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All of MEDLINE indexed to
the Gene Ontology
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�
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Hamilton
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2.1 The Problem

Most of what is known about genes and proteins is contained in the
biomedical literature. The problem for the biologist is how to connect novel
sequence data to relevant published documents (3). One way is to BLAST the
sequence and then follow the literature links established in
genomic/proteomic databases for known sequences with similar structure.
Another way is to find the closely-matching genes or proteins in the Gene
Ontology, then retrieve documents associated with GO terms. The advantage
of this approach is that it provides a conceptual context for discovering
possible genetic roles or molecular functions for a new sequence. The problem
with both search strategies, however, is that they return only a small portion
of the available literature. We are solving this problem by amplifying the
available documents associated with GO terms to cover the entirety of the
MEDLINE corpus.
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8 CHAPTER 2. INDEXING MEDLINE WITH GO

2.1.1 Literature Search

It is the literature review that presents the principal obstacle when trying to
investigate a gene or protein. There are three fundamental problems: finding
relevant documents, synthesising their contents, then organising and ranking
the documents in terms of their significance to the present study. Sequence
databases typically include a list of references to published work about a gene
or protein. The list is often quite short, but provides a starting point.
Following citations through the reference sections in each document can also
create a fruitful trail to more and more articles, but at some point the
researcher usually ends up turning to a literature-search service. Literature
searches typically proceed as a keyphrase search over the fulltext index of a
large document repository, such as the MEDLINE collection. However, such
traditional search techniques frequently miss key documents, or bury them in
a slew of irrelevant ones, making it hard for researchers to find what theyre
looking for (1). Moreover, the ranking strategy employed by keyphrase search
systems may prevent the most relevant articles from making it to the top of
the search results where they can be spotted by the user. Such problems arise
in keyphrase searching for any subject domain, but they are particularly acute
when searching biomedical literature because the terminology is complex, the
vocabulary is very large, and the vernacular employed for any given topic is
frequently not uniform.

2.1.2 Ontologies

Ontologies provide another, more controlled and systematic way to look for
documents. Indeed, one of their primary purposes is to overcome the
problems inherent with keyphrase systems, facilitating uniform querying
over large biological databases. Moreover, the inherent organisation of
ontologies adds taxonomical context to search results, making it easier for the
researcher to spot conceptual relationships in data. The Gene Ontology (GO),
for instance, organises gene products into a hierarchy of functional categories
standardized through the consensus of a consortium of molecular biologists.

The problem, however, has been that very little biomedical literature is
expressly linked to terms of the Gene Ontology. For example, a significant
effort in the first half of 2002 (made by the authors of this paper) to trawl most
of the large publicly available genomic/ proteomic databases1 turned up
fewer than 27,000 MEDLINE documents either directly or indirectly
associated to terms from the Gene Ontology. The situation has improved over
the past year, and a second trawl done in April 2003 turned up over 110,000
MEDLINE documents with GO associations. The trouble is there are almost
six million abstracts in MEDLINE2, and at this rate it will take a very long
time before they all get linked to GO terms. Moreover, the Gene Ontology
itself is still in a state of flux with terms being added, deleted, renamed and

1The databases used were SwissProt, GenBank, FlyBase, GOA, Gramene Oryza, MGI, PomBase,
RGD, SGD, TAIR, TIGR, WB, InterPro and AmiGO.

2MEDLINE is usually reported to have around 12 million abstracts, but about half of these are
actually corrections and retractions.
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moved from month to month, so that the whole process of assigning
MEDLINE documents to GO categories has to be repeated often. It seems that
the only hope for realising this goal is if the whole process can be automated.

2.2 The Solution

Machine learning technology makes it feasible to put all relevant MEDLINE
abstracts into the Gene Ontology. The procedure is to obtain example
documents for each GO term, use those examples to train classification
models for each term (i.e. inferred mathematical characterisations of a
semantic category), then use those models to assign the rest of the MEDLINE
abstracts to appropriate GO terms.

Raychaudhuri et al. (2) demonstrated the feasibility of using machine learning
to create document classification models for individual Gene Ontology terms.
For their study, they created a training corpus of 16,000 documents for 21 GO
terms by retrieving PubMed abstracts using keyphrase queries constructed
from MeSH terms. Using maximum entropy models, they achieved
classification accuracy of just over 72% on a test corpus of about 200
documents. Given such promising performance, it seems logical to extend the
idea to more comprehensive coverage of the Gene Ontology.

2.3 GO-KDS

Like Raychaudhuri et al., we also were looking at developing machine
learning techniques to create a practical (though perhaps somewhat more
ambitious) document classification system for the Gene Ontology. Our goal
was to model as much of the Gene Ontology as possible and then classify all
MEDLINE abstracts. The end-product is a publicly available web service
called the Gene Ontology Knowledge Discovery System (GOKDS) that can be
accessed at www.go-kds.com.

A number of significant logistical obstacles had to be overcome to create
GO-KDS. For example, there are (as of April 2003) 13,584 terms in the Gene
Ontology and about six million MEDLINE abstracts. Very few machine
learning algorithms (including maximum entropy models) can scale to this
size of problem without running out of system resources or taking forever to
produce their results. To remedy this, we developed a new algorithm (loosely
described as an optimised Naive Bayes) that can complete the training and
classification tasks in about 30 hours on a 1.33 GHz machine using about
1 GByte of memory (space limitations preclude including details of the
algorithm here). This level of performance is sufficient to keep up with any
changes to the Gene Ontology or MEDLINE.

Leave-One-Out cross-validation experiments show that GO-KDS achieves a
76.7% class average (at the precision-recall breakeven point) in predicting GO
terms for MEDLINE abstracts. In an effort to compare this performance
against the methods used by Raychaudhuri et al. we tried to reproduce the
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corpus they used and predict documents to the same 21 categories. The result
was 70.5% predictive accuracy (at the breakeven point). This is similar to the
Raychaudhuri results albeit on a smaller training set and using different
evaluation methodology.

To infer an accurate model for a GO term usually requires more than ten
sample documents (although some categories have been characterised quite
well with as few as four or five exemplars). Raychaudhuri et al. were able to
obtain between 175 and 1200 examples for each of the 21 GO terms they
modeled by using keyphrase queries to retrieve documents from NCBI. This
is an effective approach for getting a lot of training data, but runs the risk of
causing the learning algorithm to infer models of the query itself, rather than
of the Gene Ontology term. To make sure the models characterise the
semantics of a GO category as understood and interpretted by biologists we only
used documents that experts had curated and manually annotated with a GO
term and subsequently registered in an established genomic/proteomic
database. Although the April 2003 web crawl mentioned earlier only turned
up enough sample documents to model 3764 GO terms, the good news is that
only another 50,000 or so documents need to be manually linked to GO terms
before models of the entire ontology can be inferred3. This is considerably
fewer than if all six million MEDLINE abstracts had to be annotated by hand!

3This estimate of 50,000 assumes needing at least ten exemplars for each of the 9820 unmodeled
GO terms with each document being able to serve as training data for several models
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Chapter 3

Interactions Between the
Gene Ontology and a Domain
Corpus for a Biological
Natural Language Processing
Application

Cornelia M. Verspoor, Cliff Joslyn, and George Papcun
Los Alamos National Laboratory
Computer & Computational Science Division
PO Box 1663, MS B256
Los Alamos, NM 87545
verspoor@lanl.gov|joslyn@lanl.gov|gjp@lanl.gov

3.1 Introduction

In any natural language processing (NLP) application, there is a critical need
to manage lexical resources in a manner which supports representation of
syntactic and semantic constraints on lexical use. In domains which contain
much highly specific terminology, such as the biological domain, it is often a
daunting task to construct such lexical resources. We turn, therefore, to
existing terminological and ontological resources for the domain. However,
while there is significant overlap in the requirements for an NLP system with
those of ontological data representations, the requirements are not identical. It
is important to consider with care the integration of a lexicon with an
ontology into a single application.

Specifically, an NLP system is heavily focused on terminological management
issues. Words which are synonymous from the perspective of a given
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Figure 3.1: Biological natural language processing.

ontology may behave quite differently from a linguistic perspective. The
internal structure of a multi-word term is largely irrelevant for ontological
use, but may be critical in linguistic processing to support recognition of the
term in text, where there may be intervening words or surface variations not
captured in the ontology. However, the semantic grounding provided by an
ontology can be extremely important for enabling precise analysis of the
meaning conveyed in relevant text sources.

We discuss a prototype system, currently under development, that aims to
extract regulatory relationships from biological text (3), and which depends
on the existence of domain-specific lexical resources. While our customer has
supplied some lists of terms that are associated with particular semantic
types, these lists are invariably incomplete and exist independently of any
domain ontology. We therefore turn to the Gene Ontology (GO,
http://www.geneontology.org) (1) as a source of richer semantic data
for lexical resources. The architecture we follow for construction of those
resources is shown in Figure 3.1. Term lists are derived from the GO and a
customer-supplied public text corpus respectively, and then stemmed in order
to determine distinct term lists. We maintain multi-word terms as phrases in
addition to breaking them down into terms consisting of individual words.
Finally, certain terms considered to be uninteresting (stop words), including
linguistic function words and extremely frequent words, are eliminated from
the lists. Terms held in common to GO and the corpus are extracted as the
lexicon for our system. The result is a lexicon in which terms can be directly
associated with the semantic categories of the domain ontology.
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Figure 3.2: Biological natural language processing.

3.2 GO as a Source of Lexical Data

As a controlled vocabulary, the GO provides an important source of
domain-specific terminology that can be used to inform lexicon development
for an NLP system. It can be used in the following ways:

� Ontological relations represented in the GO can be reasoned upon in
combination with linguistic analysis in order to establish ontological
relations among individual terms. We see an example of this type of
processing in Figure 3.2, in which relations between heads of phrases are
inferred from the relation between the phrases as a whole, e.g. that
lipidation is a kind of biosynthesis. We are exploring the extent to which
relations in the GO can be exploited in establishing relations between
individual terms in the lexicon.

� The hierarchical structure of the GO can be exploited to represent
semantic constraints and generalizations in linguistic rules, since each
term derived from the GO is associated with a node in the ontology. For
instance, a rule may require that a particular argument be some type of
protein metabolism. With reference to the GO, we can verify that this
holds for a given phrase identified in the text. These types of constraints
allow us to more accurately identify particular relationships.*

� Definitions of terms in the GO can be used to establish additional lexical
relations; words which are used to define a given word can be assumed
to have a contextual relationship with that word. This in turn can be
used in the NLP system to support word sense disambiguation in the
face of words with multiple meanings or in the case of overlapping
multi-word units. This is in the spirit of word sense disambiguation
work based on machine readable dictionaries (2).

� Multi-word phrases occurring as nodes in the GO may correspond to
non-decomposable word sequences that can be recognized during
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linguistic parsing to improve structural analysis.

3.3 Text as a Source of Ontological Data

The corpus of domain texts can also be viewed as a source of ontological data
that may or may not be represented in the reference ontology. To the extent
that the corpus contains information not captured by the ontology, the
ontology may be insufficient (depending on its intended purpose). We are
exploring the use of NLP technologies to identify ontological relations
expressed in the corpus. These relations would be proposed for integration
with the ontology, such that it becomes congruent with the corpus. The
implemented techniques would draw on the lexicon, so this represents a
feedback loop between the ontology and the NLP system.

3.4 Integration into the NLP System

The lexicon resulting from intersecting the GO with the domain corpus is
represented in terms of gazetteers (term lists) in the General Architecture for
Text Engineering (GATE) framework (http://gate.ac.uk). GATE itself
only supports the assignment of major and minor types to a given list of
lexical items, as shown in Figure 3.2. This alone does not provide sufficient
semantic granularity to enable precise relation extraction, and furthermore
does not allow us to take advantage of the semantic structure provided by the
grounding of the terms in the GO. We therefore incorporate extensions to
GATE provided by OntoText Lab (http://www.ontotext.com) which
allow us to define mappings of ontological categories from GO to lexical
features in the GATE lexicon. With this in place, lexical items can be
considered by the NLP system in the far richer semantic context provided by
the GO.

Acknowledgements: This work was funded in part through a Los Alamos
National Laboratory collaboration with Procter & Gamble Corporation.
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Chapter 4

Using Ontologies for Text
Analysis

Lawrence Hunter and K. Bretonnel Cohen
Center for Computational Pharmacology
School of Medicine
University of Colorado Health Sciences Center

Many approaches to molecular biology text processing have relied on either
pattern-matching (e.g., Ono et al. 2001, Blaschke and Valencia 2002) or
machine learning techniques (e.g., Craven and Kumlein 1999). More
linguistically oriented systems often are either essentially purely syntactic
(e.g., Park et al. 2001, Yakushiji et al. 2001) or take the traditional approach of
syntactic analysis first, followed by some kind of semantic post-processing
(e.g., Rindflesch et al. 2000), or combine syntactic and semantic knowledge via
semantic grammars and selectional restrictions (e.g., Friedman et al. 2001). We
hypothesize that an ontology can be the central component of not only
semantic filtering, but also of syntactic processing of text. Direct Memory
Access parsing (e.g., Riesbeck 1986, Martin (1990), and Fitzgerald (1995))
belongs to a family of “conceptual” approaches to parsing-approaches that
involve mapping input texts to a conceptual representation. The basis of the
conceptual representation in the DMA implementation that we are using, the
Conceptual Memory Parser produced by I/NET, Inc. (www.inetmi.com), is
a knowledge base consisting of inheritance-based isA/hasKinds relations,
partonymy relations, and various additional attribute/value relations specific
to particular portions of the inheritance hierarchy. The attributes of any
concept in the ontology can include “phrasal patterns.” Phrasal patterns
consist of sequences of characters and pointers to objects in the conceptual
memory. Architecturally a minor addition to the knowledge representation,
they allow mapping between concepts in memory and input text, and are the
mechanism for recognition in the input text of concepts that exist in memory.
Knowledge-based parsing has sometimes been thought to be impractical due
to the cost and difficulty of building the required knowledge resources.
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However, the past few years have seen an explosion in publicly available data
sources related to molecular biology. Preliminary results support the
hypothesis that this publicly available data, unavailable in the early days of
natural language processing, today makes knowledge-based parsing practical.

Here we outline our approach, use the Gene Ontology as an example of what
can be accomplished with publicly available data sources, point out some
problems that come up with using those data sources, and discuss our
approaches to solving those problems through the combination of multiple
knowledge sources, application of limited linguistic analysis, and empirically
derived heuristics. We present results of a pilot project showing that the
system can extract gene/disease relations from a corpus of Medline sentences.

A major advantage of the Direct Memory Access approach is the location and
delimitation of multi-word terms-it uses the ontology’s vocabulary itself to
suggest syntactic constituents. The advantage of using lexical resources in this
way is demonstrated by the GENIES system (Friedman et al. 2001). Consider,
for example, the work involved in processing the phrase regulation of cell
migration (which occurs in many Medline abstracts) through a shallow parser.
In a FASTUS-like system, the parser will have to successfully match cell
migration as a noun group, then match of cell migration as a prepositional
group, and finally connect that prepositional phrase with regulation. In
contrast, the DMAP approach recognizes regulation of cell migration directly as
GO term 0030334, simultaneously positing it as a syntactic constituent and
activating its inheritance structure in the ontology. Our system differs from
GENIES in that the ontology is elevated from a lexical resource to being the
central organizational structure of the system, and that its memory-based,
non-procedural construction makes both the lexical resource and the results of
the parse available for further inferencing tasks without an intervening
database call.

The availability of a large volume of high-quality semantic data in the Gene
Ontology makes possible a “semantics first” approach to parsing, but natural
language input presents challenges that fall outside of the purview of
bio-ontologies. These include entity identification, syntactic complexity, and
contextualizing or “meta-science” statements. One sentence can provide
examples of all three: These findings suggest that FAK functions in the regulation
of cell migration and cell proliferation. (Gilmore and Romer 1996)

An entity identification problem is presented by the string FAK in (1). Neither
the Gene Ontology, HUGO, nor LocusLink has an entry for this ad hoc
abbreviation. However, these data sources do contain data sufficient to allow
for identification of the concept to which it refers. A molecular biology
acronym handler, such as those described in Chang et al. 2002, Liu and
Friedman 2003, or Schwartz and Hearst 2003, can map the abbreviation FAK
to the string focal adhesion kinase on the basis of evidence earlier in the
document, where the abbreviation is first introduced. Even this name is not
official and returns no results at either the LocusLink web site or the HUGO
search utility. However, heuristics for mapping non-canonical forms of gene
names described in Cohen et al. 2002 license the mapping of focal adhesion
kinase to focal adhesion kinase 1, a synonym for the appropriate human entry in
LocusLink.
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The need for syntactic analysis is presented by the string regulation of cell
migration and cell proliferation. Simple text matching with no syntactic analysis
suggests mapping this string to regulation of cell migration (GO:0030334) and
cell proliferation (GO:0008283). However, a better matching for the second
string would be to regulation of cell proliferation (GO:0042127).

The substring cell migration and cell proliferation has a number of possible
parses based on any reasonable grammar of noun phrases, but only the
correct one, which posits cell migration (GO:0016477) and cell proliferation
(GO:0008283) as conjuncts yields the proper parse. Furthermore, the
constituents of this parse maps to the concepts that would be favored by a
longest-match-first constraint, i.e. regulation of cell migration (GO:0030334) and
regulation of cell proliferation (GO:0030334), such as the one used by MetaMap
(Aronson (2001)).

The Gene Ontology and LocusLink provide resources that can be exploited by
Direct Memory Access Parsing to achieve coverage of much of the content of
sentences like (1). However, they leave uncovered the beginning of the
sentence, These findings suggest that, which provides important context for the
factual assertion. The importance of these sort of clauses in natural language
processing has been known since at least Harris et al. 1989, who called them
meta-science, and Jackson and Moulinier 2002 discussed handling them in a
CYK parser in the context of an information extraction system. Some insight
into how to handle them within an ontology-centric model of language
processing can be gained from Tanabe 2003, which presents data suggesting
that an ontology of these context-establishing statements can be built by
leveraging a statistical language model to make use of what we know about
the role of frequent constructions in sublanguages.

Previous work in linguistically-informed approaches to processing molecular
biology texts with the ARBITER and GENIES systems, as well as the work of
Park et al. and Yakushiji et al., confirms the utility of various aspects of our
approach to applying ontological resources in this domain. Our work
explores the consequences of taking the next step: making the ontology the
central element of the text analysis system.
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Chapter 5

Half Way Up The Ladder
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The discovery of novel genes is still ongoing and with each new gene comes
the important decision of what to name it. After many years of hard work
attempting to isolate a gene, a researcher can become very attached to it and
might have given it a pet name or symbol. However, whilst this symbol may
be familiar to the researcher and their lab, it may not make sense to anyone in
the scientific community unless it reflects the function of that gene or its
relationship to other already known genes. Moreover, if this symbol has
already been used for another gene then unnecessary confusion is created.

The HUGO Gene Nomenclature Committee (HGNC) strives to avoid this
confusion when talking about genes by agreeing a common nomenclature, so
that each gene has its own symbol that everyone can recognise. This ongoing
project has to date provided unique gene symbols for over half of the
estimated 30,000 human genes.

Promisingly, the need for standardisation is being recognised by the
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community, as more and more authors publishing in other journals contact us
prior to publication because they want their work to be readily accessible via
the use of approved symbols in the public databases. To this end we edit our
own online nomenclature database, and NCBI’s LocusLink, and this
information proliferates to many other databases.

We have a system of data exchange with three other databases as well as
LocusLink: SWISS-PROT, GDB and MGD. Our strong collaboration with
these databases ensures that the data are accurate and can be identified using
the approved gene symbol. Other online resources that use approved gene
symbols include:

Ensembl http://ensembl.ebi.ac.uk/

GENATLAS http://bisance.citi2.fr/GENATLAS/

GeneCards http://bioinformatics.weizmann.ac.il/cards/

The Genome Database (GDB) http://gdbwww.gdb.org/

Genew http://www.gene.ucl.ac.uk/cgi-bin/nomenclature/
searchgenes.pl

GeneTestsGeneClinics http://www.genetests.org/

Human Gene Mutation Database http://www.hgmd.org/

LocusLink http://www.ncbi.nlm.nih.gov/LocusLink/

MGD, Mouse Genome Informatics
http://www.informatics.jax.org/

Online Mendelian Inheritance in Man
http://www.ncbi.nlm.nih.gov/Omim/

SWISS-PROT http://www.expasy.ch/sprot/

UCSC Human Genome Project Working Draft
http://genome.cse.ucsc.edu/

The quest for a common nomenclature is also furthered by collaboration with
the Mouse Genomic Nomenclature Committee (MGNC). Together we try to
co-ordinate our efforts so that each human gene is named the same as its
counterpart in the mouse. As well as gene symbols we assign approved
names and we have been updating some of these to better synchronise with
those found in the Mouse Genome Database (MGD); this includes adopting
US spelling and the removal of unnecessary punctuation.

Last year HGNC and MGNC published, in the same issue of Genomics, our
latest guidelines (Wain et al., 2002, Maltais et al., 2002). The new human gene
nomenclature guidelines were the culmination of a long consultative process
during which we canvassed the opinions of genetic scientists worldwide, both
online via our web site (http://www.gene.ucl.ac.uk/nomenclature/
guidelines/draft_2001.html) and face to face at side meetings at
HGM2001 and ASHG (American Society of Human Genetics) conferences.
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Any input on our guidelines, which are regularly updated would be
particularly welcome.

We maintain a high profile in the scientific community via our publications
(recent examples are listed below) and attendance at international genetics
conferences. We normally attend both HGM and ASHG (American Society of
Human Genetics), staffing a booth where anyone with a nomenclature query
can come and talk to us face to face.

The HGNC team analyses gene data submitted to us by authors and from
public databases, operating an unbiased and confidential service to name
novel human genes. Contact us via email at nome@galton.ucl.ac.uk.
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For an ontology to be used effectively in information retrieval (IR) it needs to
be highly granular, comprehensive, validated and accessible from a number of
points of view. BioWisdom is producing a methodology to construct large
scale evidence-based ontologies.

Ontologies can be utilised at several points in the information retrieval process
from query term selection and construction to categorised presentation of
search results to facilitate navigation, education and knowledge discovery.
Furthermore, an ontology can be used as a framework to “index” or
categorise database records or documents from an information source to
allow rapid IR and this method can be extended to improve IR precision and
recall by using concept context to disambiguate terms. For optimal
performance in IR the ontologies must cover all the major concepts in the
information source being queried e.g. in the biomedical area the ontologies
should encompass domains such as gene products, disease, species, anatomy,
biological processes and drugs. The use of ontologies in IR can be enhanced
further by the use of linguistic methods such as natural language processing
and faceted categorisation. IR can also be extended by using the rich set of
relationships to conduct inference to highlight a new logical proposition.

There are two main approaches to ontology construction. A ’top-down’
approach where the starting point is a high level model of the domain,
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followed by sub-classification directed by domain experts. This method relies
mainly on manual construction and annotation. Alternatively, a “bottom-up”
approach de-constructs databases to a set of assertions that are automatically
parsed into a conceptual framework. BioWisdom has brought these two
approaches together to construct a large repository of evidence-based
assertions that are semantically organised with a high-level “upper” ontology.
Once the system is established, it is possible to inferentially derive assertions,
either by probabilistic, heuristic or rule-based methods, from data sources
where the assertion is not explicitly stated.

BioWisdom focuses on providing ontologies to support the drug discovery
process and has based its “upper” ontology on this process. The process is
broken down into its essential elements and the inter-relationships between
these elements. For example, “drug targets” are sub-classified into proteins
and genes, and these can be directly associated with disease and tissues. The
upper ontology consists of high-level concepts with a series of properties that
can take the form of relationships between concepts. The domains e.g.
disease, symptom, protein, drug identified in the upper ontology direct the
collection of assertions. The relationships between concepts define the type of
reasoned associations that can exist between domains e.g. drug treats disease.

Taxonomies are good source of assertions providing established “is-a” or
“is-part-of” relationships between concepts e.g. MeSH, ICD10. However,
taxonomies usually do not provide a wealth of other properties. When a
database is identified as a potential source of assertions, it is analysed so that
the principle components of each record are mapped to concept types in the
upper ontology. For example, LocusLink is a database of genes and so the
initial assertion that can be captured from each record is that the record
unique identifier, LocusID, relates to gene. Each record has a source organism
so LocusID can be related to species. Using this method, at least 8 logical
assertions can be produced from one LocusLink record. Each assertion
extracted from the record will have a logically named relation relating two
elements of the record e.g. has-source-organism, has-cytogenetic-location. This is
important to precisely represent the relationship between concepts which
assists understanding and the application of inference. The database record
acts as the evidence for each assertion. Using databases such as Locuslink
( 200,000 records) and Swissprot ( 100,000 records) the number of usable
assertions in the repository will number over 3 million. Using a Genbank ( 24
million records) the size of the repository grows to over 120 million assertions.
When several data sources are used several assertions can be linked to
associate concepts through a network of relationships.

Some data sources e.g. Medline or annotation fields in databases need to be
processed to extract meaningful assertions. When the assertion is embedded
in a block of text, information extraction techniques need to be employed to
identify concepts and relationships. This entails the identification of noun and
verb phrases within the text. The noun phrases relate to concepts and can
further discriminated as particular concept types e.g. protein, tissue etc. Verb
phrases encapsulate the relationship between concepts e.g. “is expressed in”.
As this method relies on a series of assumptions, the validity of an assertion
produced by this method is lower than a fact derived from a database record.
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The validity of assertions can be scored, based on the method by which the
assertion was retrieved, to assist their use in information retrieval and related
processes including inference and categorisation.

Different data sources use different terms to denote the same entity and these
terms need to be normalised to a single entity. This process of semantic
normalisation of terms occurs once assertions from several data sources are
collected. This process takes a term from an assertion and maps it to a core
concept with an equivalent meaning. The terms linked to a concept in this
way can be viewed as synonyms or aliases of the concept. Using
normalisation several base assertions will be shown to be semantically
indistinct i.e. an association between two concepts will be supported by
several threads of evidence.

BioWisdom is developing a system that can manage a high volume of
evidence-based assertions mapped to a single logical framework to produce a
large scale ontology. This broad and granular ontology is highly valuable
when applied to information retrieval applications.
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The development of bioinformatics seriously depends on the accumulation of
tremendous amounts of bio-data from various databases. The integration of
biology databases is critically important because of the interconnectedness of
biological research. The integration of genome, proteome research
information in time and the maturation of bio-data warehouse compose the
key factors of the bioinformatics technology. To technically interpret and
physically migrate heterogeneous biological databases into a single consistent
database and provide a united GUI (graphical user interfaces) is the way to
achieve bio-information integration, intellectualized multiple, complex,
intercross search and data sharing based on high performance computing
platforms. It will support modern biology research greatly,such as functional
genome research and drug discovery. As a main method of data integration,
bio-data warehouse is a central repository, which extracts bio-information
from various biological resources. It calls for data integration from multiple
sources into a coherent form that is the base for further analysis (e.g., data
mining). However, data sets that are interesting for computational biologists
are often heterogeneous in structure, content, and semantics. Problems that
might arise due to heterogeneity of the data have already been well known
within the distributed database systems community: structure heterogeneity
and semantic heterogeneity. Structural heterogeneity means that different
information systems store their data in different structures. Semantic
heterogeneity considers the content of an information item and its intended
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meaning. In order to achieve semantic heterogeneity in a heterogeneous
information system, the meaning of the information that is interchanged has
to be understood across the systems.

Using ontology for the explication of implicit and hidden knowledge is a
possible approach to overcome the problem of semantic heterogeneity.
Ontology provides a mechanism for capturing a community’s view of a
domain in a shareable form, which is both accessible by humans and
computationally amenable. Ontology provides a set of vocabulary terms that
label concepts in the domain. By capturing knowledge about a domain in a
shareable and computationally accessible and computable semantics about
the domain knowledge they describe, bio-ontology provides a model of
biological concepts that can be used to form a semantic framework for many
data storage, retrieval and analysis tasks. A lot of ontology systems have been
developed in the field of bioinformatics. Currently the most important
ontology in the bioinformatics community is the Gene Ontology. Gene
Ontology, as a tool for the unification of information about gene products,
aims at producing a dynamic controlled vocabulary that can be applied to all
eukaryotes even as knowledge of gene and protein roles in cells. It comprises
three orthogonal taxonomies or aspects, which hold terms that describe the
attributes of molecular function, biological process and cellular component
for a gene product.

To address these problems we have developed a bio-data warehouse named
BioDW, in which a central database is used to uniformly collect and store
biology data from heterogeneous schemas/formats and scattered over
numerous (public) repositories. Moreover, it aims at a semantic integration of
annotations using Gene Ontology. Now we have integrated DNA databases
(such as Genbank), protein databases (such as swissprot) and functional
related databases(such as KEGG) into BioDW.

As illustrated in Figure 7, BioDW is build with GO. The advantages of
integrating GO into BioDW can be described as follows:

� First, we download Gene Ontology tables and their data to construct a
local GO system in our Bio-data warehouse. Based on this, the gene
products listed under special GOid can be out linked to the
corresponding entries stored in the data warehouse.

� Second, because entries in swissprot have already been well annotated
with GO terms. Based on the dbxref table of swissprot, the
corresponding DNA entries from Genbank can also be annotated with
the same GO terms. In KEGG, KO database also integrated GO terms in
its entries too. So, entries in the data warehouse are assigned with GO
terms to the maximum extension.

� Third, terms and definitions in GO system have been well organized
logically. This precise logical relationship can be used in the function of
semantical search. The output of query would be entries with similarity
to the query terms listed according to the homology while the unrelated
search results have been excluded as much as possible, which has
distinct advantage over simple text search method.
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 Figure 7.1: Architecture of BioDW.

� Fourth, Gene Ontology can also be a powerful tool on data marts
constructing and going for data cleaning (eliminating data redundancy).

Data mart is a special database constructed to satisfy users with specified
requirment. Entries in a data mart should also be highly related to each other
in a specialized area, in special organisms, in special processes or with the
similar function, etc. These relationships are also well represented in GO
systems. With the help of GO, entries fitting the criteria of data mart can be
easily extracted from data warehouse and arrayed in well order.

Eliminating data redundancy is hard work and costs a lot of time and money.
With the help of GO and interrelationships among GO terms, possible
redundant entries in the data warehouse will be clustered for further analysis.
This process saving much analysis work used to be done by biologists.
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8.1 Introduction

With the completion of many large-scale genome-sequencing projects, efforts
to annotate the gene products are generating increased interest in the
biological community. These efforts have produced databases that capture
functional information about gene products. Many of these databases can be
categorized as “pathway” databases because the data they capture is
evocative, either in whole or in part, of the biological notion of a pathway.

Traditionally, pathway databases have been populated through manual
means. This typically involves one or more curators who review the scientific
literature for experimental results. The curators then translate the conclusions
drawn from those results and store the information in a database entry. This is
a long and tedious process that accumulates pathway data at a slow rate.

Recently, however, a number of methods that expedite the process of pathway
database population have been developed. For example, several tools now
exist that use Natural Language Processing (NLP) to automatically generate
pathway data from scientific publications. In addition, pathway data from
high-throughput experimental methods (such as for detection of
protein-protein interactions) are easy to translate into databases. There are
also computational methods that generate pathway data by inferring new
relationships from existing datasets.

These new methods have increased the size and number of existing databases.
In fact, the rate of new pathway database creation appears to be increasing.
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The value of these new databases to the research community would be much
greater if the data were easily accessible in a standard format.

8.2 Objectives and Scope

The main objective of the BioPAX initiative is to develop a data exchange
format for biological pathways that is flexible, extensible, optionally
encapsulated and compatible with other standards and can be widely
adopted in a timely manner.

Our definition of a biological pathway is “a network of biological
relationships”. This general definition encompasses metabolic pathways,
signal transduction pathways, gene regulatory pathways, genetic interaction
pathways, networks of word relationships found using text mining, in silico
predicted pathways and pathways of cellular interactions. It does not cover
pathways in biological systems that are higher order than the cell, such as
physiological pathways. Thus the scope of BioPAX is defined to be all
pathways relating to cellular and molecular biology. Initially, however,
BioPAX will focus on metabolic, signal transduction and gene regulatory
pathways, as most existing data fall into one of these three categories.

8.3 Use Cases

The primary use case of the BioPAX data exchange format will be to facilitate
data sharing between pathway databases like aMAZE, BIND, DIP, EcoCyc,
IntAct, and WIT. BioPAX could also facilitate the creation of a centralized
public repository for pathway data (in fact, the desire for such a repository
was one of the driving forces behind formation of the BioPAX effort).

Another intended use of the BioPAX format is to provide a standard format
for software tools that must access pathway data. A few examples of such
tools include pathway visualization programs, expression analysis tools, and
pathway simulation tools.

It is important to note that although the systems biology mark-up languages,
such as CellML (http:www.cellml.org) and SBML
(http://www.sbml.org), already address the pathway simulation use case,
they are not designed to handle the wider range of use cases intended for
BioPAX. Still, BioPAX is being designed to be compatible with these and other
important standards, such as PSI (http://psidev.sourceforge.net), in
the areas where they overlap. This should decrease the burden on end-users
of having yet another standard and allow for the possibility of a future
common standard.
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8.4 Ontology Development

BioPAX is being developed as an OWL ontology using the Generic
Knowledge Base (GKB, http://www.ai.sri.com/˜gkb/) Editor
(developed by Peter Karp’s group) and concurrently as an XML Schema using
XMLSpy. We are trying to design both so that XSLT translators can flawlessly
translate between them.

The rationale behind dual syntaxes for the exchange format stems from the
fact that OWL is a more powerful representation language, but XML Schema
is currently in much wider use. It is impossible to predict whether the
advantages OWL provides will result in it becoming commonly used. Since
the utility of a data exchange format depends on it being widely accepted, we
felt it was necessary to create a version of BioPAX in both of these syntaxes.

The first drafts of both the OWL and XML Schema versions of BioPAX are
planned for release in June 2003.

8.5 Summary of Progress to Date

The first milestone of the BioPAX group was the decision to use Chemical
Markup Language (CML) for the representation of small molecules and a
subsequent proof-of-concept that involved sending a set of small molecules
from EcoCyc to a visualization program used by the Shah lab. Another
important milestone was the completion of an informal description of the
PAX framework. The framework (now called a PAX record) can represent
both metabolic pathways and signal transduction pathways.

We have established contact with the SBML, CellML, and PSI groups and
have agreed to work together to ensure compatibility. Other accomplishments
include the evaluation of OWL as a syntax language and the creation of
several subgroups. These subgroups address specific issues, such as the best
way to represent molecular states.

8.6 History of the BioPAX Initiative

The BioPAX initiative grew out of open discussions about sharing pathway
database information organized by Chris Sander at ISMB 2001 in Copenhagen
and again at the BioPathways Consortium satellite meeting at ISMB 2002 in
Edmonton, Canada.

The core work group was formed in October 2003 and is composed of a
representative mix of end-users, database developers, and software
developers, and includes several BioPathways Consortium (BPC)
representatives. To ensure adequate representation of the biological pathways
community, BioPAX core members actively reach out to community members
for feedback. In addition, BioPAX forms subgroups that include additional
community members. The core group holds biweekly conference calls and
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face- to-face meetings monthly to bi-monthly at rotating locations in the U.S.
Minutes and presentations are posted on at http://www.BioPAX.org.

8.7 How to Contact BioPAX

Members of the community interested in BioPAX are encouraged to
participate, promote and provide feedback to BioPAX. The BioPAX web site
(http://www.BioPAX.org) contains documentation, activities, and mailing
lists for feedback and discussion. Participation in the BioPAX core group
currently requires an invitation as we try to keep the core group small and
efficient, however please contact us for participation in subgroups. Subgroups
are formed to extend the BioPAX specification and address specific
development issues. We currently have Small Molecule, Molecular State and
Pathway Data Examples subgroups.
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While ontologies are becoming important in all the knowledge-based
sciences, their penetration into computational biology is deeper than most
others, and, moreover, becoming more necessary to the normal course of
scientific development. Use of ontological structures such as the Gene
Ontology (GO) (1; Gene Ontology) are increasingly a standard part of a
typical biologist’s work day.

We have been pursuing work in structural classification of the GO. That is,
given a list of genes of interest, how are they organized with respect to the
GO? Are they centralized, dispersed, grouped in one or more clusters? With
respect to the biological functions which make up the GO, do the genes
represent a collection of more general or more specific functions, a coherent
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collection of functions or distinct functions?

Existing approaches to these questions (3; 5) have relied on the statistics of
how ontology nodes are generally populated, and/or use a distance based on
the minimal path length between two nodes (4). Our approach (2) is based on
the following principles:

� While we welcome the use of node statistics as supplementary
information, it is also important to be able to provide answers when
such information is lacking, that is, based only on the structural relations
among the nodes in the ontology implicated by the genes of interest.

� It’s also important to complement our intuitive approaches to
methodological development with sound mathematical reasoning.
Ontologies such as the GO share with object-oriented hierarchies a
common mathematical structure called a labeled poset: a collection of
partially ordered sets (posets, equivalent to Directed Acyclic Graphs
(DAGs)), each one representing a different semantic category. In the case
of the GO, and in many other ontological structures as well, there are
two posets, composed of is-a and has-part links respectively.
Compared to more familiar mathematical structures such as trees,
lattices, networks, or Euclidean spaces, we have fewer good intuitions
and techniques about posets. Therefore it’s important to base methods
in the mathematics of posets specifically. For example, minimal path
length among any two nodes is a network-theoretical approach, and
really makes no sense in a poset.

In this talk we will discuss our approach to structural classification in the GO
based on pseudo-distances in posets. Our system, the Gene Ontology
Clusterer (GOC), uses pseudo-distances between comparable nodes only, in
conjunction with scoring algorithms, to rank-order the GO nodes with respect
to the requested genes. By iterating this process, we support biologists in the
process of knowledge discovery within the GO.

Aside from describing our system in general, our primary purpose in the talk
will be to discuss the lessons we’ve thereby learned about working with the
GO, in particular the following kinds of issues:

� Our experience in trying to identify categories in the GO based on lists
of genes of interest has led us to appreciate two interrelated concepts:
coverage is the idea that a given node should cover as many of the genes
of interest as possible, while specificity is the idea that it should do so as
precisely or specifically as possible. These ideas are conflicting: the top
of the ontology always provides complete coverage but minimal
specificity, while identifying any individual node containing a gene of
interest provides complete specificity with minimal coverage.
Identification of clusters is thus not unequivocal, but rather a
user-dependent judgment about the tradeoff of specificity and coverage.

� The GO is widely and legitimately championed as being superior to
other systems in that it is DAG-based, and not a tree. But the
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consequences of this are not nearly as widely recognized. In particular,
our intuitions about concepts of how “levels” work, and the relations
among nodes at different levels, can be quite deceptive; and statistical
approaches which are quite clean in trees can become non-additive with
DAGs.

� Moreover, tree-based software dominates GO interfaces. Visualization
of DAGs is especially important, for example to interpret the outputs of
our GOC system.

� There is a need for a broader mathematical and statistical analytical base
of understanding of the GO. The kinds of questions we have, and
perhaps will address, or perhaps others have already addressed,
include: the distributions of leaves and roots; the distribution of
up-branching and down-branching; overall path length statistics;
distribution of genes, both through the GO and with respect to multiple
genes per node; and areas of tree-ish and lattice-like regions within the
full GO.
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The Sequence Ontology is a structured controlled vocabulary that provides a
lexicon to describe details of biological sequences. It is provided as a common
resource for the bioinformatics community. As multiple genome annotation
groups converge on shared semantics to describe their primary annotations
for sequence data, the bioinformatics community will benefit in many obvious
ways:

� With a shared agreement on how annotations are described, the
software that parses this data will become vastly simpler to write and
maintain. Developers will no longer need to write special software
versions for each source of annotations, e.g. for data collected from
different DAS servers.

� With a shared agreement on how annotations are described, the
annotations will be easier to query and the results that are returned will
represent the same type of annotation regardless of the data source.
When sequences within model organism databases are annotated with
these terms, it will be possible to robustly query all these databases
asking, for example, to see all gene sequences with edited transcripts, or
trans-spliced, or which are bound by a particular protein.

� With a hierarchical set of terms describing sequence annotations, users
can query at many levels of granularity using either broadly and
narrowly defined terms to describe a search, for example, to retrieve
annotations of sequence variations. The annotations will be recorded at
the appropriate level, and the query can be constructed at a different
level.
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Within the Gene Ontology (GO) each term is an atomic (indivisible) unit, i.e.
the curator is not able to dynamically construct their own phrase by
combining existing words or qualifiers. As a consequence of this constraint,
indivisible phrases have been introduced into GO as a temporary expedient to
provide the expressiveness that is needed for curation. If we continue
introducing complex compound terms the system will become progressively
more redundant, less flexible and increasingly difficult to manage. This is a
recognized concern that is being addressed for the future of the GO. The
Sequence Ontology, offers the opportunity to implement and utilize a more
flexible and dynamic methodology from the outset. Our first move is to
implement attributes or slots for terms. “Slots” provide a formalism for
dealing with the classification of finely granular terms by allowing the flexible
creation of phrases. Another way to look at this is as a progression beyond a
vocabulary of fixed phrases to a grammar for the creation of phrases that will
offer the biological curators a structured means of composing phrases to use
during annotation. The development strategies for the SO will reflect back to
aid the evolution of the GO.

This talk will report on our current progress to this end and discuss the issues
and choices that we have made. We will also review some of the semantic
issues that have generated discussion within the consortium.
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The Physiome Project is an attempt to build a comprehensive framework for
computational modelling of human biochemistry, biophysics, and anatomy.
The goal of this project, sponsored by the International Union of Physiological
Sciences (IUPS) and the IEEE Engineering in Medicine and Biology Society
(EMBS), is to use computational modelling to analyze integrative
physiological function in terms of underlying biological structure and
processes. Web-accessible databases of model-related data at the organ
system, organ, tissue, and cellular levels have been established to support the
project. These databases currently include quantitative descriptions of
anatomy, mathematical characterisations of physiological processes, and
associated bibliographic information.

CellML and CellML Metadata are XML-based languages used to describe the
underlying mathematics and topology of a wide variety of biological models.
CellML characterises the structure and underlying mathematics of the model,
while CellML Metadata provides supporting information about the scope and
context of the model. The structure of CellML is simple, yet powerful enough
to provide a common basis for describing a wide variety of model types. It is
currently being used to define electrophysiological, mechanical, signal
transduction and metabolic pathway models in a publicly accessible database
of over 140 published models.

CellML models are constructed as a network of interconnected components.
Components, which may represent physical compartments, collections of
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related entities, or a convenient modeling abstraction, are the basic functional
units of a CellML model. Each component may contain variables, the
mathematics that describes the relationships between those variables, and
metadata. For instance, a pathway model might be organized into
components that represent the various species and the reactions they
participate in. The components may be grouped logically or physically,
allowing the encapsulation of model functionality and the specification of
geometric relationships.

CellML models are able to import other models, enabling model hierarchies to
be constructed. In this case the basic components themselves become models
with a supermodel importing and connecting all the component-models
together to form a more complex system. This mechanism encourages
component re-use because models containing representations of biological
entities that are common to other models may be incorporated into many
different supermodels. This mechanism for reuse can thus be used to create
libraries of components and units.

Knowledge implicitly associated with a model, however, is not normally
included in the CellML representation. In order to address this problem
facilities to include ontologies have been added to CellML. An ontology is, in
essence, a controlled vocabulary of terms that are related to one another in
class hierarchies and are associated by a set of rules. Ontologies are powerful
because they give computer applications the ability to infer meaning about a
particular set of data based on how the data set associates with the ontology.
Ontologies extend the current capabilities of CellML by adding classing
mechanisms to CellML components and variables.

We are exploring how CellML may benefit from the incorporation of
ontologies by defining the base CellML language, the reaction subset of the
CellML language, and a conceptual rendering of a reaction as ontologies with
rules about how they interact. A biochemical reaction is broken down into its
participants and the expressions that relate the participants. These three
branches of the ontology are part of a wider effort to build a formal
knowledge representation of the physiome, with all entrants into the ontology
being peer reviewed. The ontologies are defined using systems based on the
Open Knowledge Base Connectivity (OKBC) protocol and exported in a
variety of standard formats, such as DAML+OIL and the W3C’s Web
Ontology Language, OWL ( http://www.w3c.org/2001/sw/WebOnt/).

The benefits of using the CellML ontologies are numerous. The reaction
ontologies serve as an interface between the scientist and the programmer by
allowing the scientist to describe reaction pathways in a way that is
biologically familiar and by breaking down the components of a reaction in a
way that is conceptually significant and easy for the programmer to
implement. For instance, the biologist can describe an enzyme-catalysed
reaction with competitive inhibition using a pathway editor by creating an
instance of the competitive inhibition class, a subclass of the Michaelis-Menten
class. Because the competitive inhibition class is part of the reaction ontology,
the editor knows that the reaction involves a substrate, enzyme, product, and
inhibitor, and certain other parameters must be entered before the component
is complete. What differentiates this methodology from other existing
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software is that the ontology is not application-specific. The same ontology
may be shared and processed by many applications as long as the program
can understand standard ontology representations. Furthermore, once an
application is capable of processing ontologies, users may define and
integrate their own ontologies for use by the program, or incorporate a
number of existing ontologies.

The current ontologies created for use with CellML are both powerful and
versatile. In the future further ontologies will be constructed to enable
graphical information to be assigned to a component, provide better model
validation techniques, and associate a model with other models or templates.
For updates on how ontologies are being incorporated into CellML, see
http://www.cellml.org/.
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The Disease Ontology is an ontology defining subsumptive relationships in
human disease. The goal behind the disease ontology is to create a
comprehensive hierarchical vocabulary to represent all disease states. The
terms in the ontology were originally based on and are mapped to ICD9 codes
in order to facilitate medical record mining. In a manner similar to the Gene
Ontology process of curation and public forum, the ontology will be
continually extended and revised in order to broadly encompass disease
phenotypes. Future plans include mapping these terms to other medical
billing code systems. The structure of the ontology is strongly connected to
anatomy and cell type, recapitulating gene expression. Disease terms within
the ontology are linked by associations to gene products whose aberrant
expression or allelic variation causes or contributes to disease. As these gene
products additionally have Gene Ontology terms, one may conversely look at
disease genes by molecular rather than anatomical groupings.

The ontology is being developed as part of the NUGene project at
Northwestern University. Similar to BioBank (UK), The NUGene project
collects DNA samples from participants, through an informed consent
process, in conjunction with access to their medical history in the form of
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billing codes. The ontology was initially created in order to impart a logical
hierarchical order to the billing terms and eradicate redundancies for data
mining purposes. Gene products may have many disease associations such as
in the case of a plieotropic Mendelian disorder or have contribution to a single
multifactorial disease. These associations have evidence codes similar to those
of the Gene Ontology.

This ontology provides many uses for the discovery of new biological
knowledge. The subsumptive structure of this ontology favors data mining
approaches over an automated reasoning approach because of the statistical
basis of medical record mining. This basis was a key factor in designing the
hierarchical structure and relationship weakness of the ontology. From the
medical records, statistical associations between disparate disease occurrences
may be mined. Overlap in biological processes or molecular function may
also be mined or inferred from the GO associations of gene products known to
cause particular diseases. This will lead to better identification of candidate
disease genes and enable us to identify new candidate genes through
co-operation in processes or similarity in function.

In it’s current incarnation, the ontology holds approximately 6800 terms. In
addition to the expansion by adding new terms and mapping to different
billing codes, there will be continual restructuring of the ontology to reflect
logic, eradicate redundancy and unnecessary groupings. The ontology will be
available on Source Forge. Future plans include the release of the ontology, it’s
gene products associations, and their respective GO associations to the public
through the AmiGO interface as a public tool for disease gene browsing.
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The Rat Genome Database (RGD) is an NIH-funded project whose stated
mission is “to collect, consolidate and integrate data generated from ongoing
rat genetics and genomic research efforts and make these data widely
available to the scientific community”. In a collaboration between the
Bioinformatics Research Center (BRC) at the Medical College of Wisconsin,
the Jackson Laboratory and the National Center for Biotechnology
Information, RGD was created to meet these stated aims. The rat is uniquely
suited to its role as a model of human disease and the primary focus of RGD is
to aid researchers in their study of the rat and in applying their results to
studies in a wider context. In support of this we have integrated a large
amount of rat genetic and genomic resources in RGD and these are constantly
being expanded through ongoing literature and bulk dataset curation. The
current version of RGD, includes curated data on rat genes, sequences,
quantitative trail loci (QTL), microsatellite markers and rat strains used in
genetic and genomic research, plus a variety of tools for mapping
comparative analysis.

To extend the usability of RGD, new approaches as to how the information in
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the database is regrouped, cataloged and presented have to be developed.
One of the newest approaches to creating another angle toward knowledge
representation is the development of ontologies that classify related concepts
within hierarchies. We decided to use the ontologies as a means to present
and view data in the RGD website. In light of its maturity and current use by
RGD, the initial ontology to be implemented will be the Gene Ontology. Later
on, given that work on phenotype and disease ontologies is under way at
RGD and other institutions, we will look to incorporate these new
vocabularies over the coming year as well.

Implementation of any feature onto a website requires a careful analysis of the
audience of the site, along with other stakeholders, and available resources
and site operations so as to provide the most effective use of the its features
and tools. For this project we analyzed the need of the stakeholders from each
of the operations needed to keep the site functional, current and useful. The
site operations were identified as follows:

� Data Presentation - The Rat Genome Database’s user interface is a
website and thus ease of use is vital. It is important that users are able to
view information readily without sacrificing scientific rigor in the site’s
organization.

� Data Curation - Keeping the data current is one of the important facets
of RGD’s operation. Proper and ready access to the ontology and
annotated information by curators will help ensure that the data
presented is as current and as accurate as possible.

� Data Upload - Operating a large scale database requires handling
copious amounts of for upload and integration. Addition of ontologies
into the database requires revision of the process to ensure data quality
and to ensure referential integrity.

� Enhancements - Biology and bioinformatics are constantly evolving
fields and keeping RGD current necessitates enhancement to the site to
reflect such developments. For this effort alone, planning to incorporate
upcoming ontologies requires us to implement schemas and scripts that
allow us to readily upload and integrate them as they come.

The needs of the various stakeholders from each operation, if applicable were
determined through interviews. The stakeholders that were identified were:

� Site visitors - The site us primarily aimed at the scientific community
and the rat, genome and genetics researchers in particular.

� Development Personnel - People primarily responsible for upgrading
the site and implementing the necessary enhancements.

� Curation Staff - Personnel responsible for gathering data for upload
into the RGD site. User friendliness and scientific

� Other BRC teams - In addition to RGD, BRC engages in other activities
related to processing, consolidating, and integrating genetic and
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genomic data. Allowing those teams to readily access, download, and
use RGD data is an important facet in RGD’s operations.

� Technical Personnel - The incorporation of ontologies needs to be
consistent with the current scheme for uploading and storing RGD data.

� BRC Administration - Website features, as envisioned by the BRC
administration need to be considered for current and future
implementations.

After categorizing the needs of the various stakeholders. We decided on a
course as to how best to integrate ontologies into RGD. We needed to ensure
that the implementation is user friendly as well as scientifically sound.
Following these considerations, a use case diagram to lay out the function of
the ontology information was created. The use case diagram envisions the
ontology system serving as an engine by which RGD provides new angles for
viewing information and extracting knowledge. The ontology system will
provide functionalities to three different ways of accessing information in
RGD. For the general search, ontologies can be used as controlled
vocabularies from which keywords can be culled. Moreover, objects
annotated to specific ontology terms and its descendants can be also be
retrieved through this method. The second search method is through an
ontology browser that allows users to navigate the vocabularies and obtain
term details as well as lists of its annotated objects. In the third search method,
ontology terms can be used to focus object searches to specific concepts. All
these search strategies aim to provide links to information on the appropriate
objects and their instances in the form of reports. Upon reaching the reports,
links to information on related objects allow users to explore its biology and
navigate further into the site. Future implementations will also integrate
ontology functionalities into RGD tools like VCMap and the Genome Browser.
Subsequently, current and future state diagrams of the RGD Website were
drawn out to provide a concrete illustration for the use the ontology data.

The development of ontologies gives model organism databases a powerful
tool for the classification, organization and presentation of knowledge.
Following MGI’s lead and adopting their technologies, RGD will implement a
system that allows any ontology to be fielded. The strategy is to ensure that
the schema, upload system, and dynamic web pages are abstract enough so
that any ontology using the DAG structure can be accommodated and fielded
with relative ease.


