
Z3 for iProver-Eq:
Efficient Ground Solving for
Instantiation-based First-order Reasoning

Christoph Sticksel

Joint work with Konstantin Korovin

Z3 Special Interest Group Meeting
3rd November 2011

φormalµethodsγ roup

1

Christoph Sticksel Z3 for iProver-Eq



2

Motivation

The main application of automated reasoning is verification of
software, hardware, protocols etc.

Reasoning should
• scale to industrial-size problems and
• provide succinct formalisation.

First-order Logic
• High expressivity:

quantifiers ∀, ∃
• Decidable fragments
• Resolution/superposition
• Weak ground reasoning

and modulo theories

SAT / Quantifier-free SMT
• High efficiency
• Modulo theories
• DPLL/congruence closure
• Weak quantifier reasoning

Christoph Sticksel Z3 for iProver-Eq



2

Motivation

The main application of automated reasoning is verification of
software, hardware, protocols etc.

Reasoning should
• scale to industrial-size problems and
• provide succinct formalisation.

First-order Logic
• High expressivity:

quantifiers ∀, ∃
• Decidable fragments
• Resolution/superposition
• Weak ground reasoning

and modulo theories

SAT / Quantifier-free SMT
• High efficiency
• Modulo theories
• DPLL/congruence closure
• Weak quantifier reasoning

Christoph Sticksel Z3 for iProver-Eq



3

Instantiation-based Methods: The Idea

Is a given closed formula ∀x̄ ϕ (x̄) a theorem?

A refutationally complete method:
1 Guess finite number of ground instances of ϕ (x̄)
2 Test ground satisfiability

Benefits:
• Keep expressivity of first-order logic
• Exploit efficiency of SAT and QF SMT

Christoph Sticksel Z3 for iProver-Eq



4

Instantiation-based Methods: The Main Problem

Core question in instantiation-based reasoning
How do we find the ground instances to witness first-order
unsatisfiability?

• Decidable if there are finitely many ground instances
• Harder the “more” ground instances there are
• Differences between calculi:

– generation of instances
– integration of propositional solving

Christoph Sticksel Z3 for iProver-Eq



5

Features of Inst-Gen

• Modular combination of first-order and ground reasoning
• Ground reasoning delegated to off-the-shelf solver
• Very efficient for the EPR fragment
• Applied for hardware verification with bounded model

checking (Intel)

• Non-equational variant related to Resolution
• Superposition-style equational reasoning
• Theory reasoning possible

• Implemented in iProver and iProver-Eq
• [Korovin & Sticksel IJCAR 2010] and

[Korovin & Sticksel LPAR 2010]

Christoph Sticksel Z3 for iProver-Eq



6

The Inst-Gen Method

Unifiable
Literals

Inst-Gen SAT solver

Ground
Clauses

Ground
Model

Unsatisfiability
proved

Satisfiability
proved

First-order 
Clauses

Clause
Instances

find

generate

add

select

abstract

First-order Ground

Christoph Sticksel Z3 for iProver-Eq



7

Inst-Gen: Ground Abstraction and Selection

First-order clauses

¬Q(f (x))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

Ground abstraction with ⊥

¬Q(f (⊥))

¬P(f (f (⊥))

P(f (⊥)) ∨ Q(⊥)

• Select literals which are true in ground abstraction

Fail to extend ground model to first-order

¬P(f (f (y))) |= ¬P(f (f (a))

P(f (z)) |= P(f (f (a))

• Model has to be refined on the conflict

Christoph Sticksel Z3 for iProver-Eq



7

Inst-Gen: Ground Abstraction and Selection

First-order clauses

¬Q(f (x))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

Ground abstraction with ⊥

¬Q(f (⊥))

¬P(f (f (⊥))

P(f (⊥)) ∨ Q(⊥)

• Select literals which are true in ground abstraction

Fail to extend ground model to first-order

¬P(f (f (y))) |= ¬P(f (f (a))

P(f (z)) |= P(f (f (a))

• Model has to be refined on the conflict

Christoph Sticksel Z3 for iProver-Eq



7

Inst-Gen: Ground Abstraction and Selection

First-order clauses

¬Q(f (x))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

Ground abstraction with ⊥

¬Q(f (⊥))

¬P(f (f (⊥))

P(f (⊥)) ∨ Q(⊥)

• Select literals which are true in ground abstraction

Fail to extend ground model to first-order

¬P(f (f (y))) |= ¬P(f (f (a))

P(f (z)) |= P(f (f (a))

• Model has to be refined on the conflict

Christoph Sticksel Z3 for iProver-Eq



7

Inst-Gen: Ground Abstraction and Selection

First-order clauses

¬Q(f (x))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

Ground abstraction with ⊥

¬Q(f (⊥))

¬P(f (f (⊥))

P(f (⊥)) ∨ Q(⊥)

• Select literals which are true in ground abstraction

Fail to extend ground model to first-order

¬P(f (f (y))) |= ¬P(f (f (a))

P(f (z)) |= P(f (f (a))

• Model has to be refined on the conflict

Christoph Sticksel Z3 for iProver-Eq



7

Inst-Gen: Ground Abstraction and Selection

First-order clauses

¬Q(f (x))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

Ground abstraction with ⊥

¬Q(f (⊥))

¬P(f (f (⊥))

P(f (⊥)) ∨ Q(⊥)

• Select literals which are true in ground abstraction

Fail to extend ground model to first-order

¬P(f (f (y))) |= ¬P(f (f (a))

P(f (z)) |= P(f (f (a))

• Model has to be refined on the conflict

Christoph Sticksel Z3 for iProver-Eq



8

Inst-Gen: Instance Generation Inference

Inst-Gen Inference

¬P(f (f (y))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

P(f (f (y)) ∨ Q(f (y))
[z � f (y)]

• Inference with most general unifier on ¬P(f (f (y)) and
P(f (z)) which are are selected and complementary.

First-order clauses

¬Q(f (x))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

P(f (f (u))) ∨ Q(f (u))

Ground abstraction with ⊥
¬Q(f (⊥))

¬P(f (f (⊥))

P(f (⊥)) ∨ Q(⊥)

P(f (f (⊥))) ∨ Q(f (⊥))

Christoph Sticksel Z3 for iProver-Eq



8

Inst-Gen: Instance Generation Inference

Inst-Gen Inference

¬P(f (f (y))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

P(f (f (y)) ∨ Q(f (y))
[z � f (y)]

• Inference with most general unifier on ¬P(f (f (y)) and
P(f (z)) which are are selected and complementary.

First-order clauses

¬Q(f (x))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

P(f (f (u))) ∨ Q(f (u))

Ground abstraction with ⊥
¬Q(f (⊥))

¬P(f (f (⊥))

P(f (⊥)) ∨ Q(⊥)

P(f (f (⊥))) ∨ Q(f (⊥))

Christoph Sticksel Z3 for iProver-Eq



8

Inst-Gen: Instance Generation Inference

Inst-Gen Inference

¬P(f (f (y))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

P(f (f (y)) ∨ Q(f (y))
[z � f (y)]

• Inference with most general unifier on ¬P(f (f (y)) and
P(f (z)) which are are selected and complementary.

First-order clauses

¬Q(f (x))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

P(f (f (u))) ∨ Q(f (u))

Ground abstraction with ⊥
¬Q(f (⊥))

¬P(f (f (⊥))

P(f (⊥)) ∨ Q(⊥)

P(f (f (⊥))) ∨ Q(f (⊥))

Christoph Sticksel Z3 for iProver-Eq



8

Inst-Gen: Instance Generation Inference

Inst-Gen Inference

¬P(f (f (y))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

P(f (f (y)) ∨ Q(f (y))
[z � f (y)]

• Inference with most general unifier on ¬P(f (f (y)) and
P(f (z)) which are are selected and complementary.

First-order clauses

¬Q(f (x))

¬P(f (f (y))

P(f (z)) ∨ Q(z)

P(f (f (u))) ∨ Q(f (u))

Ground abstraction with ⊥
¬Q(f (⊥))

¬P(f (f (⊥))

P(f (⊥)) ∨ Q(⊥)

P(f (f (⊥))) ∨ Q(f (⊥))

Christoph Sticksel Z3 for iProver-Eq



9

Inst-Gen Modulo Equality

• Inst-Gen inference rule not sufficient
• Obvious step from Resolution to Superposition to

generate instances is incomplete
• Set of literals of any size can be contradictory

{ f (x) 6' f (a) }

{ f (x) ' a, f (a) 6' a }

{ h(y) ' y, f (h(x)) ' c, f (a) 6' c }

• Labelled unit superposition calculus
• Instance generation from labels of contradictions
• Ground solver modulo equality (QF UF solver)

Christoph Sticksel Z3 for iProver-Eq



10

The Inst-Gen-Eq Method

Superposition SMT solver

Inconsistent
Literals

Ground
Clauses

Ground
Model

Unsatisfiability
proved

Satisfiability
proved

First-order 
Clauses

Clause
Instances

find

generate

add

select

abstract

First-order Ground

Christoph Sticksel Z3 for iProver-Eq



11

Efficient Ground Solving in Inst-Gen

Superposition SMT solver

Inconsistent
Literals

Ground
Clauses

Ground
Model

Unsatisfiability
proved

Satisfiability
proved

First-order 
Clauses

Clause
Instances

find

generate

add

select

abstract

First-order Ground

Cooperation with SMT solver
• Incrementally add clauses
• Test unsatisfiability
• Query truth value of literals

Beyond the basics
• Global propositional

subsumption
• Minimise changes to

selection
• Auxiliary “soft” assertions

Statistics and experimental
results

Christoph Sticksel Z3 for iProver-Eq



12

Global Propositional Subsumption

Generalise grounding by ⊥ to a set of constants Σc,
consider substitutions γ ∈ Ω, e.g. [x � c1, y � c2, . . . ]

Propositional Simplification
D ∨ D′

D′
if C1γ1, . . .Ckγk |= Dγ

• Finding a minimal D′ is linear in length of D ∨ D′

• Individual ground constant for each variable
• Separate instance of Z3
• Approximation is sufficient:

– consider only one γ ∈ Ω and
– limit runtime of solver

Christoph Sticksel Z3 for iProver-Eq



13

Z3 Models and iProver Selection

• Semantic selection: in each clause one literal L such that
L⊥ is true in the ground model

• Saturation process: Changing selection removes L and
enters L′, inferences with clause to be repeated

Tweak model to preserve selection
Local Is there is a model such that the previous

selection for this clause can be kept?
Global Which model requires the least changes across

all clauses to the current selection?

Inst-Gen(-Eq) calculus is complete for any model, hence
approximate answers suffice

Christoph Sticksel Z3 for iProver-Eq



14

Soft Contraints and Unsatisfiable Cores

• Auxiliary literals for tracking purposes

Proofs: Input clauses in unsatisfiable core

Answers: Transform
∃x ϕ(x)

to
∃x ϕ(x) ∧ answer(x)

• Soft constraints and unsat cores for incremental solving

Bounded model checking: Enumerate states, transfer
information from one bound to next

Finite model finding: Enumerate domain constants

Christoph Sticksel Z3 for iProver-Eq



15

Two Incarnations of Z3

Satisfiability solver
• Witness unsatisfiability

and select literals
• Full solving with model
• Grounding with ⊥
• Tweak model to preserve

previous selections (soft
constraints, unsat cores)

Simplification solver
• Global propositional

subsumption
• Fast and incomplete
• Unit propagation, bound

number of decisions
• Grounding with ⊥ and

[x � c1, y � c2, . . . ]

Christoph Sticksel Z3 for iProver-Eq



16

Specifics of Ground Reasoning in iProver-Eq

• ground problems are typically simple < 1s
• frequent solver calls typically > 1000
• Incrementality: clauses are added inrementally, hundreds

of thousands in some applications

Christoph Sticksel Z3 for iProver-Eq



17

Experimental Results

iProver-Eq with CVC3 vs. Z3 on
TPTP v5.2.0 problems with equations only (9,507 total)

Number of problems

solved only faster
by

50%
by

100%

CVC3 2,468 87 663 57 30
Z3 2,510 129 1,718 551 317

• Ground model strongly influences first-order reasoning
• Problems for solvers are structurally simple
• Most effort on adaption of selection to model

Christoph Sticksel Z3 for iProver-Eq



18

iProver-Eq and Z3

Features used:
• Incrementally assert clauses
• Push and pop to find different model
• Check satisfiability, also with assumptions
• Evaluate literals in calculated model

Wishlist/To-Do:

• Access to learnt clauses
• Default decision value for literals
• Soft enforcing of truth values
• Fast solving for simplifications
• Use tactics to our advantage

Christoph Sticksel Z3 for iProver-Eq



19

Summary

Instantiation-based reasoning à la Inst-Gen and Inst-Gen-Eq

• Sound and complete first-order method
• Modulo equality and modulo theories
• SMT solver for ground reasoning

Future Work
• Improve efficiency of cooperation with solver
• Tune to applications
• First-order reasoning modulo theories

Christoph Sticksel Z3 for iProver-Eq


