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Abstract 
     Josephus problem is a historical algorithmic problem, which is used for educational 
purposes in algorithm analysis books and courses. There’s a simple algorithm to solve 
this problem, however the answer can also be found using a formula. Josephus problem 
can be extended to form Extended Josephus Problem. No formula had been seen for 
solving this problem before. This paper proposes and proves both recursive and non-
recursive formulation for the extended form of this famous problem.  
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1.  Introduction 
     This old problem was introduced by first century historian, Flavius Josephus. During a 
war between Romans and Jews, he was among forty-one Jews captured by Romans in a 
cave. They preferred suicide to that situation and decided to sit around a circle and begin 
to kill third of every three remaining persons from beginning of the circle, until no one is 
alive (at last, there were two persons alive who should kill themselves). Josephus that 
didn’t want to suicide calculated that he and his friend should sit where to remain alive 
(to be those last two persons). The problem known as Josephus problem is something 
similar to the problem that Josephus solved [1].  
     Josephus Problem: There are n persons, numbered 1 to n, around a circle. We start 
from person number 1 and eliminate (kill) second of every two remaining persons until 
one person remains. Given the n, determine the number of that person. For example, if 
n=10, elimination is done this way: 2, 4, 6, 8, 10, 3, 7, 1, 9 and finally 5 remains. 
     Formula for Josephus Problem: The answer is obtained by circular shifting of 
binary form of n to left [1]. Following formula for the answer, was derived from a more 
general formula that will be discussed:  
 

    1)lg()lg( 2121)2(2)( +−+=+−= nn nnnJ  
(Please note that lg(0) is assumed 0 here.) 

 
     Extended Josephus Problem: There are n persons, numbered 1 to n, around a circle. 
We eliminate second of every two remaining persons until one person remains. Given the 
n, determine the number of “x”th person who is eliminated. 
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     Formula for the Extended Josephus Problem: We are going to introduce and prove 
the following non-recursive formula for the Extended Josephus Problem: 

     )2/sgn2)(122(12),( 1)122/(lg




−+−−+= ++−

x
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(lg(0) is assumed 0 here.) 
 
2.  Introducing and Proving Recursive and Non-recursive Formulas 
     First, we introduce a recursive formula for solving the Extended Josephus Problem 
and prove it. Then, a non-recursive formula is suggested and proved using the proved 
recursive formula and a lemma.  
     Recursive Formula: We propose the following recursive formula for the Extended 
Josephus Problem: 
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     Proof of the Recursive Formula: Correctness of the last two parts of the above 
recursive formula is obvious. The first two parts complete each other to form a circular 
computation for J (n,x) that changes J (n,x) = n+1 to J (n,x) = 1 (that is when the second 
part of the recursive formula wants to say J (n,x)=n+1, the first part corrects it as J 
(n,x)=1). When J (n-1, x-1) = n-1, according to the second part we have J (n,x) = n+1, but 
n+1 is not acceptable because we have only n numbers in our circle, so according to 
circularity of elimination,  the next number to be eliminated is 1 (if there is any 1 
remained, and we will see that there is). For proving the correctness of first two parts of 
the formula, we eliminate 2 from the circle of numbers and shift the circle to left, 
assuming that the circle begins with 3 and assuming that 1 is the last element (after n). 
Now, we call (rename) 1 as n+1 from now on (it obviously dose not hurt!). This way we 
have an n-1 element circle that it’s “i”th element is i+2. Considering the fact that shifting 
to left has no effect on circular elimination of numbers and that we should eliminate 4 
after 2 (which was eliminated) and the fact that elimination will begin with 4 in our new 
shifted circle, we can conclude that if the “k”th number to be eliminated in a n-1 member 
circle of numbers 1 to n-1 (corresponding to our new shifted circle) is i, then the “k”th 
number to be eliminated in our new shifted circle is i+2. So, we can conclude that the 
“k+1”th number to be eliminated in our original n member circle is i+2, with the 
exception that if i=n-1, then i+2 = (n-1)+2 = n+1 that is actually 1 (we called 1 as n+1 
before). This exception is shown in form of the first part of the recursive formula. So, we 
proved that the mentioned recursive formula for the Extended Josephus Problem is 
correct. 
     Non-recursive Formula: Now, we suggest the following non-recursive formula and 
prove it using the proved recursive formula and a lemma:  
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(lg(0) is assumed 0 here.) 
 
     Answer Triangle: To make the problem and proofs better to be understood, we build 
and use an answer triangle for the Extended Josephus Problem, based on the recursive 
formula, in which in its “k”th row, J(k,x), 1≤ x ≤ k, are listed increasingly: 
 
n  J(n,x) 
 
1  1 
2  2     1 
3  2     1     3 
4  2     4     3     1 
5  2     4     1     5     3 
6  2     4     6     3     1     5 
7  2     4     6     1     5     3     7 
8  2     4     6     8     3     7     5     1 
9  2     4     6     8     1     5     9     7     3 
10  2     4     6     8     10   3     7     1     9     5 
11  2     4     6     8     10   1     5     9     3     11   7 
12  2     4     6     8     10   12   3     7     11   5     1     9 
13  2     4     6     8     10   12   1     5     9     13   7     3     11 
14  2     4     6     8     10   12   14   3     7     11   1     9     5     13 
15  2     4     6     8     10   12   14   1     5     9     13   3     11    7    15 
16  2     4     6     8     10   12   14   16   3     7     11   15   5      13   9     1 
17  2     4     6     8     10   12   14   16   1     5     9     13   17    7     15   11   3 
 
     We need to prove the following lemma before proving the formula: 
     Lemma: Row number of the first previous 1 that exists in diagonal row of the number 
J(n,x) is: 

  )122/(lg2)122( +−×+−= xnnxnO  
(lg(0) is assumed 0 here.) 

     For example: Second diagonal row from right is 2 1 3 5 1 3 5 7 9 … . If J (x,n) = J 
(9,8) = 7, then the row number of the first previous 1 that exists in diagonal row of the 
number J(n,x) – which is the second diagonal row from right - is 6. 
     Proof of the Lemma: Based on two first parts of the recursive formula, we can easily 
see that if J(n,x) = 1 then J ( 2n,  2n-(n-x) ) = 1. J(n,x) and J ( 2n,  2n-(n-x) ) are in a 
diagonal row of the triangle. So, if we see 1 in a favorite diagonal row, in horizontal row 
n, then we see next 1 of that diagonal row in horizontal row 2n. In the other hand, the first 
1 of each diagonal row is seen in horizontal row 2n-2x+1 (cause that all such 1 numbers 
are in odd rows, and in odd rows, 1 comes immediately after all even numbers come). 
Based on this fact and the previous fact, we can conclude that the second 1 occurs in row 
2×(2n-2x+!), the third occurs in row 2×2×(2n-2x+!) and so on. So, the nearest 1 before 
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J(n,x) and in its diagonal row is in horizontal row O = )122(2 +−× xnf  such that f is the 
maximum integer that satisfies )122(2 +−× xnf ≤ n. That means f2 ≤ n / )122( +− xn , 
2n-2x+1 > 0, that is f2 ≤ [ n / )122( +− xn ], f∈Z, when f is maximum. Of course, we 
could omit brackets and continue the proof, but brackets ensures that we can use integer 

division to divide n to 2n-2x+1. We will have: f =   )122/(lg +− xnn . Substituting f 
with this value in )122(2 +−× xnf we will have:  

 
  )122/(lg2)122( +−×+−= xnnxnO  

(lg(0) is assumed 0 here.) 
 
     Proof of the Non-recursive Formula: The proof of formula for all x ≤  2/n  is 

obvious, because in this case J(n,x) should be 2x and we can easily see that  






x
n 2/sgn  

= 1 and    1)122/(lg2 ++− xnn  = 2, so J(n,x) = 2x (as it should). For x >  2/n , based on the 
lemma and the recursive formula we can easily prove (just take a look at the Answer 
Triangle):  

 
J(n,x) = 2 (n – O) + 1 =    1)122/(lg2)122(12 ++−+−−+ xnnxnn  

 

     In the other hand, for x >  2/n  we see that  






x
n 2/sgn  = 0 and can be eliminated 

from the formula in this case, so the formula is correct for x >  2/n , too. 
     So, we proved that: 

     )2/sgn2)(122(12),( 1)122/(lg
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
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(lg(0) is assumed 0 here.) 
 
     Prof. Donald E. Knuth’s suggested idea for proving the non-recursive formula: 
“Give everybody a number starting 2n, 2n-1, ..., n+1. Then when you pass over a person, 
divide his/her number by 2. But when a person dies, you can figure out the original 
number by multiplying by a power of 2 until reaching the interval [n+1..2n]. This proof 
leads to a slightly simpler form of the result." 
 
3.  Conclusions 
     The problem can be extended more.  
     More Extended Josephus Problem: There are n persons, numbered 1 to n, around a 
circle. We eliminate “k”th of every k remaining persons until k-1 person(s) remain(s). 
Given the n, determine the number of “x”th person who is eliminated and determine the 
remaining k-1 persons. We can assume that last k-1 person(s) are eliminated 
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consecutively starting from the person immediately after the last eliminated “k”th of k 
persons. 
     Generally, trying to obtain formula or formulation approaches for algorithmic 
problems is very interesting and may lead to a new branch in theoretical foundations of 
computer science. The old famous problems of finding “m”th prime number and 
checking primality of a given number may help a lot in establishing such a branch, 
because famous open problems have helped us a lot in such establishments. Considering 
the fact that an algorithm is a large formula itself, we may be able to find compression 
approaches to convert some groups of these large formulas (algorithms) to little ordinary 
formulas. Based on the fact that an algorithm is a logical circuit, “Karnaugh Table” 
approach, widely used in logical circuits, can be assumed the ancestor of such 
compression approaches. 
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