

The Universit of Mancheste

# Z3 for iProver-Eq: Efficient Ground Solving for Instantiation-based First-order Reasoning

Christoph Sticksel

Joint work with Konstantin Korovin

Z3 Special Interest Group Meeting 3rd November 2011

## Motivation

The main application of automated reasoning is verification of software, hardware, protocols etc.

### Reasoning should

- · scale to industrial-size problems and
- provide succinct formalisation.

#### First-order Logic

- High expressivity: quantifiers ∀, ∃
- Decidable fragments
- Resolution/superposition
- Weak ground reasoning and modulo theories

### SAT / Quantifier-free SMT

- High efficiency
- Modulo theories
- DPLL/congruence closure
- Weak quantifier reasoning

# Motivation

The main application of automated reasoning is verification of software, hardware, protocols etc.

### Reasoning should

- · scale to industrial-size problems and
- provide succinct formalisation.

### First-order Logic

- High expressivity: quantifiers ∀, ∃
- Decidable fragments
- Resolution/superposition
- Weak ground reasoning and modulo theories

### SAT / Quantifier-free SMT

- High efficiency
- Modulo theories
- DPLL/congruence closure
- Weak quantifier reasoning

# Instantiation-based Methods: The Idea

Is a given closed formula  $\forall \bar{x} \varphi(\bar{x})$  a theorem?

A refutationally complete method:

- **①** Guess finite number of ground instances of  $\varphi(\bar{x})$
- 2 Test ground satisfiability

Benefits:

- Keep expressivity of first-order logic
- Exploit efficiency of SAT and QF\_SMT

Core question in instantiation-based reasoning How do we find the ground instances to witness first-order unsatisfiability?

- Decidable if there are finitely many ground instances
- Harder the "more" ground instances there are
- Differences between calculi:
  - generation of instances
  - integration of propositional solving

### Features of Inst-Gen

- Modular combination of first-order and ground reasoning
- · Ground reasoning delegated to off-the-shelf solver
- Very efficient for the EPR fragment
- Applied for hardware verification with bounded model checking (Intel)
- Non-equational variant related to Resolution
- Superposition-style equational reasoning
- Theory reasoning possible
- Implemented in *iProver* and *iProver-Eq*
- [Korovin & Sticksel IJCAR 2010] and [Korovin & Sticksel LPAR 2010]

### The Inst-Gen Method



| First-order clauses | Ground abstraction with $\perp$ |
|---------------------|---------------------------------|
| $\neg Q(f(x))$      | $\neg Q(f(\perp))$              |
| $\neg P(f(f(y)))$   | $ eg P(f(f(\perp)))$            |
| $P(f(z)) \lor Q(z)$ | $P(f(\perp)) \lor Q(\perp)$     |

• Select literals which are true in ground abstraction

Fail to extend ground model to first-order  $\neg P(f(f(y))) \models \neg P(f(f(a)))$  $P(f(z)) \models P(f(f(a)))$ 

• Model has to be refined on the conflict



• Select literals which are true in ground abstraction

Fail to extend ground model to first-order

 $\neg P(f(f(y))) \models \neg P(f(f(a)))$  $P(f(z)) \models P(f(f(a)))$ 

• Model has to be refined on the conflict



• Select literals which are true in ground abstraction

Fail to extend ground model to first-order  $\neg P(f(f(y))) \models \neg P(f(f(a)))$ 

 $P(f(z)) \models P(f(f(a)))$ 

Model has to be refined on the conflict



• Select literals which are true in ground abstraction

Fail to extend ground model to first-order  $\neg P(f(f(y))) \models \neg P(f(f(a)))$  $P(f(z)) \models P(f(f(a)))$ 

Model has to be refined on the conflict



Model has to be refined on the conflict

# Inst-Gen Inference $\frac{\neg P(f(f(y)) \qquad P(f(z)) \lor Q(z)}{\neg P(f(f(y)) \qquad P(f(f(y)) \lor Q(f(y))} [z \to f(y)]$

• Inference with most general unifier on  $\neg P(f(f(y)))$  and P(f(z)) which are are selected and complementary.

# First-order clauses $\neg Q(f(x))$ $\neg P(f(f(y)))$ $P(f(z)) \lor Q(z)$ $P(f(f(u))) \lor Q(f(u))$

# Ground abstraction with $\perp$ $\neg Q(f(\perp))$ $\neg P(f(f(\perp)))$ $P(f(\perp)) \lor Q(\perp)$ $P(f(f(\perp))) \lor Q(f(\perp))$



# Inst-Gen Inference $\frac{\neg P(f(f(y)) \qquad P(f(z)) \lor Q(z)}{\neg P(f(f(y)) \qquad P(f(f(y)) \lor Q(f(y))} [z \to f(y)]$

• Inference with most general unifier on  $\neg P(f(f(y)))$  and P(f(z)) which are are selected and complementary.



# Inst-Gen Inference $\frac{\neg P(f(f(y)) \qquad P(f(z)) \lor Q(z)}{\neg P(f(f(y)) \qquad P(f(f(y)) \lor Q(f(y))} [z \to f(y)]$

• Inference with most general unifier on  $\neg P(f(f(y)))$  and P(f(z)) which are are selected and complementary.





## Inst-Gen Modulo Equality

- Inst-Gen inference rule not sufficient
- Obvious step from Resolution to Superposition to generate instances is incomplete
- · Set of literals of any size can be contradictory

 $\{f(x) \not\simeq f(a) \}$  $\{f(x) \simeq a, \quad f(a) \not\simeq a \}$  $\{h(y) \simeq y, \quad f(h(x)) \simeq c, \quad f(a) \not\simeq c \}$ 

- Labelled unit superposition calculus
- Instance generation from labels of contradictions
- Ground solver modulo equality (*QF\_UF* solver)

## The Inst-Gen-Eq Method



# Efficient Ground Solving in Inst-Gen



#### Cooperation with SMT solver

- Incrementally add clauses
- Test unsatisfiability
- Query truth value of literals

### Beyond the basics

- Global propositional subsumption
- Minimise changes to selection
- Auxiliary "soft" assertions

Statistics and experimental results

# **Global Propositional Subsumption**

Generalise grounding by  $\perp$  to a set of constants  $\Sigma_c$ , consider substitutions  $\gamma \in \Omega$ , e.g.  $[x \rightarrow c_1, y \rightarrow c_2, ...]$ 

| $D \lor D'$ if $C_1 \gamma_1 \qquad C_k \gamma_k \models D \gamma_k$ | Propositional Simplification |                                                    |
|----------------------------------------------------------------------|------------------------------|----------------------------------------------------|
| $\frac{-D'}{D'}$                                                     | $\frac{D \lor D'}{D'}$       | if $C_1\gamma_1,\ldots C_k\gamma_k\models D\gamma$ |

- Finding a minimal D' is linear in length of  $D \vee D'$
- Individual ground constant for each variable
- Separate instance of Z3
- Approximation is sufficient:
  - consider only one  $\gamma \in \Omega$  and
  - limit runtime of solver

## Z3 Models and iProver Selection

- Semantic selection: in each clause one literal *L* such that *L*⊥ is true in the ground model
- Saturation process: Changing selection removes *L* and enters *L*', inferences with clause to be repeated

Tweak model to preserve selection

Local Is there is a model such that the previous selection for this clause can be kept?

Global Which model requires the least changes across all clauses to the current selection?

Inst-Gen(-Eq) calculus is complete for any model, hence approximate answers suffice

# Soft Contraints and Unsatisfiable Cores

Auxiliary literals for tracking purposes

Proofs: Input clauses in unsatisfiable core

Answers: Transform

 $\exists x \ \varphi(x)$ 

to

 $\exists x \ \varphi(x) \land answer(x)$ 

· Soft constraints and unsat cores for incremental solving

Bounded model checking: Enumerate states, transfer information from one bound to next

Finite model finding: Enumerate domain constants

# Two Incarnations of Z3

### Satisfiability solver

- Witness unsatisfiability and select literals
- Full solving with model
- Grounding with  $\perp$
- Tweak model to preserve previous selections (soft constraints, unsat cores)

### Simplification solver

- Global propositional subsumption
- Fast and incomplete
- Unit propagation, bound number of decisions
- Grounding with  $\perp$  and  $[x \rightarrow c_1, y \rightarrow c_2, \dots]$

# Specifics of Ground Reasoning in iProver-Eq

- ground problems are typically simple < 1s
- frequent solver calls typically > 1000
- Incrementality: clauses are added inrementally, hundreds of thousands in some applications

## **Experimental Results**

iProver-Eq with CVC3 vs. Z3 on TPTP v5.2.0 problems with equations only (9,507 total)

### Number of problems

|      | solved | only | faster | by<br>50% | by<br>100% |  |
|------|--------|------|--------|-----------|------------|--|
| CVC3 | 2,468  | 87   | 663    | 57        | 30         |  |
| Z3   | 2,510  | 129  | 1,718  | 551       | 317        |  |

- Ground model strongly influences first-order reasoning
- Problems for solvers are structurally simple
- Most effort on adaption of selection to model

# iProver-Eq and Z3

Features used:

- Incrementally assert clauses
- Push and pop to find different model
- Check satisfiability, also with assumptions
- Evaluate literals in calculated model

Wishlist/To-Do:

- Access to learnt clauses
- Default decision value for literals
- Soft enforcing of truth values
- Fast solving for simplifications
- Use tactics to our advantage

## Summary

Instantiation-based reasoning à la Inst-Gen and Inst-Gen-Eq

- Sound and complete first-order method
- Modulo equality and modulo theories
- SMT solver for ground reasoning

Future Work

- Improve efficiency of cooperation with solver
- Tune to applications
- First-order reasoning modulo theories