
iProver-Eq: An Instantiation-Based Theorem Prover with Equality

Konstantin Korovin?
?University of Manchester
korovin@cs.man.ac.uk

Christoph Sticksel†
†University of Manchester

csticksel@cs.man.ac.uk

1 Introduction
Instantiation-based methods are a class of deduction cal-
culi for first-order clausal logic. The common idea is to
instantiate clauses and to employ efficient propositional or
more general ground reasoning methods in order to prove
unsatisfiability or to find a model. Among other important
properties, Instantiation-based methods naturally decide
the first-order logic fragment of effectively propositional
logic (EPR) which has interesting applications (see, e.g.,
Baumgartner (2007) for an overview).

iProver-Eq is an implementation of an instantiation-
based calculus Inst-Gen-Eq which is complete for first-
order logic with equality and decides the EPR fragment
modulo equality. The system is an extension of the suc-
cessful iProver system and preserves the characteristic
feature of combining first-order reasoning with efficient
ground satisfiability checking where the latter is delegated
in a modular way to any state-of-the-art SMT solver, i.e.
a solver for ground satisfiability modulo theories.

In the following we outline the iProver-Eq system and
present its calculus for equational reasoning to generate
instances.

2 System Overview
The basic idea of the Inst-Gen method, introduced in
Ganzinger and Korovin (2003), is as follows. The set of
first-order clauses is abstracted to a set of ground clauses
by mapping all variables to the same ground term. An
SMT solver is harnessed to check if the ground abstrac-
tion of the clauses is unsatisfiable, in which case the set of
first-order clauses is also unsatisfiable. Otherwise, there
is a ground model for the abstraction that is used to guide
an instantiation process. The model is represented as a
set of abstracted literals and an attempt is made to extend
it to a model of the first-order clauses by reasoning on
the first-order literals corresponding to the abstracted lit-
erals in the model. When this fails, new (not necessarily
ground) instances of clauses are generated in a way that
forces the ground solver to refine the model in the next
iteration.

The saturation process in iProver-Eq is outlined in Fig-
ure 1. Two major components there are unit superposition
for equational reasoning on literals and an SMT solver for
ground reasoning, which are both non-trivial processes.
Unit superposition will be described in the next section.
The ground solver is regarded as a black box.

Figure 1: Saturation process in the iProver-Eq system

The saturation process is based on a given clause algo-
rithm, which partitions the set of clauses into two disjoint
sets, namely the Inst-Active and the Inst-Passive clauses.
Initially, there are no Inst-Active clauses, all input clauses
are considered to be new instances, their ground abstrac-
tions are passed to the ground solver which is then in-
voked to either return a model of the abstraction or to con-
clude its unsatisfiability. The new clauses are moved to
the Inst-Passive set from where in each step of the process
a clause, called the given clause, is chosen and put into the
Inst-Active set. Using the current model of the ground ab-
straction, one of the literals in the given clause is selected
and passed to the unit superposition calculus. If a subset
of the selected literals is found to be inconsistent by the
unit superposition calculus, then corresponding instances
of clauses are added to the set of new clauses. The process
continues by adding the abstractions of the new clauses to
the SMT solver, running the solver on the extended set of
ground clauses and moving the new clauses to the Inst-
Passive set. The process maintains the invariant that the
ground abstractions of the selected literals in the set of
Inst-Active clauses are consistent and have been passed to
the unit superposition component. iProver-Eq terminates
with a result of unsatisfiable if the ground solver reports
an unsatisfiable abstraction. If the Inst-Passive clause set
is empty and the selected literals are consistent as stated
by the unit superposition component, iProver-Eq termi-
nates with the result satisfiable.

3 The Unit Superposition Calculus
If the set of selected (not necessarily ground) literals is
consistent, a model for the set of Inst-Active clauses ex-

Selection

{C} | D : L

where C ∈ S and sel(C) = L and D is a constraint on clause C

Superposition

`1 | D1 : l ' r `2 | D2 : L[l′]
(θ)

(`1 ∪ `2)θ | (D1 ∧D2)θ : L[r]θ

where L[l′] = u[l′] ' v or L[l′] = u[l′] 6' v and (i) θ = mgu(l, l′),
(ii) l′ is not a variable and (iii) for some grounding substitution µ
(iiia) lθµ � rθµ, (iiib) u[l′]θµ � vθµ and (iiic) µ satisfies the con-
straint (D1 ∧D2)θ

Equality Resolution

` | D : l 6' r
(θ)

` : �
where θ = mgu(l, r) and satisfies the constraint D

Figure 2: Labelled Unit Superposition

ists and it has thus been proved satisfiable. Otherwise,
there is an inconsistent subset of the selected literals. The
clauses that these literals are selected in are instantiated
such that the inconsistency is witnessed by the ground ab-
straction. For non-equational literals it suffices to search
for unifiable complementary literal pairs. However, in
the presence of equations, we apply the unit superposi-
tion calculus in order to find inconsistent literals and to
obtain clause instances.

For simplicity, we only consider pure equational logic
where all atoms are equations, different clauses are as-
sumed to be variable-disjoint. The inference rules of the
unit superposition calculus are shown in Figure 2 and are
similar to the standard superposition calculus, see, e.g.,
Nieuwenhuis and Rubio (1999).

Each literal in the calculus has a label consisting of a
set of clauses and a constraint that is used for redundancy
elimination which we will not describe here. When the
selected literal of the given clause is received, we label
it with the given clause and a constraint. The conclusion
of an inference is labelled with the union of the labels of
its premises where the unifier θ has been applied to each
clause. The constraint is the conjunction of the constraints
of its premises where again the unifier θ has been applied.

Ganzinger and Korovin (2004) originally defined the
unit paramodulation calculus and a way to extract instan-
tiating substitutions from proofs. Our addition of labels to
literals replaces their extraction of substitutions. Instead
of having to trace a proof tree to the literals at its leaves
in order to obtain substitutions to be applied to clauses,
our labels directly display the clause instances while still
allowing for constraint notions to eliminate redundancy.

The conditions on applicability of an inference are in-
dependent of labels which are thus merely an annotation
to facilitate the generation of clause instances from sets of
inconsistent literals. Therefore, the same literal with dif-
ferent labels has the same conclusions. Further, it is well
known from paramodulation approaches, that all variants

of a literal allow the same inferences with conclusions
that are variants of each other. Obviously, one wants to
combine all labels of all variants of a literal in order to
avoid duplicating the search for possible inferences for
each literal. Although it is possible to merge all labels into
one set of clauses, the challenge is to compactly represent
combined labels in a way that preserves the constraint no-
tions.

4 Conclusion
In general, not all optimisations from standard para-
modulation-based calculi can be lifted to the unit super-
position calculus. We have to take care not to omit clause
instances that are required by the ground solver to witness
inconsistency of its model. Nevertheless, our labelled cal-
culus enables simplification by demodulation and there is
a powerful semantic notion of redundancy which can be
used to justify further techniques.

iProver-Eq makes use of state-of-the-art implementa-
tion techniques like term indexing for unification. It is
reasonably efficient on the TPTP benchmark although it
is in an early stage.

Acknowledgements
Our work is based on the iProver system, as in described
in Korovin (2008) and Korovin and Sticksel (2010). We
thank Renate Schmidt for helpful discussions.

References
Peter Baumgartner. Logical Engineering with Instance-

Based Methods. In CADE-21, volume 4603 of LNAI,
pages 404–409. Springer, 2007.

Harald Ganzinger and Konstantin Korovin. New Direc-
tions in Instantiation-Based Theorem Proving. In LICS
2003, pages 55–64. IEEE, 2003.

Harald Ganzinger and Konstantin Korovin. Integrating
Equational Reasoning into Instantiation-Based Theo-
rem Proving. In CSL 2004, volume 3210 of LNCS,
pages 71–84. Springer, 2004.

Konstantin Korovin. iProver - An Instantiation-Based
Theorem Prover for First-Order Logic (System De-
scription). In IJCAR 2008, volume 5195 of LNCS,
pages 292–298. Springer, 2008.

Konstantin Korovin and Christoph Sticksel. iProver-eq –
An Instantiation-based Theorem Prover with Equality.
submitted to IJCAR 2010, 2010.

Robert Nieuwenhuis and Albert Rubio. Paramodulation-
based theorem proving. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning.
Elsevier, 1999.

