

The University of Manchester

Instantiation-based Methods for Equational Reasoning and Towards Theories Beyond

Christoph Sticksel

Joint work with Konstantin Korovin and Renate Schmidt

MPI Saarbrücken 14th January 2011

Automated Reasoning for First-order Logic

- First-order logic Prove unsatisfiability of a set of clauses
- Equational reasoning Have a predicate \simeq which is reflexive, symmetric, transitive and monotone
- **Reasoning modulo theories** Have a background theory (integer arithmetic, arrays, bitvectors)

In this talk:

- · Paradigm of instantiation-based methods
- Inst-Gen calculus [Ganzinger and Korovin, 2003] with equality [Ganzinger and Korovin, 2004]
- Implemented in *iProver* and *iProver-Eq*

Herbrand Theorem

Let $\varphi(\bar{x})$ be a quantifier free formula, then $\forall \bar{x} \varphi(\bar{x})$ is unsatisfiable if and only if there exist ground terms $\bar{t_1}, \ldots, \bar{t_n}$ such that $\bigwedge_i \varphi(\bar{t_i})$ is unsatisfiable.

A refutationally complete method:

- 1 Guess ground instances of $\forall \bar{x} \varphi(\bar{x})$
- 2 Test ground satisfiability

Good news

- Propositional satisfiability (modulo equality) is decidable
- SAT solving techniques well explored
- SMT for quantifier-free formulae

Core question in instantiation-based reasoning How do we find a set of ground instances to witness first-order unsatisfiability?

- Easier if there are finitely many ground instances (Bernays-Schönfinkel)
- Harder the "more" ground instances there are, i.e. the more prolific the clause set is
- Calculi differ in the way instances are generated and how propositional solving is integrated

Instantiation-based Methods: The Potential

- Decision procedure for Bernays-Schönfinkel
- Different search space than traditional methods
- · Guided by model instead of logical conclusions
- Clause length remains unchanged when instantiating
- Resolution weak for propositional reasoning
- Employ SAT solving techniques
- A way to lift SMT to first-order?

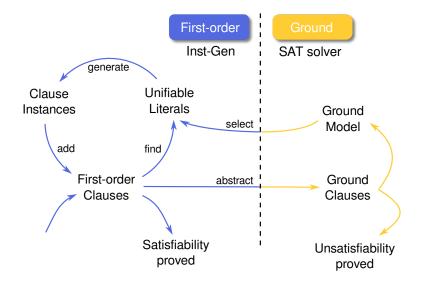
Some Implemented Instantiation-based Calculi

- Model Evolution: Darwin/E-Darwin (Baumgartner, Fuchs, Pelzer, Tinelli)
- Hyper Tableaux: E-KRHyper
 (Baumgartner, Furbach, Pelzer, Wernhard)
- Disconnection Calculus: DCTP (Billon, Letz, Stenz)
- Hyperlinking (OSHL): CLIN (Chu, Lee, Plaisted, Zhu)
- Inst-Gen: iProver, iProver-Eq (Ganzinger, Korovin, Sticksel)

Features of Inst-Gen

- · Combination of first-order and ground reasoning
- Ground reasoning delegated to off-the-shelf solver
- Non-equational variant related to Resolution
- Superposition-style equational reasoning
- Theory reasoning possible
- Implemented in *iProver* and *iProver-Eq*
- [Korovin and Sticksel, IJCAR 2010] and [Korovin and Sticksel, LPAR 2010]

The Inst-Gen Method



First-order clauses	Ground abstraction with \perp
$\neg Q(f(x))$	$ eg \mathcal{Q}(f(\perp))$
$\neg P(f(f(y)))$	$ eg P(f(f(\perp)))$
$P(f(z)) \lor Q(z)$	$P(f(\bot)) \vee \mathcal{Q}(\bot)$

• Select literals which are true in ground abstraction

Fail to extend ground model to first-order

 $\neg P(f(f(y))) \models \neg P(f(f(a)))$ $P(f(z)) \models P(f(f(a)))$

Model has to be refined on the conflict

• Select literals which are true in ground abstraction

Fail to extend ground model to first-order

 $\neg P(f(f(y))) \models \neg P(f(f(a)))$ $P(f(z)) \models P(f(f(a)))$

• Model has to be refined on the conflict

• Select literals which are true in ground abstraction

Fail to extend ground model to first-order

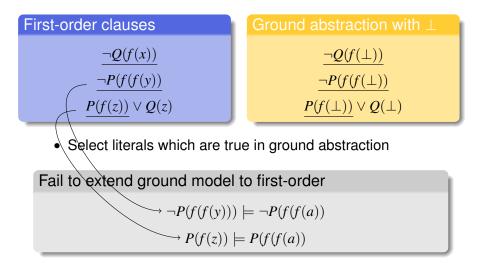
 $\neg P(f(f(y))) \models \neg P(f(f(a)))$ $P(f(z)) \models P(f(f(a)))$

Model has to be refined on the conflict

· Select literals which are true in ground abstraction

Fail to extend ground model to first-order $\neg P(f(f(y))) \models \neg P(f(f(a)))$ $P(f(z)) \models P(f(f(a)))$

• Model has to be refined on the conflict



Model has to be refined on the conflict

Inst-Gen Inference

$$\begin{array}{c|c} \neg P(f(f(y)) & P(f(z)) \lor Q(z) \\ \hline \neg P(f(f(y)) & P(f(f(y)) \lor Q(f(y)) \\ \end{array} [f(y)/z] \end{array}$$

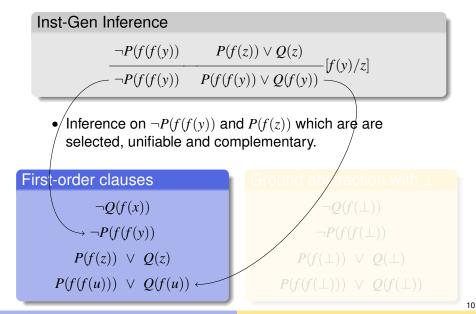
• Inference on ¬*P*(*f*(*f*(*y*)) and *P*(*f*(*z*)) which are are selected, unifiable and complementary.

First-order clauses

 $\neg Q(f(x))$ $\neg P(f(f(y)))$ $P(f(z)) \lor Q(z)$ $P(f(f(u))) \lor Q(f(u))$

Ground abstraction with \perp $\neg Q(f(\perp))$ $\neg P(f(f(\perp)))$ $P(f(\perp)) \lor Q(\perp)$ $P(f(f(\perp))) \lor Q(f(\perp))$

Instantiation-based Methods, Equality and Theory Reasoning

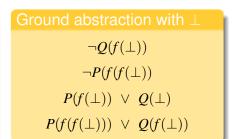


Inst-Gen Inference

$$\begin{array}{c|c} \neg P(f(f(y)) & P(f(z)) \lor Q(z) \\ \hline \neg P(f(f(y)) & P(f(f(y)) \lor Q(f(y)) \\ \end{array} [f(y)/z] \end{array}$$

• Inference on ¬*P*(*f*(*f*(*y*)) and *P*(*f*(*z*)) which are are selected, unifiable and complementary.

First-order clauses $\neg Q(f(x))$ $\neg P(f(f(y)))$ $P(f(z)) \lor Q(z)$ $P(f(f(u))) \lor Q(f(u))$



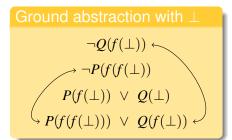
Christoph Sticksel Instantiation-based Methods, Equality and Theory Reasoning

Inst-Gen Inference

$$\begin{array}{c|c} \neg P(f(f(y)) & P(f(z)) \lor Q(z) \\ \hline \neg P(f(f(y)) & P(f(f(y)) \lor Q(f(y)) \\ \end{array} [f(y)/z] \end{array}$$

• Inference on ¬*P*(*f*(*f*(*y*)) and *P*(*f*(*z*)) which are are selected, unifiable and complementary.

First-order clauses $\neg Q(f(x))$ $\neg P(f(f(y)))$ $P(f(z)) \lor Q(z)$ $P(f(f(u))) \lor Q(f(u))$



Christoph Sticksel

Instantiation-based Methods, Equality and Theory Reasoning

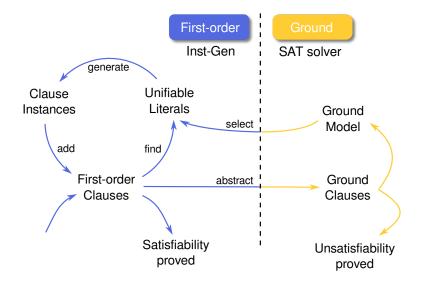
Inst-Gen Modulo Equality

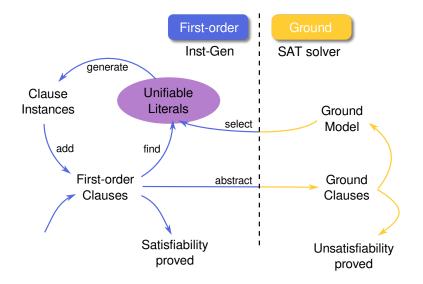
- · Unifiable complementary literal pairs not sufficient
- · Set of literals of any size can be contradictory

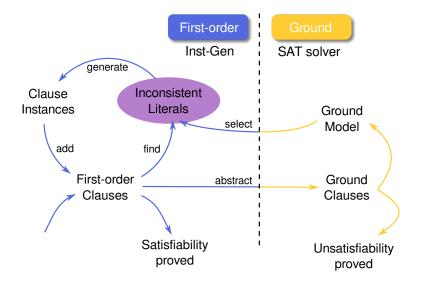
 $\{ f(x) \not\simeq f(a) \}$ $\{ f(x) \simeq a, \quad f(a) \not\simeq a \}$ $\{ h(y) \simeq y, \quad f(h(x)) \simeq c, \quad f(a) \not\simeq c \}$

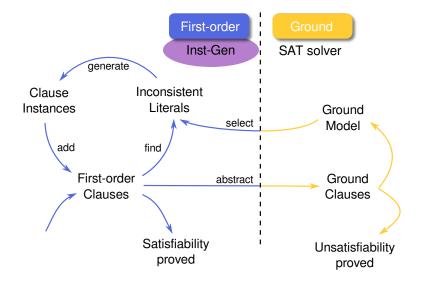
- Obvious step from Resolution to Paramodulation to generate instances is incomplete
- Instance generation from superposition-style proofs instead of atomic Inst-Gen inference rule
- Ground solver modulo equality (SMT solver)

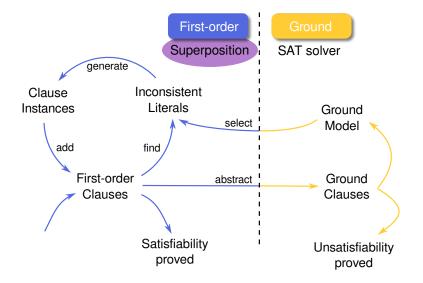
The Inst-Gen Method

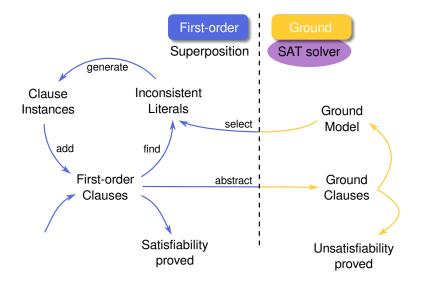


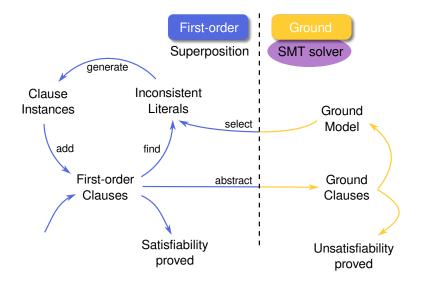




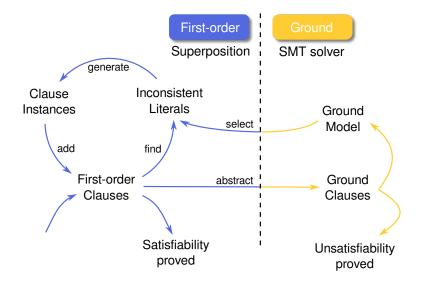




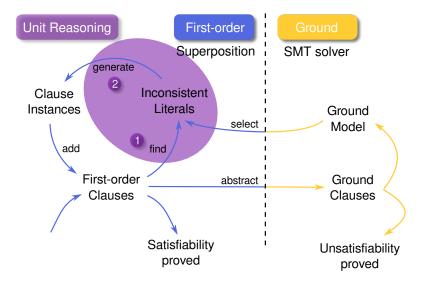




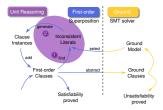
The Inst-Gen-Eq Method



The Inst-Gen-Eq Method



Efficient Unit Reasoning with Selected Literals

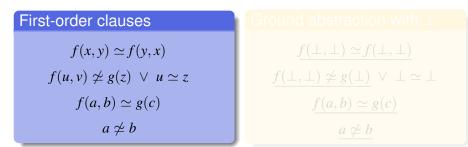


Main problems

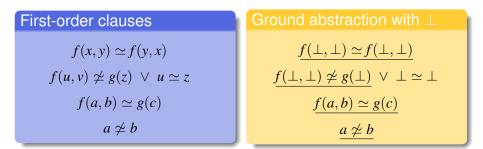
- Find inconsistent literals with superposition reasoning
- ② Generate clause instances from superposition proofs
- All (non-redundant) proofs needed for completeness

Our solution

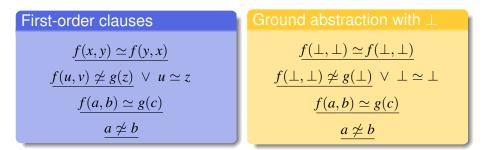
- Labelled Unit Superposition
 - Set labels
 - AND/OR tree labels
 - OBDD labels



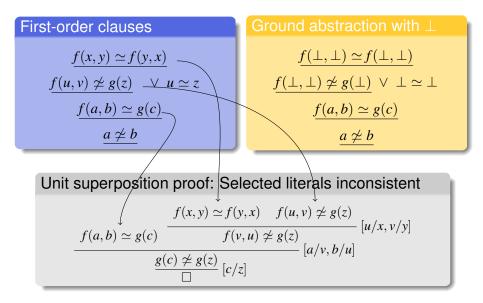
Unit superposition proof: Selected literals inconsistent $\frac{f(a,b) \simeq g(c)}{\frac{f(a,b) \simeq g(c)}{\Box}} \frac{f(x,y) \simeq f(y,x) \quad f(u,v) \not\simeq g(z)}{f(v,u) \not\simeq g(z)} \frac{[u/x,v/y]}{[u/x,v/y]}$



Unit superposition proof: Selected literals inconsistent $\frac{f(a,b) \simeq g(c)}{\frac{f(x,y) \simeq f(y,x) \quad f(u,v) \not\simeq g(z)}{f(v,u) \not\simeq g(z)}} \frac{[u/x,v/y]}{[u/x,v/y]}$



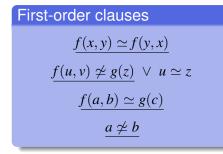
Unit superposition proof: Selected literals inconsistent $\frac{f(a,b) \simeq g(c)}{\frac{f(x,y) \simeq f(y,x) \quad f(u,v) \neq g(z)}{f(v,u) \neq g(z)}} \frac{[u/x,v/y]}{[u/x,v/y]}$ $\frac{g(c) \neq g(z)}{\Box} \frac{[c/z]}{[c/z]}$



Unit superposition proof: Substitution extraction

$$\frac{f(a,b) \simeq g(c)}{\frac{f(x,y) \simeq f(y,x) \quad f(u,v) \neq g(z)}{f(v,u) \neq g(z)}} \frac{[u/x,v/y]}{[u/x,v/y]}$$

$$\frac{g(c) \neq g(z)}{\Box} \frac{[c/z]}{[c/z]}$$



New first-order instances

 $f(b,a) \simeq f(a,b)$ $f(b,a) \neq g(c) \lor b \simeq c$

Instantiation-based Methods, Equality and Theory Reasoning

Unit superposition proof: Substitution extraction

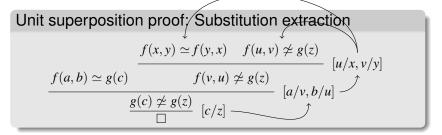
$$\frac{f(a,b) \simeq g(c)}{\frac{f(x,y) \simeq f(y,x) \quad f(u,v) \neq g(z)}{f(v,u) \neq g(z)} [u/x,v/y]} \frac{[u/x,v/y]}{\int \frac{g(c) \neq g(z)}{\Box} [c/z]}$$

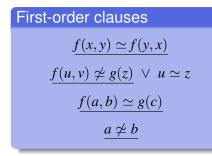
First-order clauses $\frac{f(x, y) \simeq f(y, x)}{f(u, v) \neq g(z)} \lor u \simeq z$ $\frac{f(a, b) \simeq g(c)}{a \neq b}$

New first-order instances

$$f(b,a) \simeq f(a,b)$$
$$f(b,a) \neq g(c) \lor b \simeq c$$

Instantiation-based Methods, Equality and Theory Reasoning





New first-order instances

$$f(b,a) \simeq f(a,b)$$

 $f(b,a) \not\simeq g(c) \lor b \simeq c$

Unit superposition proof; Substitution extraction

$$f(x,y) \simeq f(y,x) - f(u,v) \neq g(z) \qquad [u/x, v/y]$$

$$f(x,y) \simeq g(z) \qquad f(v,u) \neq g(z) \qquad [u/x, v/y]$$

$$g(z) \neq g(z) \qquad [a/v, b/u]$$

Firs -order clauses

$$\underbrace{f(x, y) \simeq f(y, x)}_{f(u, v) \not\simeq g(z)} \lor u \simeq z$$

$$\underbrace{f(u, v) \not\simeq g(z)}_{f(a, b) \simeq g(c)} \lor u \simeq z$$

New first-order instances

$$f(b,a) \simeq f(a,b)$$
$$f(b,a) \not\simeq g(c) \lor b \simeq c$$

Inst-Gen-Eq: (2) Generating Instances

Unit superposition proof; Substitution extraction

$$f(x,y) \simeq f(y,x) - f(u,v) \neq g(z) \qquad [u/x,v/y]$$

$$f(x,y) \simeq g(z) \qquad f(v,u) \neq g(z) \qquad [u/x,v/y]$$

$$g(z) \neq g(z) \qquad [a/v,b/u]$$

First-order clauses

$$f(x,y) \simeq f(y,x)$$

$$f(u,v) \neq g(z) \lor u \simeq z$$

$$f(a,b) \simeq g(c)$$

$$a \neq b$$

New first-order instances

$$\begin{aligned} f(b,a) \simeq f(a,b) \\ f(b,a) \not\simeq g(c) \ \lor \ b \simeq c \end{aligned}$$

Christoph Sticksel

Instantiation-based Methods, Equality and Theory Reasoning

Proof of inconsistency (1)

$$\frac{f(a,b) \simeq g(c)}{\frac{f(x,y) \simeq f(y,x) \qquad f(u,v) \not\simeq g(z)}{f(v,u) \not\simeq g(z)} \frac{[u/x,v/y]}{[u/x,v/y]}}{\frac{g(c) \not\simeq g(z)}{\Box} \frac{[c/z]}{[c/z]}}$$

Proof of inconsistency (2)

$$\frac{f(a,b) \simeq g(c) \qquad f(u,v) \not\simeq g(z)}{\frac{g(c) \not\simeq g(z)}{\Box} [c/z]} [a/u, b/v]$$

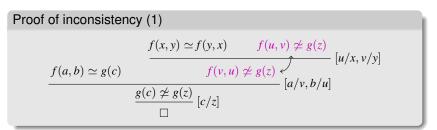
Instances from proof (1

 $f(b,a) \simeq f(a,b)$ $f(b,a) \not\simeq g(c) \lor b \simeq c$ Instances from proof (2)

 $f(a,b) \not\simeq g(c) \lor a \simeq c$

Christoph Sticksel

Instantiation-based Methods, Equality and Theory Reasoning



Proof of inconsistency (2)

$$\frac{f(a,b) \simeq g(c) \qquad f(u,v) \not\simeq g(z)}{\frac{g(c) \not\simeq g(z)}{\Box} [c/z]} [a/u, b/v]$$

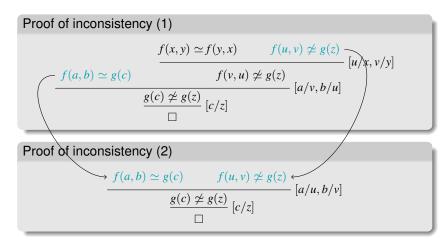
Instances from proof (1)

 $f(b,a) \simeq f(a,b)$ $f(b,a) \not\simeq g(c) \lor b \simeq c$ Instances from proof (2)

 $f(a,b) \not\simeq g(c) \lor a \simeq c$

Christoph Sticksel

Instantiation-based Methods, Equality and Theory Reasoning



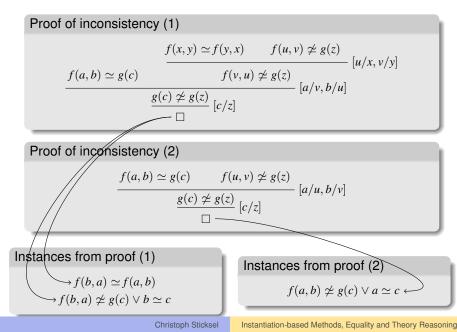
Instances from proof (1)

 $f(b,a) \simeq f(a,b)$ $f(b,a) \not\simeq g(c) \lor b \simeq c$ Instances from proof (2)

 $f(a,b) \not\simeq g(c) \lor a \simeq c$

Christoph Sticksel

Instantiation-based Methods, Equality and Theory Reasoning



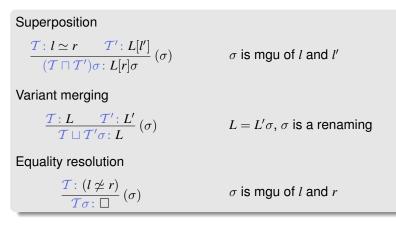
The Labelling Approach

- Distinguish literal variants by labels
- Explicit *merging* inference to combine variants Components
- Closure $C \cdot \theta$: clause C and substitution θ
- Initially $\{C \cdot []\}: L$ where L is selected in C
- Label of contradiction \square contains instances to be added

Advantages

- Eager extraction of instances after each inference in label
- Uniform treatment of literal variants
- Preserve proof structure for redundancy elimination

Inference Rules in Labelled Unit Superposition



- No labels in side conditions
- $\hfill \sqcap$ and $\hfill \dashv$ dependant on implementation of labels
- Label ${\mathcal T}$ is either a set, an AND/OR tree or an OBDD

· Label is a set of closures

Superposition

• Set union \cup in both merging \sqcup and superposition \sqcap

$\frac{\{C \cdot []\}: f(x,y) \simeq f(y,x) \quad \{D \cdot []\}: f(u,v) \not\simeq g(z)}{\{C \cdot [u/x, v/y], D \cdot []\}: f(v,u) \not\simeq g(z)} [u/x, v/y]$

Merging $f(u, v) \not\simeq g(z)$ and $f(v, u) \not\simeq g(z)$ with [u/v, v/u] $\{D \cdot [], C \cdot [v/x, u/y], D \cdot [u/v, v/u]\} : f(u, v) \not\simeq g(z)$

Label of the contradiction \Box { $D \cdot [a/u, b/v, c/z], E \cdot [], C \cdot [b/x, a/y], D \cdot [b/u, a/v, c/z]$ }

· Label is a set of closures

Superposition

• Set union \cup in both merging \sqcup and superposition \sqcap

$\frac{\{C \cdot []\}: f(x,y) \simeq f(y,x) \quad \{D \cdot []\}: f(u,v) \not\simeq g(z)}{\{C \cdot [u/x, v/y], D \cdot []\}: f(v,u) \not\simeq g(z)} [u/x, v/y]$

Merging $f(u, v) \not\simeq g(z)$ and $f(v, u) \not\simeq g(z)$ with [u/v, v/u] $\{D \cdot [], C \cdot [v/x, u/y], D \cdot [u/v, v/u]\} : f(u, v) \not\simeq g(z)$

Label of the contradiction \Box { $D \cdot [a/u, b/v, c/z], E \cdot [], C \cdot [b/x, a/y], D \cdot [b/u, a/v, c/z]$ }

- Label is a set of closures
- Set union \cup in both merging \sqcup and superposition \sqcap

Superposition $\frac{\{C \cdot []\}: f(x, y) \simeq f(y, x) \quad \{D \cdot []\}: f(u, v) \neq g(z)}{\{C \cdot [u/x, v/y], D \cdot []\}: f(v, u) \neq g(z)} [u/x, v/y]$

Merging $f(u, v) \not\simeq g(z)$ and $f(v, u) \not\simeq g(z)$ with [u/v, v/u] $\{D \cdot [], C \cdot [v/x, u/y], D \cdot [u/v, v/u]\} : f(u, v) \not\simeq g(z)$

Label of the contradiction \Box

 $\{D \cdot [a/u, b/v, c/z], E \cdot [], C \cdot [b/x, a/y], D \cdot [b/u, a/v, c/z]\}$

Label is a set of closures

Superposition

- Set union \cup in both merging \sqcup and superposition \sqcap

$\frac{\{C \cdot []\}: f(x,y) \simeq f(y,x) \quad \{D \cdot []\}: f(u,v) \neq g(z)}{\{C \cdot [u/x, v/y], D \cdot []\}: f(v,u) \neq g(z)} [u/x, v/y]$

Merging $f(u, v) \not\simeq g(z)$ and $f(v, u) \not\simeq g(z)$ with [u/v, v/u] $\{D \cdot [], C \cdot [v/x, u/y], D \cdot [u/v, v/u]\} : f(u, v) \not\simeq g(z)$

Label of the contradiction \Box

 $\{D \cdot [a/u, b/v, c/z], E \cdot [], C \cdot [b/x, a/y], D \cdot [b/u, a/v, c/z]\}$

- Label is a set of closures
- Set union \cup in both merging \sqcup and superposition \sqcap

Superposition $\frac{\{C \cdot []\}: f(x, y) \simeq f(y, x) \quad \{D \cdot []\}: f(u, v) \not\simeq g(z)}{\{C \cdot [u/x, v/y], D \cdot []\}: f(v, u) \not\simeq g(z)} [u/x, v/y]$

Merging $f(u, v) \not\simeq g(z)$ and $f(v, u) \not\simeq g(z)$ with [u/v, v/u] $\{D \cdot [], C \cdot [v/x, u/y], D \cdot [u/v, v/u]\} : f(u, v) \not\simeq g(z)$

Label of the contradiction \Box

 $\{D \cdot [a/u, b/v, c/z], E \cdot [], C \cdot [b/x, a/y], D \cdot [b/u, a/v, c/z]\}$

• Label is a set of closures

Superposition

- Set union \cup in both merging \sqcup and superposition \sqcap

$\frac{\{C \cdot []\}: f(x,y) \simeq f(y,x) \quad \{D \cdot []\}: f(u,v) \not\simeq g(z)}{\{C \cdot [u/x, v/y], D \cdot []\}: f(v,u) \not\simeq g(z)} [u/x, v/y]$

Merging $f(u, v) \not\simeq g(z)$ and $f(v, u) \not\simeq g(z)$ with [u/v, v/u] $\{D \cdot [], C \cdot [v/x, u/y], D \cdot [u/v, v/u]\} : f(u, v) \not\simeq g(z)$

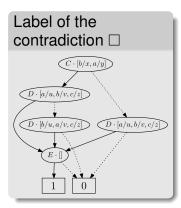
Label of the contradiction \Box

 $\{D \cdot [a/u, b/v, c/z], E \cdot [], E \cdot [], C \cdot [b/x, a/y], D \cdot [b/u, a/v, c/z]\}$

- Preserve Boolean structure of proofs
- Closure is a propositional variable in an AND/OR tree
- Conjunction \wedge in superposition, disjunction \vee in merging



OBDD Labelled Unit Superposition

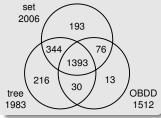


Disadvantages of trees

- Not produced in normal form
- Sequence of inferences determines shape
- Potential growth ad infinitum
- OBDD as normal form
- Maintenance effort
- Reordering required

Evaluation: Sets vs. Trees vs. OBDDs

Number of solved problems



Features			
	Normal form	Precise elim.	
Sets	yes	no	
Trees	no	yes	
OBDDs	yes	yes	

- TPTP v4.0.1
- Equational problems only

Towards Theory Reasoning

- Superposition and rewriting approaches to reasoning modulo theories exist
- Unit reasoning modulo theory \mathcal{T} on selected literals to generate instances:

$$L_1,\ldots,L_n\models_{\mathcal{T}}\Box$$

find substitutions σ_i such that

$$L_1\sigma_1\bot,\ldots,L_n\sigma_n\bot\models_{\mathcal{T}}\square$$

- Use ground solver modulo $\ensuremath{\mathcal{T}}$
- Satisfiability of ground abstraction may be undecidable

Lemma Generation from Labels

• Relax requirement on ground solver:

```
L_1\sigma_1\perp,\ldots,L_n\sigma_n\perp\models_{\mathcal{T}}\square
```

- Add lemma to preclude this
- Ground solver modulo a weaker theory than unit reasoning
- More burden on unit reasoning: selected literals can be ground inconsistent modulo $\ensuremath{\mathcal{T}}$

Encouraging results

- iProver-Eq with SAT solver
- Generate lemma from tree or OBDD label
- Incomplete with set labels

Instantiation-based reasoning à la Inst-Gen

Contributions in current work

- · Labelled unit superposition for efficient unit reasoning
- Different label structures: sets, trees, OBDDs
- Implementation in *iProver-Eq*
- Evaluation on TPTP v4.0.1

Future Work

- Hybrid labels
- Unit calculi for theory reasoning
- Lemma generation