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Abstract

Conducting bioinformatic analyses involves biologists in
expressing requests over a range of highly heterogeneous
information sources and software tools. Such activities are
laborious, and require detailed knowledge of the data struc-
tures and call interfaces of the different sources. The TAM-
BIS (Transparent Access to Multiple Bioinformatics Infor-
mation Sources) project seeks to make the diversity in data
structures, call interfaces and locations of bioinformatics
sources transparent to users. In TAMBIS, queries are ex-
pressed in terms of an ontology implemented using a de-
scription logic, and queries over the ontology are rewritten
to a middleware level for execution over the diverse sources.
This paper describes query processing in TAMBIS, focusing
in particular on the way source-independent concepts in the
ontology are related to source-dependent middleware calls,
and describing how the planner identifies efficient ways of
evaluating user queries.

1. Introduction

Bioinformatics is the use of computational techniques
for the consolidation and analysis of experimental data in
biology. The bioinformatics community is distributed, and
has a history of sharing both data and software tools. This
means that much useful information is available, and that
powerful analysis tools are readily accessible to biologists
on the internet. The development of a global bioinformatics
infrastructure has, however, been piecemeal, and disparate
sources and tools are often poorly integrated and difficult to
use together. Furthermore, the bioinformatics community
has enthusiastically embraced the WWW as a way of mak-
ing individual sources more accessible to remote users, but
this has often led to an emphasis on interactive browsing
that mitigates against effective interoperation or program-

matic access to information.

Information sources for bioinformatics thus exhibit clas-
sical characteristics of autonomous, heterogeneous environ-
ments. As many bioinformatic analyses need to make use
of multiple information sources, the problem of providing
effective integrated access to such sources has become an
important one in the community. Different approaches have
been adopted. For example, SRS [9] provides an integrated
browser interface and a rudimentary query language for a
range of important information sources, but does not hide
from users the formats and conventions of the integrated
sources. OPM [7] uses a database view mechanism to de-
fine a global schema over a collection of sources that can be
relational databases or structured files. OPM views can be
used to hide individual sources, although, unlike TAMBIS,
the global schema is described using an object data model,
and the integration methodology is very much bottom-up.
CPL [5] comes with a library of functions that supports a
syntactically consistent view of biological sources, plus a
comprehension based query language for combining infor-
mation derived from the sources. P/FDM [12] combines
database functionality with source specific entity types and
functions that are used to wrap a range of sources, which
are generally databases. Current support for source inte-
gration in CPL and P/FDM tends not to emphasise source
transparency, which is an aim of the work described here.

This paper describes how queries are processed in TAM-
BIS (Transparent Access to Biological Information Sources
[2]). TAMBIS is an ontology centred system for evaluating
queries that require access to multiple heterogeneous bioin-
formatics sources. In TAMBIS, queries are written using
a form-based interface over a source-independent ontology
of bioinformatics concepts. The ontology [3] is expressed
using the description logic GRAIL [16], and the TAMBIS
system transforms source independent GRAIL queries to
source dependent query plans in CPL. A GRAIL query is
essentially a description of a set of instances, but no in-



stances are stored with the concept model. It is thus the role
of the query processor to construct an execution plan from a
GRAIL query so that the illusion is provided to the user that
they have access to a single, local instance store. This paper
describes how user queries written in terms of the ontology
are transformed into source-dependent CPL queries, taking
into account the sources available and the likely efficiency
of the generated plans.

The TAMBIS system can thus be seen as being quite am-
bitious both in terms of what it seeks to do and in terms of
the technologies on which it builds. TAMBIS allows users
to express queries over sources without the users needing to
be aware of the location, capabilities, data types or program-
ming interfaces of the sources. TAMBIS also seeks to use
modern knowledge representation technologies to provide
users with a clear, conceptual level view of bioinformatics,
rather than the more logical or physical views provided by
most earlier proposals. The TAMBIS system is currently
being evaluated over the WWW by a range of biologists; it
is hoped to provide general public access later in the year 1.

This paper is organised as follows. Section 2 provides
an overview of the TAMBIS system, and in particular the
components other than those relating to query processing.
Section 3 outlines the sources and services model, which
associates terms from the ontology with functions in CPL.
Section 4 describes how GRAIL queries are translated into
an internal form used for optimisation. Section 5 describes
both the optimiser algorithm and the mappings it carries
out. Section 6 describes how CPL programs are gener-
ated from the optimised internal form. Section 7 compares
query processing in TAMBIS with query processing in other
knowledge based information integration systems. Section
8 presents some conclusions and pointers to future work.

2. TAMBIS Overview

The architecture of TAMBIS is illustrated in figure 1.
The solid arrows represent the passage of a query through
the system, and the dashed arrows represent the use of in-
formation models. Details on the different components are
provided throughout the paper.

2.1. The Ontology

The TAMBIS ontology is expressed using the descrip-
tion logic GRAIL [16]. A description logic (DL) [4] is
a structural knowledge representation language in which
concepts are automatically arranged in a lattice on the ba-
sis of the ‘subsumption’ relationship between their descrip-
tions. This essentially means that instead of asserting that

1Details of the WWW release are accessible from
http://img.cs.man.ac.uk/tambis.
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Figure 1. TAMBIS architecture.

C1 is� a� kind� of C2, the modeller describes the con-
cepts C1 andC2 and the system infers the is�a�kind�of
relationship. A GRAIL model can be considered to consist
of three parts:

1. Assertions: Assertions can be used to introduce new
concepts and to place concepts explicitly in the sub-
sumption lattice. For example:

BioPolymer newSub Protein
BioPolymer newSub NucleicAcid
NucleicAcid newSub DNA

declares that Protein and NucleicAcid are both
kinds of BioPolymer, and that DNA is a kind of
NucleicAcid. It is considered good practice when
modelling using description logics to make minimal
use of asserted subsumption relationships.

2. Concept forming operations and reasoning services:
Concepts can be described in GRAIL using the single
concept formation operation which. For example:

Motif which isComponentOf Protein

describes a particular kind of Motif (a motif is a pat-
tern in a sequence) that is found within a Protein. If
there is a need to refer to this concept regularly, it can
be given a name:

Motif which isComponentOf Protein
name ProteinMotif

There are also motifs that are found in things other than
proteins, for example, in DNA:

Motif which isComponentOf DNA
name DnaMotif
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The subsumption algorithm will automatically classify
both ProteinMotif and DnaMotif as kinds�of
motif, and will know that a ProteinMotif is not
a kind of DnaMotif, and vice-versa. To provide
some terminology that will be used later in the pa-
per, in the definition of DnaMotif, Motif is the
base concept, isComponentOf is a role, DNA is a
role filler, and the combination of the role and its filler
in isComponentOf DNA is a criterion. A concept
with criteria is known as a complex concept. A concept
without criteria is known as a primitive concept.

In general, a new concept can be defined as follows,
where Con is the name of a concept and and each C i

is a criterion:

Con which C1 ::: Cn

As concept descriptions can be quite complex, a rich
lattice of concepts can be constructed, in which some
concepts have many parents, and many concepts have
many children. GRAIL is not a particularly expressive
DL, however. For example, it supports neither nega-
tion nor disjunction in concept descriptions, and query
processing in TAMBIS operates in the context of the
closed world assumption. This considerably simplifies
query processing compared with more complex DLs,
which is particularly helpful in the context of hetero-
geneous external sources.

3. Sanctions: The concept forming operations cannot be
used in an unconstrained manner, but are restricted by
a number of sanctions that are applied to the model. In
essence, it would not be legitimate to create a new con-
cept Motif which isComponentOf Protein
unless the modeller has introduced a sanctioning state-
ment to indicate that it is plausible to think of motifs
as being components of proteins.

The sanctioning mechanism is used extensively during
query construction to prevent users from building se-
mantically meaningless query expressions, but has no
direct role during query processing, and so is not dis-
cussed further here. It does, however, ensure that only
biologically sensible queries are available to be rewrit-
ten.

The ontology is managed by the Grail terminology server
[11], which provides a range of concept representation and
reasoning services (e.g. for creating a concept, finding its
parents, etc). Both the user interface and the query proces-
sor run as clients of this server.

The current TAMBIS ontology, which is described in [3],
consists of around 1800 concepts and their relationships,
focusing in particular on proteins and nucleic acids (and

their various children – DNA, RNA, Gene, Enzyme, etc)
and things that can be said about these core concepts in the
bioinformatics sources. At the time of writing, the WWW
release of the TAMBIS system provides query processing
over bioinformatic sources for a reduced model containing
around 250 concepts and their relationships. These models
provide descriptions of bioinformatics concepts at a level of
detail broadly consistent with that provided by bioinformat-
ics sources.

Figure 2. Query builder with motif query.

2.2. The User Interface

The user interface for query construction is a Java applet
within which users explore the model, adding concepts and
criteria into the current query as they go. In description
logics, a concept can be viewed as a description of a set of
instances, and thus also viewed as a query.

The following is an example query, which asks for motifs
that are components of guppy proteins:

Motif which isComponentOf
Protein which hasOrganismClassification

Species:guppy

Species:guppy indicates that the user-defined value for
the concept Species in the query is guppy. This query
is built incrementally in the user interface. Firstly, the
user selects the base concept Motif, which appears in a
query builder window, an example of which is given in
figure 2. The user can then restrict the motifs in which
they are interested to those that are associated with spe-
cific criteria. In this case, a Motif is only of interest if it
isComponentOf a Protein. This restriction is placed
on Motif by selecting a restrict option from a popup menu
on the Motif button in the query builder. This leads to a
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list of the criteria defined on motif being displayed, from
which the user can make selections. A screenshot of the
final representation of the query is given in figure 2.

2.3. The Wrappers

The output from the TAMBIS system is a query plan
written in CPL [5]. CPL (Collection Programming Lan-
guage) is a comprehension based language with data types
for representing arbitrarily nested sets, bags, lists, records
and variants. An example CPL query, which retrieves all
motifs in guppy proteins, is as follows:

{m |
\p<-get-sp-entry-by-os("guppy"),
\m<-do-prosite-scan-by-entry-rec(p)}

In the query, the part before the | is the projection expres-
sion, which in this case indicates that only the motifs m are
of interest. The two function calls in the body of the query
to the right of the | are generators, which retrieve values
from distinct, wrapped sources. The first line in the query
body indicates that the new variable p is to be bound in
turn to each of the values that result from the evaluation of
the function get-sp-entry-by-os with the parameter
guppy. The function name can be read as get SwissProt en-
try by organism source, where SwissProt is an information
source containing data about proteins. The second function
call binds the variable m in turn to each of the motifs of the
proteins bound to p. The function name can be read as scan
the prosite database for motifs in the given protein record.
Running this example query using TAMBIS in Manchester
(connecting to remote sources – SwissProt is in Switzer-
land) typically takes around 25 seconds.

The CPL system is supplied with function libraries that
provide access to a range of bioinformatics sources of dif-
ferent types (e.g. databases, analysis tools [5]). TAMBIS
uses these libraries, and a number that have been devel-
oped for TAMBIS, to provide a function based view of the
sources. The public release of TAMBIS currently accesses
5 sources, and uses a total of around 300 CPL functions.
Preliminary results have been obtained using the larger con-
cept model with as many as 15 sources.

CPL can be seen as providing syntactically consistent,
but not source transparent, access to the sources, and thus
we view CPL as a wrapping mechanism tightly coupled
with convenient language facilities for accumulating and
transmitting results from different sources.

3. Sources and Services Model

The sources and services model (SSM) stores the rela-
tionships between the concepts and roles in the ontology
and the functions used to wrap sources in CPL. In the SSM,

the ontology is used to index the CPL functions used to eval-
uate queries written in terms of the ontology. The SSM con-
tains descriptions of three broad categories of information:
iterators that retrieve instances of concepts from sources,
role evaluators that retrieve or compute values for the roles
of instances, and filters that are used to discard instances
that are not relevant to the query.

The query processor consults the SSM to identify what
options are available for evaluating a query, and to generate
the CPL program that answers a query.

3.1. Relating Concepts and Roles to Functions

The description of each CPL Function in the SSM has
six attributes: < name: String – the name of the function;
arguments: List of TypeName – the names given to the CPL
types of the arguments of the function; resultType: Type-
Name – the name given to the CPL result type for the func-
tion; cardinality: Real – the average number of results gen-
erated by a call to the function; cost: Real the average re-
sponse time of the function in seconds; source: String – the
name of the source with which the function is associated >.

The following categories of mapping information are
supported within the SSM:

1. Instantiable concepts: An instantiable concept is one
for which users may provide a value within a query.
For example, an instance of Species is a value that
could either be retrieved from a source or provided by
the user. The SSM for each instantiable concept has
two attributes: < name: ConceptName – the name of
the concept; prompt: String – the prompt used in the
interface to request the value from the user >. For
example: < name : Species; prompt : “Type in
the latin name or common name of a species” >.

2. Iteration: Iteration allows the instances of a concept
to be iterated over. For example, the instances of
Protein can be obtained from SwissProt. The SSM
for each iterator has two attributes: < name: Concept
– the name or description of the concept; function:
Function – the function used to perform the iteration
>. For example: < name : Protein; function :

< name : “get-all-sp-entries”; arguments : [];
resultType : “protein record”; cardinality : 80000;
cost : 8000.0; source : “SwissProt” > > 2.

3. Roles: Roles allow the evaluation of a role on an
instance to obtain a value for its filler. For exam-
ple, it is possible to obtain the AccessionNumber

2Some of the times provided in this paper are quite large – this reflects,
for example, the fact that SwissProt times are for accessing SwissProt in
Switzerland from Manchester over the Internet. We are currently installing
a range of heavily used sources locally, which will significantly improve
response times. We note that these times are features of the sources being
accessed, and not a feature of TAMBIS.
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of a Protein, given the Protein. The SSM
for role evaluation has three attributes: < concept-
Name: Concept – the name or description of the con-
cept on which the role is defined; criterion: Cri-
terion – the criterion that can be evaluated; func-
tion: Function – the function used to compute the
value for the role filler >. For example: < name :

Protein; rolename : hasAccessionNumber;
function : < name : “get-ac-from-sp-entry”;
arguments : [“protein record”]; resultType : “ac-
cession number”; cardinality : 1; cost : 0.01;
source : “” > >. The function used does not itself di-
rectly access a source, but rather accesses a data struc-
ture retrieved from a source by some other function.

4. Mapped Roles: Mapped roles are roles in which
the concept that is provided as the role filler can be
mapped to a scalar value that can be used as the argu-
ment to a CPL function that can in turn be used to gen-
erate instances of the original concept. For example,
an instance of Protein which hasFunction
Receptor can be retrieved from SwissProt by re-
trieving entries with receptor in their keyword field.
This involves mapping the concept name Receptor
to the corresponding keyword in the relevant source
(in this case the mapping is trivial, but in practice
a table lookup must be performed). The SSM for
mapped roles has two attributes: < concept: Con-
cept – the description of the concept with the rele-
vant criterion; function: Function – the function used
to retrieve instances of the concept >. For example:
< concept : Protein which hasFunction
BiologicalFunction; function : < name :

“get-sp-entries-by-kwd”; arguments : [“string”];
resultType : “protein record”; cardinality : 16000;
cost : 640.0; source : “SwissProt” > >. This def-
inition is relevant to the example Protein which
hasFunction Receptor because Receptor is
a kind of BiologicalFunction.

5. Filters: When instances of a concept have been
retrieved, for example by iteration, criteria in the
query may be used to discard some of the in-
stances. For example, given an instance of Protein
in the query Protein which hasFunction
Hydrolase, the instance of Protein must be
checked to see if it hasFunction Hydrolase.
The SSM for filters has two attributes: < con-
cept: Concept – the description of the concept in-
cluding the criterion; function: Function – the func-
tion used to carry out the filtering >. For example:
< concept : Protein which hasFunction
Hydrolase; function : < name : “check-sp-entry-
for-hydrolase”; arguments : [“protein record”];

resultType : “boolean”; cardinality : 0.1; cost :

0.01; source : “” > >. The cardinality of a filter is
always less than 1.0 – in essence the cardinality of a
function that is used as a filter is an indication of the
selectivity of the filter.

6. Mapped Filters: Mapped filters play the same role
as standard filters, except that an argument value
for the CPL function is obtained by mapping the
name of the concept that is the role filler in the
query onto a scalar value, as in Mapped Roles.
For example, in the query Protein which
isAssociatedWithProcess Lactation,
the process name Lactation can be mapped
(trivially in this case) to the string lactation, which
can be checked for in a SwissProt record. The
SSM for mapped filters has the same two attributes
as Filters, but the CPL functions have two ar-
guments. For example: < concept : Protein
which isAssociatedWithProcess
BiologicalProcess; function : < name :

“check-sp-entry-for-process”; arguments : [“pro-
tein record”, “String”]; resultType : “boolean”;
cardinality : 0.2; cost : 0.01; source : “” > >. This
definition is relevant to the example Protein
which isAssociatedWithProcess
Lactation because the concept Lactation
is a kind of BiologicalProcess.

7. Kind-of Filters: Where the subsumption lattice has
been asserted, it is sometimes the case that instances
of a concept are retrieved using a mechanism that gen-
erates instances of a parent concept of the concept
that appears in the query. For example, a function
may have retrieved an instance of Motif, whereas
the query specified a SulphationSite, where a
SulphationSite is a kind if Motif. In this
event, it is necessary to insert a filter that discards in-
stances of Motif that are not SulphationSites.
The SSM for kind-of filters has three attributes: <

parentConcept: Concept – the name of the par-
ent concept; childConcept: Concept – the name of
the child concept; function: Function – the func-
tion used to carry out the filtering >. For exam-
ple: < parentConcept : Motif; childConcept:
SulphationSite; function : < name : “check-
ps-entry-in-sulphation-set”; arguments : [“mo-
tif record”]; resultType : “boolean”; cardinality :

0.1; cost : 0.01; source : “” > >.
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3.2. Other Features of the Sources and Services
Model

The most important information in the SSM is that de-
scribed in section 3.1. The two other aspects, which will
not be described in detail because of limited space are:

Mappings: There are a number of different forms of map-
ping, for example, single valued mappings (concept�
source ! String), set valued mappings (concept �
source ! fStringg) and computed single and set
valued mappings. The first two of these are explic-
itly stored in lookup tables, and the third involves
consulting the ontology with a general concept, e.g.
Metal, and collecting its string mappable children
(e.g., Zinc, Iron, ...). These mappings are referred
to in section 5.2 as the function map.

Coercions: It is sometimes the case that the CPL function
used to obtain an instance of a concept retrieves a CPL
type that is unsuitable for use as an argument to a sub-
sequent function call. For example, a function might
retrieve the accession number of a protein, when a
subsequent function needs a protein record. Coercions
are CPL functions that can be used to obtain one repre-
sentation of an instance from another. These functions
may or may not require access to external sources.

4. Representing Queries Internally

GRAIL queries are declarative, in that the meaning of a
query is not dependent on the order of evaluation of its com-
ponents. As a result, the TAMBIS system, and not the user,
must take responsibility for identifying an efficient evalu-
ation order for the components of a GRAIL query. This
section describes how GRAIL queries are represented inter-
nally for the purposes of optimisation, and how this internal
representation is generated.

GRAIL queries are intrinsically nested structures. The
query internal form (QIF) used in TAMBIS can be seen
as an unnested representation of the original GRAIL query.
This representation has been developed to allow easier re-
ordering of the components of a query in the planner.

The QIF is a list of query components. Each query com-
ponent has five attributes: < theConcept: Concept – the
base concept to which this component relates; theCriteria:
Set of QIFCriterion – the criteria of theConcept; theVari-
able: String – the name of the variable to which instances
of theConcept will be bound; theTechnique: String – the
CPL function call to be used to retrieve instances of theCon-
cept; theFetchCriterion: QIFCriterion – the criterion from
theCriteria used to obtain instances of theConcept using
theTechnique >.

<name : Protein
theCriteria :

< theCriterion : isHomologousTo Enzyme
relatedComponent : component of enzyme-1
userV alue : “” >

< theCriterion :

hasOrganismClassification Species
relatedComponent : null
userV alue : “human” >

theV ariable : protein-1
theTechnique : “”
theFetchCriterion : null >

<name : Enzyme
theCriteria :

< theCriterion : hasCofactor Zinc
relatedComponent : null
userV alue : “” >

theV ariable : enzyme-1
theTechnique : “”
theFetchCriterion : null >

Figure 3. QIF for example query.

Criteria are represented by the type QIFCriterion in the
QIF. Each QIFCriterion has three attributes: < theCrite-
rion: Criterion – the GRAIL criterion that the QIFCriterion
represents; relatedComponent: QueryComponent – the (op-
tional) query component of the role filler; userValue: String
– the (optional) value provided by the user for the role filler
>.

For example, the following query finds human protein
homologues of zinc cofactor enzymes:

Protein which <
hasOrganismClassification Species:human
isHomologousTo

(Enzyme which hasCofactor Zinc)>

The < ... > syntax is used to group the multiple criteria
of the concept of which Protein is the base. The query
is represented by two query components, as described in
figure 3. The values for theTechnique and theFetchCriterion
are identified during optimisation.

Generation of the QIF from a GRAIL query is straight-
forward, and is carried out in a single pass over the query.
The translator starts from the query’s base concept, gen-
erates a query component for this concept, and then loops
through the criteria of the concept, calling itself recursively
on all complex role fillers.

5. The Query Planner

This section describes the planner, which identifies how
a query in the QIF can be evaluated given the resources
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input: query: List of QueryComponent

finalPlan: List of QueryComponent
while query <> [] do

bestQC := findBest(query)
finalPlan := finalPlan ++ bestQC
query := query -- bestQC

end
return finalPlan

Figure 4. The optimisation algorithm.

described in the SSM. As with other query optimisers, the
TAMBIS query planner has two principal components – a
search algorithm, described in section 5.1, and a collection
of mappings that can be applied to query components, de-
scribed in section 5.2.

5.1. The Algorithm

The search algorithm exploits the augmentation heuris-
tic [17], which was selected as it is straightforward to im-
plement, and provides a reasonable trade-off between cost
of optimisation and quality of plan generated. The algo-
rithm is given in figure 4. The basic strategy is to generate a
plan as an ordered list of query components, where the first
component in the list is predicted to be the least costly com-
ponent to evaluate from scratch, and the subsequent compo-
nents in turn are the least costly to evaluate given what has
previously been evaluated.

The notion of “cost” here is derived from two compo-
nents – the time t that it is predicted it will take to evaluate
the component, and the number of instances n it is predicted
will be retrieved. The “cost” of evaluating a component is
computed as t � n2. This penalises query components that
take a long time to respond and that generate large numbers
of instances, but penalises most strongly components that
generate large numbers of instances. The reason why large
numbers of instances are considered particularly undesir-
able is that the rest of the query will be evaluated n times,
so n is a multiplier in the predicted cost of the whole query.
However, as the augmentation heuristic is a greedy algo-
rithm, the complete cost of query plans is not used during
the search.

5.2. The Mappings

The optimisation algorithm in figure 4 depends heavily
on the definition of the findBest function. This function,
given a query component, considers a variety of ways in
which instances of the component can be retrieved from
sources. Thus findBest considers a range of mappings from

query components onto functions that generate concept in-
stances from sources. The principal mappings are presented
below. Example queries generated using these mappings are
discussed in section 6.2. All assume that qc is the current
query component.

The ontology is used within the mappings to index the
functions in the SSM, and calls are made to the terminology
server during rewriting to support the following: the pred-
icate isInverse, which tests two criteria to see if they are
inverses; and the operator v, which performs a subsump-
tion test – C1 v C2 is true only if every instance of C1 is
also an instance of C2.

1. Retrieval by User Instantiated Filler: Where the query
component contains a criterion for which the user has
supplied a value, a function that can be used to eval-
uate the inverse of the criterion can be used to fetch
instances of the concept.

The notation used throughout this section indicates
that the function described in the first line can be used
to obtain instances if the following condition holds.
The function description retrieves values for the re-
sult of the function, the name of the function and the
argument(s) of the function from variables bound in
the condition. The condition associates features of the
query component with data from the SSM, obtaining
the latter from the SSM by accessing the data struc-
tures introduced in section 3.1.

qc:theV ariable r:function:name(cr:userV alue)

if
(9r 2 Roles) ^

(9cr 2 qc:theCriteria :

isInverse(r:criterion; cr:theCriterion) ^

cr:userV alue <>“”)

In the above, the Roles value r from the SSM rep-
resents a way of evaluating the inverse of the cri-
terion cr on the query component qc. For exam-
ple, if the criterion cr on a Protein represents
hasAccessionNumber, then the role r would rep-
resent isAccessionNumberOf. Evaluating the
function associated with isAccessionNumberOf
yields a data structure representing an instance of
Protein.

2. Retrieval by Following a Function from a Known
Value: Where the query component contains a crite-
rion cr for which the filler has already been evaluated,
it may be possible to retrieve the concept by evaluating
a function on the known filler. This function must be
the function used to evaluate the criterion on the filler
that is the inverse of cr.
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qc:theV ariable r:function:name(cr:theV ariable)

if
(9cr 2 qc:theCriteria :

knownV ariable(

cr:relatedComponent:theV ariable)) ^

(9r 2 Roles :

isInverse(r:criterion; cr:theCriterion))

This mapping is similar to the previous one – the prin-
cipal difference is that the value used as an input to the
generated function is a known variable, rather than a
user supplied value.

3. Retrieval by evaluating a Mapped Role: Where the
query component contains a criterion for which the
filler can be mapped to a scalar, the mapping of this
filler may be usable as an argument to a function en-
abling retrieval of the base concept.

qc:theV ariable 

mr:function:name(map(cr:theCriterion:filler;

mr:function:source))

if
(9cr 2 qc:theCriteria) ^

(9mr 2MappedRoles :

qc:base which cr:theCriterion v mr:concept)

4. Retrieval by Iteration: Where no more direct way of
obtaining instances can be identified, it is necessary to
iterate over all available values.

qc:theV ariable it:function

if
(9it 2 Iteration : qc:name v it:name)

These mappings are used by findBest from figure 4 to
identify possible ways of obtaining instances for query
components. There are a total of 8 mappings for instance
retrieval in the current version of TAMBIS; those not pro-
vided here for reasons of limited space are mostly variants
of those given.

Overall, findBest, given a collection of query compo-
nents, applies the mappings to identify promising ways of
evaluating each of the components, scans the criteria to
identify the extent to which they may be able to filter the in-
stances retrieved, and computes a cost factor for each com-
ponent. Where theTechnique generates a more general value
than is required for the query (i.e. an instance of a parent of
the concept named in the query), findBest also identifies an
appropriate filter from kind-of filters, and plants this as part
of theTechnique.

6. Generating CPL

6.1. The Code Generator

The code generator is fairly straightforward, and con-
structs a query in a single pass through the QIF. For each
QIF component, the code generator writes out theTechnique
identified by the planner, and iterates over the component’s
other criteria, writing out function calls associated with
roles, filters, mapped filters and mapped roles, as required.
To handle criteria, the code generator currently uses an ad-
ditional 8 mappings similar in nature to those in section 5.2.
The code generator also places a projection expression at
the start of the CPL query, and plants coercions where nec-
essary.

6.2. Examples

This section provides some examples of queries cur-
rently supported within TAMBIS, showing the original
query and the generated CPL, and providing some com-
ments on how the query was processed.

1. Which motifs are components of guppy proteins? This
is the example query used in section 2.2. The CPL
generated for this query is:

{m1 |
\p1<-get-sp-entry-by-os("guppy"),
\m1<-do-prosite-scan-by-entry-rec(p1)}

This query contains two query components, one for
Protein and the other for Motif. The query com-
ponent for Protein is chosen for evaluation first,
and the mapping rule for retrieval by instantiated filler
(mapping number 1 in section 5.2) is used to gener-
ate the function that retrieves proteins from SwissProt
given the name of the organism. The Motifs in the
Protein are then computed using a function gener-
ated by the mapping rule for retrieval by following a
function from a known value (mapping number 2 in
section 5.2).

2. Which human proteins are homologous to zinc cofac-
tor enzymes? This is the example query used in section
4. The CPL generated for this query is:

{p1 |
\e1<-get-enz-entry-by-cf("zinc"),
\p1<-do-blastp-by-sq-in-enz-entry(e1),
check-sp-species-entry("human",p1)}

The planner has thus chosen to evaluate the query
component for the concept Enzyme in figure 3 be-
fore the query component for Protein. Evaluating
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the query component for Enzyme involves accessing
the database called enzyme using a CPL function gen-
erated by the mapping for retrieval by evaluating a
mapped role (mapping number 3 in section 5.2). The
query component for protein has been compiled into
two CPL functions. The first is generated by the map-
ping for retrieval by following a function from a known
value (mapping number 2 in section 5.2). The second
function is a filter that retains only the proteins from
humans – this function is written out by the code gen-
erator, which consults the Filters information from the
SSM.

3. Which proteins have function kinase? The GRAIL
query for this is Protein which hasFunction
Kinase. The CPL for this query is:

{p1 | \p1<-
get-enzyme-entry-by-node("2.7.-.-")}

This query contains a single query component. The
planner uses the mapping for retrieval by evaluating a
mapped role (mapping number 3 in section 5.2). The
distinctive feature of the function selection process is
that there are several Mapped Roles in the SSM that
match the query component. These are indexed by the
concepts Protein which hasFunction
BiologicalFunction and Protein
which hasFunction EnzymicFunction
(as Kinase v EnzymicFunction v

BiologicalFunction). As Protein which
hasFunction EnzymicFunction is more
specialised than Protein which hasFunction
BiologicalFunction, the former is used to
provide the CPL function. The string "2.7.-.-" is
the node for Kinase in the functional classification
used by the source enzyme.

7. Related Work

This section briefly compares TAMBIS with other
knowledge based source integration systems. A more com-
prehensive survey is provided in [15]. The closest relatives
to TAMBIS are other proposals that make use of DLs for
query processing in distributed systems. The two proposals
that are closest to TAMBIS are OBSERVER [14] and SIMS
[1].

In OBSERVER there is no global schema, but rather the
emphasis is on peer-to-peer querying among sources, each
of which is described using an ontology. DL queries ex-
pressed over the ontology of one source are translated by a
collection of source-specific rewrite rules into queries over
another source. We conducted an experiment in the use of
source specific rewrite rules early in the design of TAMBIS,

but were concerned that collections of such rules would be
difficult both to write and to maintain. OBSERVER does
not address the question of how the DL queries over a lo-
cal ontology are mapped onto the local source. How to
do this for sources with relational query interfaces is un-
derstood [8], but is an open problem for sources that are
not databases, which is the case for many bioinformatics
sources.

In SIMS there is a global schema, described in the de-
scription logic LOOM. In SIMS, sources are described in
the ontology along with the domain concepts, with source-
specific concepts subsumed by their source-independent
counterparts. This is quite an elegant approach to linking
sources with source-independent concepts, but may provide
a less flexible integration framework than that supported
by source specific (OBSERVER) or source-independent
(TAMBIS) mappings. Once a source-independent DL
query has been converted into a source dependent DL query,
an access plan is generated for optimisation. Our read-
ing of the SIMS papers is that the current planner as-
sumes some measure of query processing capabilities from
sources, which is not the case with TAMBIS, as many bioin-
formatics sources lack such ability.

Other work on querying heterogeneous sources using
knowledge based techniques includes the following. Infor-
mation Manifold [13] uses deductive view definition lan-
guages to characterise the information in different sources.
Architecturally, this is quite different from TAMBIS, as
there is no central ontology (early work on Information
Manifold mentioned DL models, but this is absent in later
papers). The DWQ project [6] uses a similar approach to In-
formation Manifold for relating sources to a global model.
In DWQ, the global model is described using a description
logic, but the focus is on data warehousing rather than on
the execution of queries at the sources. TSIMMIS [10] is a
wrapper-mediator system, with the focus more on effective
wrapper construction than on providing a consistent, high-
level view of heterogeneous sources. As there is no global
schema or ontology in TSIMMIS, it can be seen as address-
ing different kinds of problems from those that are central
to TAMBIS, and in different ways.

8. Conclusions

This paper has described the TAMBIS query processor.
The query processor has been fully implemented in Java.
The query processing system, including the sources and ser-
vices model but excluding the user interface, consists of
around 4000 lines of Java code.

TAMBIS is distinctive in a number of respects. It is
the first source integration system in the important area of
bioinformatics to use an ontology as a global schema. It
provides a novel ontology-driven user interface, in which
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users express queries by navigating through the ontology.
It provides users with a conceptual level view of unusually
diverse and heterogeneous information sources.

The query processor described in this paper is a crucial
component in the TAMBIS architecture. Key features in-
clude the following:

1. The scope of the query processor – the use of wrappers
to provide syntactic consistency to the highly hetero-
geneous sources allows the sources and services model
and query processor to remain manageable in scale and
complexity. Wrappers are also helpful in localising
changes needed to parallel the rather frequent changes
to the call interfaces of bioinformatics sources.

2. The fact that TAMBIS interfaces with sources that gen-
erally lack query interfaces, and that queries routinely
access multiple sources, means that optimisation must
be carried out at some point in the integration system.
Although we could have extended the CPL optimiser
to optimise at the function level, carrying out planning
in the context of the model has been both natural and
straightforward.

3. Services already available as a consequence of using
a DL, and its associated terminology server, facilitate
the query processing at several stages, by: ensuring
that only valid, sensible queries are submitted from
the query interface; indexing the CPL functions in the
sources and services model; computing some collec-
tions of mappings used in retrieval and filtering; identi-
fying inverses of roles; and managing the identification
of the most specialised CPL functions available for use
with a query component.

4. The fact that a challenging domain, and a substan-
tial ontology used for querying that domain, can be
addressed using natural extensions of existing query
processing techniques. This demonstrates that ontol-
ogy driven query interfaces to highly heterogeneous
sources are a practical proposition.
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