340 000 axioms. We do not expect to solve these problems,

since already parsing and loading the axioms requires a different approach and

none of the problems relies on equational reasoning, although the equality pred-

icate occurs.

Problems are presented in one of two syntactical forms: first-order form

(FOF), where a problem consists of a list of quantified first-order formulae, and

clausal normal form (CNF), where a problem is given as a set of clauses. The lat-

ter problems can be processed by iProver-Eq directly, FOF problems are passed

to the Vampire system for clausification into CNF form. The 10 945 equational

problems are almost evenly split into 5 459 FOF problems and 5 486 CNF prob-

lems.

A problem is either satisfiable or unsatisfiable, while the satisfiability of some

problems that have never been solved by a theorem prover is considered to be
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Figure 8.1: Distribution of problem ratings among the 10 945 equational problems
of the TPTP v5.1.0 (graph adapted from Sutcliffe [2009])

unknown. Satisfiability of the equational problems is unevenly distributed, with

9 110 of 10 945 problems (83%) being unsatisfiable and only 939 (9%) satisfiable

problems. It is unknown whether the remaining 896 problems (8%) are satisfiable.

Each problem is ranked with a difficulty rating between 0 and 1. This rating

is calculated by an algorithm taking into account the number of state-of-the-

art theorem provers able to solve the problem, see Sutcliffe and Suttner [2001].

Generally speaking, a problem with a rating of 0 is solved by all provers and con-

sidered easy, while a 1-rated problem is not solved by any prover and considered

difficult. Since a version of iProver-Eq with only minor differences to the version

used in this chapter has participated in the problem rating for the TPTP version

5.1.0, it is not expected that new 1-rated problems are solved. Figure 8.1 shows

the distribution of the difficulty ratings among the equational problems. Apart

from the longer tails of easy and difficult problems the middle difficulty ratings

are rather uniformly distributed.

8.2 Set, Tree and OBDD Labels

We have presented labelled unit superposition calculi in three variants in Chap-

ter 5. Set labels have a simple structure and are in a natural normal form, such

that equivalence up to renaming of two labelled literals can easily be decided.

However, elimination from set labels is only approximate and not all redundant
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Problems solved
not

solved
fastest

set 2 737 93 1 082
tree 2 643 187 1 237
OBDD 1 383 1 447 511

set tree

OBDD

187 93

1167

1383

Figure 8.2: Comparing labels by the number of solved problems out of 10 049
in total: set labels solved 2 737 problems and were fastest on 1 082 problems,
while 93 problems were solved only with other labels. OBDD labels solved 1 383
problems, all of which were also solved by set and tree labels, while 1 167 problems
were solved by set and tree labels, not by OBDD labels.

closures can be removed from a set label. The precise elimination of redundant

closures is the strength of tree labels, but since tree labels are not produced in a

normal form, labelled literals equal up to renaming are detected only in simple

cases. In order to combine precise redundancy elimination and normal forms, we

have introduced OBDD labelled unit superposition, which has the disadvantage

of higher computational complexity.

Figure 8.2 illustrates the result of running iProver-Eq on the 10 049 selected

problems from the TPTP for at most 120 seconds with set, tree and OBDD

labelled unit superposition, enabling simplifications by demodulation and sub-

sumption by literals from unit clauses. In total 2 820 problems were solved within

the time limit by at least one label implementation. With set labelled unit su-

perposition 93 problems were missed and tree labelled unit superposition could

not solve 187 problems. OBDD labelled unit superposition solved only a subset

of the problems that both set and tree labelled unit superposition could solve.

Figure 8.3 gives a breakdown of the number of solved problems by rating. It

shows that for low ratings the numbers of successfully solved problems are nearly

identical in the set and tree labelled implementations. Set labels initially have

a minor advantage that accumulates towards more difficult problems. However,

we remark that the problems solved with set labels are not a superset of the

problems solved by tree labels. As mentioned above, there is a significant number

of problems solved with tree labels and not with set labels and vice versa. Looking

at the relative number of problems set and tree labelled literals solved for different

ratings, we find that these figures to be similar. For each problem rating the
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Figure 8.3: Number of problems with a rating less than or equal to a given rating
solved within the time limit.
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relative number of problems solved with set and tree labels are about equal,

hence it is not the case that one of the labels had an advantage for easier or more

difficult problems.

The figure also shows that OBDD labels were only successful on easier prob-

lems and not many further problems were solved for higher ratings. As we have

already indicated, the problems solved with OBDD labels were in fact a subset

of both the problems solved with set labels and with tree labels.

Despite the fact that OBDD labels provide a normal form, efficient checking

for label equivalence and precise elimination of redundancy, in our experiments

they remained considerably weaker than trees and sets. Their performance is

mainly hit by the effort spent building labels, which can become rather large. In

the problems that could be solved, OBDDs were well-behaved so that the number

of nodes was in most cases much less than quadratic in the number of variables,

that is the number of closures in labels. Problems that were not solved in the time

limit mostly had either a large number of closures (up to 50 000) or the Boolean

structure had to be represented with a large number of nodes (many with several

millions).

The picture changes when we compare the time it takes to solve problems

with different labels. We find that set labels were fastest on only 1 082 problems,

whereas tree labels came first on 1 237 problems. Of the 1 383 problems that could

be solved with OBDD labels, they were competitive and solved 511 problems

faster than either set or tree labels. We have that 40% of the problems solved

with set labels were solved faster than any other label, of the problems solved

with tree labels 47% were fastest and among the problems solved with OBDD

labels 37% were not solved faster by set or tree labels.

Figure 8.4 shows how the fastest runtime relates to the difficulty ratings of the

problems. On easy problems there is almost a draw between set and tree labels

with a slight advantage for the latter. The gap widens when considering more

difficult problems. Set and tree labels were superior to OBDD labels in terms of

solved problems and therefore also in terms of problems solved faster.

Let us pairwise compare the label implementations with the runtimes of prob-

lems in Figure 8.5. The plots are on a logarithmic scale, each point corresponds

to a problem solved in both label implementations. A point on the diagonal is a

problem with equal runtime in both labels, a point above the diagonal is solved
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Figure 8.5: Logarithmic scatterplots for the runtimes of problems solved within
the time limit of 120 seconds in both label implementations. Each data point
below the diagonal line in the first plot represents a problem that was solved
faster in tree labelled unit superposition than in set labelled unit superposition,
greater distances from the diagonal mean a greater runtime difference. The dotted
lines in parallel to the diagonal mark areas where runtimes differ by more than a
factor of 2 and 5, respectively. In the top plot a plus (+) marks an unsatisfiable
problem and a cross (×) stands for a satisfiable problem.
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Solved faster set tree

all 1 133 1 417
unsatisfiable 1 007 1 299
satisfiable 126 118

Solved faster
by factor

set tree

2 60 149
5 27 58

Table 8.1: Breakdown of the 2 550 problems solved within the time limit with
both tree and set labels. The table on the left shows the number of problems
solved faster with set than with tree labels, and vice versa, by the satisfiability
of the problem. The table on the right counts the number of problems where the
runtime with tree labels is greater than the runtime with set labels by more than
factors of 2 and 5 and vice versa.

faster by the label implementation denoted on the bottom X-axis, a point be-

low the diagonal is solved faster by the label implementation denoted at the left

Y-axis.

From the top plot in Figure 8.5 we can deduce that tree labels speeded up

solving problems often significantly. Table 8.1 summarises the numbers of prob-

lems contained in the figure. We find tree labels to be faster than set labels in the

majority of cases in total and for unsatisfiable problems. Further, even for longer

runtimes there were 149 and 58 problems that tree labels solved faster by a fac-

tor of 2 and 5, respectively, while set labels had an advantage of this magnitude

only for 60 and 27 problems, respectively. If we consider satisfiable problems, the

picture changes and set labels are faster than tree labels on 126 problems, while

tree labels solve only 118 problems in a shorter time. This can be explained by

the normal form of set labels, which enables finding more literals to be equal up

to renaming than tree labels, thus the set of literals to become saturated earlier.

However, in absolute numbers neither set nor tree labels exhibit differences in

runtimes of more than 50%.

The plots comparing OBDD labels with set and tree labels show most of the

data points close to the diagonal, indicating that the advantage of OBDD labels in

absolute numbers is not great. However, it has to be noted that the plots contain

significantly less problems than the plot above and many problems tackled with

OBDD labels fail due to the memory limit.

We report a final observation on the number of problems solved by considering

satisfiable and unsatisfiable problems separately. Set labels solved 27% of the

9 110 unsatisfiable problems and 26% of the 939 satisfiable problems, while tree

labels solved about 26% in both cases. Contrary to these nearly uniform success
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rates across satisfiable and unsatisfiable problems, OBDD labels succeeded on

15% of the unsatisfiable problems, but this rate dropped to 3% on satisfiable

problems. For a satisfiable problem the set of labelled literals has to become

saturated under inferences, which in the case of OBDD labels can consume a lot

of memory. OBDD labelled unit superposition reaches the memory limit before

saturation and aborts.

The results so far confirm our expectations about the performance of the

different label structures. Due to the natural normal form in set labels there are

more problems solved overall, whereas the precise elimination of redundancy gives

tree labels an advantage when runtime is considered. OBDD labels lag behind,

because computing a normal form of a Boolean formula is hard. If we double

the time limit from 120 seconds to 240 seconds, we observe that 51 problems are

solved with OBDD labels in addition to the 1 383 problems solved before. These

contain 10 problems not solved with set or tree labels within 120 seconds, of

which one problem remains unsolved even after 240 seconds. In our experiments

most of the unsuccessful attempts to solve a problem with OBDD labels were

terminated due to the memory limit. Memory was not a big issue for set or tree

labels, where the majority of unsuccessful attempts of a problem were aborted

when the time limit was reached.

8.3 Simplification with Unit Clauses

In Chapter 6 we have enhanced labelled unit superposition calculi with two meth-

ods for redundancy elimination. We have defined a demodulation inference rule

and subsumption of labelled literals by labelled literals derived purely from literals

in unit clauses.

In this section we evaluate the two simplification techniques within set and tree

labelled unit superposition, we do not consider OBDD labels any further here.

We ran iProver-Eq again on the 10 049 selected TPTP problems with a time

limit of 120 seconds, once with set labels and once with tree labels, each in a first

round without demodulation and subsumption, afterwards with demodulation

and subsumption separately enabled and finally with both demodulation and

subsumption as in the previous section.

Without subsumption by literals from unit clauses, demodulation only had a

mildly positive effect in both set and tree labelled unit superposition. Set labelled
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Figure 8.6: Unit superposition without subsumption by literals from unit clauses.
The top graph compares the runtimes of problems solved with set labelled unit
superposition with and without demodulation, the bottom graph shows the same
for tree labels. The graphs are on a logarithmic scale, the dotted lines in parallel
to the diagonal mark areas where runtimes differ by more than a factor of 2 and
5, respectively. A plus (+) marks an unsatisfiable problem and a cross (×) stands
for a satisfiable problem.
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unit superposition solved 2 356 problems both with and without demodulation,

but demodulation enabled solving three more difficult problems that were not fin-

ished in the time limit without demodulation, while losing three easier problems

solved before. With tree labels the situation is similar: without demodulation

2 281 problems were solved, switching on demodulation succeeded on an addi-

tional four slightly higher rated problems and lost three easier problems. The

graphs in Figure 8.6 show a comparison of the runtimes with and without de-

modulation for set and tree labels, respectively. The performance of demodulation

did not depend on the satisfiability of the problem.

A drastic improvement can be seen when enabling subsumption by literals

from unit clauses. There were 435 (set labels) and 404 (tree labels) new prob-

lems solved that were not solved without subsumption, neither with nor without

demodulation. On the other hand, 57 (set labels) and 46 (tree labels) problems

were solved only when subsumption was disabled and 2 302 (set labels) and 2 239

(tree labels) problems were solved both with subsumption enabled and without.

However, the picture is not as clear when we compare the runtimes of the prob-

lems solved in Figure 8.7. Some problems saw a speed up by a factor greater

than two (62 with set labels and 57 with tree labels) while a smaller number

was slowed down by factors greater than two (36 for set labels and 25 for tree

labels). Overall, the runtime decreased and increased for about the same number

of problems. As before, the satisfiability of the problem had no influence.

Without demodulation we find a similar situation when enabling or disabling

subsumption with literals from unit clauses. In set labelled unit superposition

there were an additional 203 problems solved and 59 problems missed, the num-

bers for tree labels were 213 and 45. The comparison of the runtimes in Figure 8.8

shows the effect seen before: a few problems are solved faster or slower by greater

factors, while overall the increases and decreases in runtime occur to about the

same amount.

We summarise that in the current implementation with default settings redun-

dancy elimination has an overall positive effect on the performance of iProver-Eq,

in particular solving a number of problems not solved without. Demodulation by

itself does not have a great influence, the overhead of maintaining indexes and

rewriting literals even leads to a certain slowdown on some of problems, although

one would expect to be able to exploit as demodulators the unit clauses occurring

in 97% of the TPTP problems to a greater degree. On the other hand, those unit
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Figure 8.7: Unit superposition with demodulation and subsumption by unit liter-
als enabled or disabled. The top graph compares the runtimes of problems solved
in set labels, the bottom graph shows the same for tree labels. The graphs are on
a logarithmic scale, the dotted lines in parallel to the diagonal mark areas where
runtimes differ by more than a factor of 2 and 5, respectively. A plus (+) marks
an unsatisfiable problem and a cross (×) stands for a satisfiable problem.
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Figure 8.8: Set labelled (top) and tree labelled (bottom) unit superposition with-
out demodulation and subsumption by unit literals enabled and disabled. The
graphs are on a logarithmic scale, the dotted lines in parallel to the diagonal
mark areas where runtimes differ by more than a factor of 2 and 5, respectively.
A plus (+) marks an unsatisfiable problem and a cross (×) stands for a satisfiable
problem.
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Problems solved
not

solved
fastest

set 2 737 968 815
tree 2 643 1 062 879
Inst-Gen 2 905 800 2 011

875

104

83 61

32
664

set tree

Inst-Gen

1886

Figure 8.9: Number of solved problems in Inst-Gen-Eq with set labelled and tree
labelled unit superposition and with axiomatic equational reasoning in Inst-Gen.

clauses are useful by means of subsumption that has a positive effect even without

demodulation and is amplified when demodulation inferences are performed.

8.4 Equational Reasoning and Ground solving

The Inst-Gen-Eq method requires a ground solver modulo equality and we have

integrated the SMT solver CVC3. In the Inst-Gen method ground solving reduces

to the propositional satisfiability problem and iProver delegates the ground rea-

soning to the SAT solver MiniSat.

Since the implementation of the Inst-Gen calculus from the iProver system

was kept in the iProver-Eq system, we can directly compare the performance of

equational reasoning with labelled unit superposition to the previous approach

of equational reasoning with axioms.

As one would expect, a very different set of problems is successfully solved

with the Inst-Gen implementation compared to the Inst-Gen-Eq implementation

with set and tree labels, see Figure 8.9. There are 1 886 problems solved by all

three implementations, but Inst-Gen-Eq with set and tree labelled unit superpo-

sition and Inst-Gen with axiomatic equality miss 968, 1 062 and 800 problems,

respectively.

If we compare the runtimes of solved problems, we find an extremely non-

uniform picture. Overall the non-equational calculus is fastest on 2 011 problems,

compared to 815 problems and 879 problems, where Inst-Gen-Eq with set and tree

labelled unit superposition comes first, respectively. The graphs in Figure 8.10
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comparing runtimes of set and tree labelled Inst-Gen-Eq with Inst-Gen show a

distribution that seems almost random. Although for short runtimes there are

some clusters of problems indicating that the non-equational approach is faster,

there are many problems for which the runtimes differ by orders of magnitude.

The situation is equal if we look at satisfiable and unsatisfiable problems sepa-

rately.

The source of the very different performance becomes obvious when we empha-

sise the ground solving as one main difference of the Inst-Gen and the Inst-Gen-Eq

approach. Inst-Gen-Eq has to deal with a significant overhead from invoking an

SMT solver, while Inst-Gen relies on a smaller and efficient SAT solver. Fig-

ures 8.11 and 8.12 show the time spent in ground solving in relation to the total

runtime of the problem for solved and unsolved problems. Propositional satisfi-

ability can be decided quickly and in almost all problems solved in Inst-Gen not

more than 5% of the runtime is taken by the MiniSat solver with a median of

1.3%. For a problem to be solved in Inst-Gen-Eq CVC3 as the ground solver

has to decide ground satisfiability modulo equality, which is harder than proposi-

tional satisfiability. There are problems, where almost all of the runtime is spent

in CVC3, the median of the total runtime used for ground solving is 26% for both

set labels and tree labels. Problems not solved due to time or memory limits show

a similar pattern, here SAT solving with MiniSat takes a median of 1.5% of the

total runtime and CVC3 for ground solving modulo equality accounts for 32%

and 16% of the total runtime with set labels and tree labels, respectively.

The TPTP library contains only 26 problems with equality in the Bernays-

Schönfinkel fragment, all of which are classified as easy and solved by both iProver

and iProver-Eq, mostly in less than one second. This does not allow a significant

comparison of reasoning in this class between the axiomatic approach in iProver

and the superposition approach in the iProver-Eq system. We can only report the

trend that almost all satisfiable problems are solved faster with iProver by factors

greater than two, whereas unsatisfiable problems see both increases and decreases

in runtime by smaller factors. However, these remarks have to qualified with the

short runtimes of less than one second, where other effects may overshadow the

differences in the calculi.
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Figure 8.11: Number of solved problems where at most the given share of the
total runtime is taken by the ground solver.
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8.5 The CADE ATP Systems Competition

Finally, we discuss the results of the most recent CADE ATP Systems Com-

petition (CASC-J5), held in summer 2010 during the fifth International Joint

Conference on Automated Reasoning (IJCAR). Although the CASC is by no

means an exhaustive evaluation, it does provide a forum to compare state-of-the-

art automated reasoning systems in a competition setting on a small subset of the

TPTP. The specifics of CASC-J5 are described in Sutcliffe [2011], a more general

overview is in Sutcliffe and Suttner [2006].

The selection of TPTP problems for the competition is done randomly and

biased towards recent problems with a number of previously unseen problems

mixed in. Only problems with a difficulty rating within certain bounds are eligible

in order to get challenging but not unsolvable problems. In the competition a

CPU time limit of 300 seconds was enforced and additionally no problem was

allowed a wallclock runtime of twice the CPU time limit.

There are three major divisions with several sub-divisions each, based on

syntactic properties of the problems. The Bernays-Schönfinkel fragment, in this

context called effectively propositional (EPR), is a separate division, containing

problems in CNF form with function symbols of non-zero arity only. The other

two divisions are made up of FOF and CNF problems.

The FOF problems are not in clausal normal form and further divided into

problems without equality (FNE), problems with equality (FEQ) and effectively

propositional problems (FEP). All CNF problems contain function symbols of ari-

ties greater than zero and are thus not effectively propositional. The CNF division

is split by the Horn property, that is, at most one negative literal per clause, and

the content of equality, resulting in the following sub-divisions: Horn problems

without equality (HNE), Horn problems with equality but not purely equational

(HEQ), Non-Horn problems without equality (NNE), Non-Horn problems with

equality but not purely equational (NEQ) and purely equational problems (PEQ).

The iProver-Eq system discussed here was entered as iProver-Eq 0.6 into all

three divisions, competing instantiation-based systems were iProver in versions

0.7 and 0.8, Darwin, E-Darwin and E-KRHyper, see Chapter 3 for a discussion

of the relation of these systems to iProver-Eq.

In the FOF and CNF divisions (Tables 8.2 and 8.3) iProver-Eq was placed in

the middle alongside the E-Darwin system and below the non-equational iProver

system, although there are problems iProver-Eq could solve and that were not
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solved by the iProver system.

The EPR division (Table 8.4) is clearly dominated by instantiation-based sys-

tems, followed by dedicated model finding tools (Paradox and Equinox), while

the E and Vampire systems that lead the FOF and CNF divisions are trailing be-

hind. It is further notable that the equational systems iProver-Eq and E-Darwin

are beaten by their non-equational counterparts iProver and Darwin. This is

due to the initially mentioned fact that the equational axioms for a signature

without non-zero function symbols do not introduce function symbols, thus an

equational problem remains in the Bernays-Schönfinkel fragment even after the

addition of the axioms. The non-equational systems can rely on their efficient

procedures, while the equational systems have the overhead of superposition rea-

soning. In particular iProver-Eq needs to invoke the SMT solver, while in iProver

the SAT solver is sufficient. As the results show, treating equality axiomatically

in the Bernays-Schönfinkel fragment can be an advantage over non-axiomatic

equational reasoning, although this does not generalise to full first-order logic

and there are EPR problems that are solved faster with superposition reasoning

than with the axiomatic approach.

8.6 Summary

Our own evaluation shows the potential of the Inst-Gen-Eq calculus and its im-

plementation in the iProver-Eq system. As the CASC results have demonstrated,

the system is already competitive with state-of-the-art systems and in particular

on one level with other instantiation-based systems.

We have also exhibited weaknesses of the system, however, since we have

focussed the evaluation only on the main contributions of the thesis, we have

chosen rigid default values for many other influential settings. In particular the

parameters for the priority queues of passive clauses in the Inst-Gen-Eq-loop

and passive literals in the US-loop can be fine-tuned to particular problems.

Further parameters are the ratio of the Inst-Gen-Eq-loop and the US-loop or the

heuristics for selecting a clause literal. In our experience manually adjusting these

parameters makes iProver-Eq solve problems significantly faster than before and

enables solving problems that have failed before.

We have not done more detailed code profiling beyond recording the time

taken by the ground solver as reported in Section 8.4. A detailed account of
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Table 8.2: CASC-J5 results in the FOF division, excerpted from Sutcliffe [2011].
The sub-divisions are: problems without equality and not effectively proposi-
tional (FNE), problems with equality and not effectively propositional (FEQ)
and effectively propositional problems (FEP). Instantiation-based systems are
highlighted.

ATP System
FOF
/200

Avg
CPU

FNE
/50

FEQ
/125

FEP
/25

Vampire 0.6 178 14.2 44 112 22
E 1.2pre 143 10.2 38 88 17
EP 1.2pre 143 14.8 38 88 17
Vampire 11.0 125 44.9 36 73 16
iProver 0.8 117 25.6 39 63 15
Equinox 5.0 108 17.4 18 66 24
iProver-Eq 0.6 90 18.1 37 30 23
E-Darwin 1.3 81 25.3 23 37 21
leanCoP 2.2 54 42.6 30 22 2
Zenon 0.6.3 46 36.0 20 7 19
LEO-II 1.2 45 45.0 19 26 0
Geo 2010C 42 22.7 17 25 0
Metis 2.2 36 32.7 17 18 1
E-KRH’ 1.1.4 32 24.3 22 9 1
Otter 3.3 18 9.3 4 14 0
Muscadet 4.0 15 3.9 5 9 1
Ayane 2 0 – 0 0 0
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Table 8.3: CASC-J5 results in the CNF division, excerpted from Sutcliffe [2011].
The sub-divisions are: Horn problems without equality (HNE), Horn problems
with some (not pure) equality (HEQ), Non-Horn problems with no equality
(NNE), Non-Horn problems with some (not pure equality) (NEQ) and purely
equational problems (PEQ). Instantiation-based systems are highlighted.

ATP System
CNF
/200

Avg
CPU

HNE
/30

HEQ
/30

NNE
/30

NEQ
/70

PEQ
/40

Vampire 0.6 170 15.1 29 25 28 55 33
Vampire 10.0 168 15.7 29 27 28 54 30
E 1.2pre 161 14.9 23 25 27 57 29
iProver 0.8 92 16.4 20 7 28 37 0
Equinox 5.0 77 26.2 8 11 20 33 5
E-Darwin 1.3 69 20.8 13 11 9 28 8
iProver-Eq 0.6 66 19.8 20 2 25 16 3
E-KRH’ 1.1.4 58 38.0 18 10 12 17 1
LEO-II 52 54.9 11 11 6 14 10
Otter 3.3 42 11.2 10 14 8 7 3
Geo 2010C 41 30.8 8 11 16 5 1
Metis 2.2 39 27.4 3 4 10 8 14
Ayane 2 1 26.4 0 0 0 1 0

Table 8.4: CASC-J5 results in the EPR division, excerpted from Sutcliffe [2011].
The sub-divisions are: effectively propositional theorems (unsatisfiable) (EPT)
and effectively propositional non-theorems (satisfiable) (EPS). Instantiation-
based systems are highlighted.

ATP System
EPR
/100

Avg
CPU

EPS
/50

EPT
/50

iProver 0.8 95 26.4 45 50
iProver 0.7 84 27.1 42 42
Darwin 1.4.5 72 19.4 22 50
iProver-Eq 0.6 59 44.0 11 48
E-Darwin 1.3 52 8.4 11 41
Paradox 4.0 51 4.5 8 43
Equinox 5.0 44 24.3 8 36
E-KRH’ 1.1.4 30 16.5 3 27
Geo 2010C 25 2.8 0 25
E 1.2pre 15 22.5 5 10
Vampire 0.6 13 86.7 13 0
Metis 2.2 8 157.9 3 5
Ayane 2 0 – 0 0
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which parts of the system consume the most runtime will be useful for fine tuning

the parameters as well as to pinpoint bottlenecks that deserve more optimisation

effort.

Nevertheless, the evaluation with rigid defaults already gives hints on di-

rections for further work and we expect that an evaluation and profiling with

fine-tuning will provide more insights.



Chapter 9

Conclusion and Further Work

The work in this thesis has made significant contributions to efficient equational

reasoning in the instantiation-based Inst-Gen-Eq method.

The Inst-Gen method for instantiation-based reasoning [Ganzinger and Ko-

rovin, 2003] is based on a modular combination of first-order reasoning on liter-

als and ground satisfiability solving of an abstraction of the first-order clauses.

Clause instances are generated from conflicts in first-order and propagated to the

ground abstraction such that the model of the ground abstraction is refined. This

process continues until either all conflicts have become irrelevant or the ground

abstraction is found to be unsatisfiable, which in turn proves unsatisfiability of

the input first-order clause set. The ground solver is further used by means of a

selection function on clauses to guide the first-order reasoning on literals towards

relevant conflicts.

The Inst-Gen-Eq method [Ganzinger and Korovin, 2004] keeps this paradigm,

but we have to replace the single inference rule, which is sufficient to detect con-

flicts in the non-equational Inst-Gen method, with a calculus on first-order liter-

als. Clause instances are obtained from proofs of contradictions in this calculus.

We have given a detailed completeness proof of the Inst-Gen-Eq method,

extending the originally published proof by strengthening the ordering constraints

in the inference rule, thus advancing from ordered unit paramodulation to unit

superposition, a step that is not obvious in the context of instantiation-based

methods. We have also included provisions that serve to justify simplification

inferences with unit clauses.

Motivated by the need to deal with literal variants in a robust way we have

presented labelled unit superposition calculi, the main contribution of the thesis.

199
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The central feature of the labelled approach is a new merging inference rule to

combine literal variants that are initially considered disjoint. The labels keep

track of information about the proof structure and eagerly calculate the rele-

vant instances from proofs such that an explicit treatment of proof trees is not

necessary.

We have presented the simple label structure of sets, which have the advan-

tage of natural normal forms, but only approximate redundancy elimination. In

order to achieve precise redundancy elimination we have to consider labels with a

Boolean structure such as AND/OR trees. Since these labels are not produced in

a normal form, we have investigated ordered binary decision diagrams (OBDDs)

as a label structure that combines precise elimination of redundancy with a nor-

mal form.

In order to prevent potential non-termination already in rather simple cases

and to obtain a decision procedure for the Bernays-Schönfinkel fragment it is

essential to consider normal forms of labels. Tree and OBDD labels with their

Boolean structures are isomorphic to monotone Boolean formulae, but deciding

logical equivalence in this class is already coNP-complete. Therefore, probably

no efficient normal form of AND/OR tree labels exists in general. We have dis-

cussed ways to improve OBDD labelled unit superposition and hinted on possible

other approaches to normal forms of AND/OR tree labels.

We have then turned to literals in unit clauses, which have a special status in

the saturation process of selected literals. Since they are in every set of selected

literals, they can be used for simplification inferences that persist across selec-

tion changes induced by the ground solver. We have shown that a literal from a

unit clause makes all variants of it derived in a unit superposition calculus redun-

dant, such that they can be discarded without performing the otherwise necessary

merging inference. We have further investigated demodulation as a simplification

inference rule based on rewriting with literals from unit clauses. Due to the inter-

action between the first-order reasoning on literals and the ground satisfiability

solving, demodulation is only complete if additional instances are generated.

The iProver-Eq system was developed for this thesis based on the iProver

system that implements the non-equational Inst-Gen calculus. All aspects of

equational reasoning in Inst-Gen-Eq presented so far have been implemented in

the iProver-Eq system using state-of-the-art techniques. We have discussed the

main features and in particular focussed on the three constituent parts, namely,
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ground solving, which is delegated to an SMT solver, and the two nested satura-

tion processes of instantiation and unit superposition.

Using the TPTP benchmark library that contains a wide variety of up to date

problems from relevant application areas, we have evaluated our contributions to

equational reasoning with the Inst-Gen-Eq method. In particular we have com-

pared set, tree and OBDD labelled unit superposition calculi, the simplification

inferences based on unit clauses and the performance of ground solving by the

SMT solver.

We have found that a number of problems was solved by all three labelled

calculi, but that in particular set and tree labelled unit superposition show some

specialisation and a significant number of problems could only be solved success-

fully with one of the calculi. OBDD labelled unit superposition lags behind the

two simpler labelled calculi, which is to be expected from our discussion of the

complexity issues of computing normal forms of tree labels. Nevertheless, OBDD

labelled unit superposition is faster by some margin than both other labelled

calculi on a significant number of problems.

We have entered the iProver-Eq system into the annual CASC competition,

the “world championship of theorem provers”, where it was on a par with other

instantiation-based systems and not too far from the leading and longer estab-

lished systems.

Further Work

There are a number of directions for further work based on the results in this

thesis.

As we have mentioned in the discussion of the evaluation, in our experience

fine-tuning of parameters can have a significant effect on the performance of the

system. In particular the ratio between the priority queues for passive literals and

passive clauses in the US-loop and the Inst-Gen-Eq-loop, respectively, can have

a big influence. Certain settings may prevent the system from solving a problem

at all, such that the approach of rigid default values is not optimal. Strategies to

adapt the parameters to a current problem or changes at runtime will certainly

improve the general performance of iProver-Eq.

A more interesting problem is finding the optimal labelled calculus for an input

set of clauses. Our results suggest a hybrid approach to labelling, combining, for
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example, set and AND/OR tree labels. In this context it is certainly instructive to

investigate, which classes of problems a particular labelling approach is best suited

to. We have already mentioned and discussed alternatives to OBDD labelled

unit superposition, which combines the advantages of a normal form with precise

redundancy elimination. However, there is the barrier of high computational

complexity such that it might not be possible to find a generally efficient solution.

Our evaluation has further shown that the ground solving modulo equality

with the SMT solver is a bottleneck. Since there is considerable current activity

in the SMT community, a number of tools have been developed. Our imple-

mentation is modular to allow exchanging the currently used CVC3 solver for a

different solver. Due to the variety of approaches to SMT solving, it would not

be surprising to see certain SMT solvers being better suited than others to the

kind of problems discharged from the iProver-Eq system.

The modular approach of the Inst-Gen method delegates the ground rea-

soning to a black-boxed solver, expecting to be able to exploit its sophisticated

techniques. However, it is certainly worth investigating if closer cooperation be-

tween the ground reasoning and first-order reasoning up to an opening of the

black box would be beneficial. The ground reasoning influences the first-order

reasoning through the selection function, which is based on a model of the ground

abstraction. Selecting a literal requires performing all possible inferences with all

literals in the US-saturation process. Since there are equations such as x ' t,

where x is a variable and t is a term, which generate many conclusions, it is ben-

eficial to exploit the non-determinism when choosing a ground model to make the

selection function select a different literal whenever possible. As an extension of

this approach, prolific literals having produced many inferences can be detected

at runtime and attempts can be made to coerce the ground solver to provide a

different model not containing the prolific literal.

The information in labels is at the moment used only for the purposes of

redundancy elimination and extraction of relevant clause instances. However,

we can take information from labels to replace an SMT solver with a simpler

SAT solver by generating lemmas from labels. From a conflict on first-order

literals, clause instances are generated and propagated to the ground abstraction

in the solver. The ground solver must be able to reason modulo equality so

that it can witness the conflict on relevant instances in the ground abstraction.

The solver is then forced to refine the ground model. If we replace a ground
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solver modulo equality with a propositional solver, we can achieve the same effect

by explicitly generating lemmas in addition to the relevant instances from the

conflict. However, since the propositional solver is agnostic about equality, it is

possible that literals are selected, which are already inconsistent modulo equality

in the ground abstraction. In this case the unit superposition calculus finds a

contradiction, where none of the relevant instances in the label is proper and

only lemmas are generated that force the ground solver to revise the selection.

Thus, an approach with lemma generation and propositional satisfiability solving

will find more contradictions and place more burden on the saturation process on

literals than the approach of a ground solver modulo equality, where equational

this equational reasoning happens in the ground solver. For tree and OBDD

labels the information in the label of a contradiction is sufficient to provide the

ground solver with such lemmas, there is not enough information in set labels,

however. Preliminary experiments with lemma generation from tree labels show

promising potential, in many cases delivering about equal performance to using

an SMT solver without lemma generation.

Finally, as we have mentioned in the beginning, a natural line of research is to

move beyond equational reasoning in Inst-Gen-Eq to reasoning modulo theories.

Theory reasoning in the style of Inst-Gen has already been discussed by Ganzinger

and Korovin [2006], where the role of the unit superposition calculus is taken by a

unit calculus for the theory to be solved modulo. It is necessary to develop calculi

that, similar to unit superposition, find contradictions modulo a theory on a set

of selected literals and provide relevant instances for a ground solver modulo the

same theory in order to refine the ground abstraction. This is certainly no easy

task and it is not clear if the labelling approach presented here can be lifted to

any theory.

Moreover, satisfiability of a set of ground clauses is not decidable for many

relevant theories like arithmetic and we have to deal with an incomplete ground

solver that does not terminate or may return only a partial model or for literal

selection.

The approach of lemma generation from labels allows to use a weaker ground

solver than the unit reasoning if appropriate lemmas are generated from conflicts.

Therefore lemma generation could be used to replace a potentially not terminating

SMT solver with a SAT solver, if it is possible to define labelled unit calculi.



204 CHAPTER 9. CONCLUSION AND FURTHER WORK



Bibliography

Parosh Abdulla, Per Bjesse, and Niklas Eén. Symbolic Reachability Analysis

Based on SAT-Solvers. In Susanne Graf and Michael Schwartzbach, editors,

Tools and Algorithms for the Construction and Analysis of Systems, 6th Inter-

national Conference, TACAS 2000. Proceedings, volume 1785 of Lecture Notes

in Computer Science, pages 411–425, Berlin / Heidelberg, 2000. Springer.

Henrik R. Andersen and Henrik Hulgaard. Boolean Expression Diagrams. Infor-

mation and Computation, 179(2):194–212, December 2002.

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge Uni-

versity Press, 1998.

Franz Baader and Wayne Snyder. Unification Theory. In John Alan Robinson

and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 1,

chapter 8, pages 445–532. Elsevier and MIT Press, 2001.

Leo Bachmair and Harald Ganzinger. Rewrite-based Equational Theorem Prov-

ing with Selection and Simplification. Journal of Logic and Computation, 4(3):

217–247, June 1994.

Leo Bachmair and Harald Ganzinger. Equational Reasoning in Saturation-Based

Theorem Proving. In Wolfgang Bibel and Peter. H. Schmitt, editors, Auto-

mated Deduction - A Basis for Applications, number 1 in Applied Logic Series,

chapter 11, pages 353–397. Kluwer Academic Publishers, 1998.

Leo Bachmair and Harald Ganzinger. Resolution Theorem Proving. In John Alan

Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning,

volume 1, chapter 2, pages 19–99. Elsevier and MIT Press, 2001.

Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder. Basic

Paramodulation. Information and Computation, 121(2):172–192, 1995.

205



206 BIBLIOGRAPHY

Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir Levin. SLAM2:

Static Driver Verification with Under 4% False Alarms. In Roderick Bloem

and Natasha Sharygina, editors, Formal Methods in Computer-Aided Design,

10th International Conference, FMCAD 2010. Proceedings, 2010. To appear.

Clark Barrett and Cesare Tinelli. CVC3. In Aarti Gupta and Sharad Malik, edi-

tors, Computer Aided Verification, 20th International Conference, CAV 2007.

Proceedings, volume 4590 of Lecture Notes in Computer Science, pages 298–302,

Berlin / Heidelberg, 2007. Springer.

Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump. Design and re-

sults of the 3rd annual satisfiability modulo theories competition (SMT-COMP

2007). International Journal on Artificial Intelligence Tools, 17(04):569–606,

2008.

Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Ver-

sion 2.0. In Aarti Gupta and Daniel Kroening, editors, 8th International Work-

shop on Satisfiability Modulo Theories, SMT 2010. Proceedings, 2010.

Peter Baumgartner. FDPLL - A First Order Davis-Putnam-Longeman-Loveland

Procedure. In David A. McAllester, editor, Automated Deduction - CADE-17,

17th International Conference on Automated Deduction. Proceedings, volume

1831 of Lecture Notes in Computer Science, pages 200–219, Berlin / Heidelberg,

2000. Springer.

Peter Baumgartner. Logical Engineering with Instance-Based Methods. In Frank

Pfenning, editor, Automated Deduction - CADE-21, 21st International Con-

ference on Automated Deduction. Proceedings, volume 4603 of Lecture Notes in

Artificial Intelligence, pages 404–409, Berlin / Heidelberg, 2007. Springer.

Peter Baumgartner and Evgenij Thorstensen. Instance Based Methods — An

Overview. KI - Künstliche Intelligenz, 24(1):35–42, 2009.

Peter Baumgartner and Cesare Tinelli. The Model Evolution Calculus. In Franz

Baader, editor, Automated Deduction - CADE-19, 19th International Confer-

ence on Automated Deduction. Proceedings, volume 2741 of Lecture Notes in

Computer Science, pages 350–364, Berlin / Heidelberg, 2003. Springer.



BIBLIOGRAPHY 207

Peter Baumgartner and Cesare Tinelli. The Model Evolution Calculus with

Equality. In Robert Nieuwenhuis, editor, Automated Deduction - CADE-20,

20th International Conference on Automated Deduction. Proceedings, volume

3632 of Lecture Notes in Computer Science, pages 392–408, Berlin / Heidelberg,

2005. Springer.

Peter Baumgartner and Uwe Waldmann. Superposition and Model Evolution

Combined. In Renate A. Schmidt, editor, Automated Deduction - CADE-22,

22nd International Conference on Automated Deduction. Proceedings, volume

5663 of Lecture Notes in Computer Science, pages 17–34, Berlin / Heidelberg,

2009. Springer.

Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Implementing the

Model Evolution Calculus. International Journal on Artificial Intelligence

Tools, 15(1):21–52, 2005. Special Issue on Empirically Successful First Order

Reasoning.

Peter Baumgartner, Björn Pelzer, and Cesare Tinelli. Model Evolution with

Equality – Revised and Implemented. Submitted for journal publication, June

2010.

Bernhard Beckert, Tony Hoare, Reiner Hähnle, Douglas R. Smith, Cordell Green,
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Automated Reasoning, 5th International Joint Conference, IJCAR 2010. Pro-

ceedings, volume 6173 of Lecture Notes in Computer Science, pages 196–202,

Berlin / Heidelberg, 2010b. Springer.
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relevant instance

set labelled unit superposition, 67

relevant instances

OBDD label, 78

tree label, 75

relevant instantiator

set labelled unit superposition, 67

renaming, 13

restriction

substitution, 13

C · θ-restriction

OBDD label, 78

tree label, 74

saturation

Inst, 34

US, 33

saturation process

US, 32

USD, 54

set label, 65

set labelled unit superposition, 66

signature, 12

simulated proof

set labelled unit superposition, 71

substitution, 13

subterm, 12

term, 12

total

interpretation, 14

tree label, 74

tree labelled unit superposition, 75

undefined
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interpretation, 14

union

substitution, 13

unit literal, 88

unit superposition

set labelled, 66

tree labelled, 75

US-redundancy, 32

USD-redundancy, 54

variable, 12

well-constrained, 54
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