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Abstract

This paper gives an overview of two methods for automatically or semi-automatically generating
deduction calculi from the semantic specification of a logic. One approach is based on simulating
deduction approaches with techniques of automated reasoning and first-order resolution. The
second approach synthesises sound, complete and terminating tableau calculi directly from the
semantic specification of a logic.

1 Introduction

Non-classical logics, including modal logics, description logic, hybrid logics and
intuitionistic logic, are popular and have many applications. The applications
range from multi-agent systems to medical domains, web services and the
semantic web. Demand for deduction calculi and implemented provers for
non-classical logics is thus high. Rather than developing deduction calculi
one by one and proving important properties such as soundness, completeness
and decidability for each individually, we are interested in the possibility of
providing a generic framework for developing deduction calculi. The idea is
that deduction calculi can be developed for all these different logics and their
applications in a uniform way. There are various interactive prover engineering
platform that can be used for developing calculi [1,7]. These provide flexible
and general frameworks for defining and experimenting with implementations
of different sets of tableau inference rules for different logics, different rule
application strategies and different optimisations.
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As an alternative, we are interested in fully-automatically generating de-
duction calculi from the specification of a logic. The logic of interest is assumed
to be defined by a high-level specification of its formal semantics. The aim is
to turn this into a set of inference rules, which forms a sound and complete
deduction calculus for the logic. Ideally we also want to be able to guarantee
termination if the logic is decidable. Automated synthesis of calculi is a very
challenging problem and in general it is of course not possible to turn ev-
ery specification of a logic into a sound, complete and terminating deduction
calculus. It is however possible to solve the problem for a large number of
logics.

In this paper we discuss two methods for synthesising deduction calculi:
the develop via first-order resolution method [22] and the direct tableau syn-
thesis framework [26,27]. The focus of both methods is on developing ground
semantic calculi for modal-type logics that operate on labelled modal formulae
where the labels represent states in the underlying Kripke models.

2 The develop via first-order resolution method

Although resolution calculi apparently operate considerably differently from
tableau calculi, it is possible to linearly simulate many forms of modal or de-
scription logic tableau calculi with standard techniques of first-order resolution
theorem proving [6,13,14,16]. The simulations are in fact so close that they
can be exploited to read off tableau rules from the clausal forms of the trans-
lations used. This is explored in [6,24] and has been turned into the develop
via first-order resolution approach to devising deduction methods in [22].

The three main ingredients of the develop via first-order resolution ap-
proach are the following:

(i) An effective, satisfiability-equivalence preserving translation to first-order
logic that retains enough information about the input formula of the given
logic so that back-translation of resolution derivations to the original logic
is possible.

(ii) A refinement of first-order resolution that performs inferences exactly like
the kind of system we want to develop.

(iii) If needed, partial pre-saturation and purification of the clausal form.

If these ingredients are defined in the right way then the actual inference rules
can be read off from the clausal form.

Transformations satisfying ingredient (i) are not hard to find. They can
be based on encoding the semantics of the logic in first-order logic and struc-
tural transformation, a standard technique in automated reasoning, which
introduces new predicate symbols and definitions for subformulae.

For ingredient (ii), refinements of first-order resolution suitable for the
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simulation of ground semantic deduction calculi are variations of hyperreso-
lution. Additionally it is important that clauses are in range-restricted form.
A clause is range-restricted if all variables of the clause occur in the negative
literals of that clause. For the mainstream modal and description logics the
clauses are automatically range-restricted. For more expressive logics range-
restriction can be ensured with generic range-restricting transformations as
defined in [5].

Ingredient (iii), which is not always required, is not discussed here. An
example of its use can be found in [22].

The main insight allowing inference rules to be extracted from the clausal
form is the following. Hyperresolution on range-restricted clauses has the
property that all positive parent clauses are ground clauses and all conclu-
sions are ground clauses. This allows the negative, non-ground parent clause
of a hyperresolution inference step to be interpreted as an inference rule I of
the ground calculus. The positive, ground parent clauses of a hyperresolu-
tion inference step represent the premises of the rule I, and the conclusions
represent the conclusions of the rule. More details can be found in [6,22,24].

The form of calculi one obtains using the develop via first-order resolution
approach depends very much on the precise definition of all three ingredients.
It turns out that small modifications result in different variations of calculi
and also different styles of calculi. To obtain calculi with branching rules
splitting is used. For instance, hyperresolution with splitting and the relational
translation mapping yields ground semantic tableau calculi in the spirit of
Kripke. By this we mean tableau calculi based on structural rules for frame
correspondence properties. In [6,22] we have shown how hyperresolution with
splitting and the relational translation mapping give us tableau calculi from
for the dynamic modal logics K(m)(∧,∨,` ) and K(m)(∧,∨,` , �). Using the
axiomatic translation mapping and hyperresolution with splitting it is possible
to derive tableau calculi based on propagation rules rather than structural
rules. This is illustrated in [24] for extensions of the basic modal logic K .

When using the relational translation and dual hyperresolution with split-
ting dual tableau calculi, or Rasiowa-Sikorski proof calculi [19], are ob-
tained [22]. If splitting is omitted, that is, we use ordinary hyperresolution
together with the relational translation then (labelled) modal resolution cal-
culi similar to the ones introduced in [3] are obtained [22].

It is also possible to derive in a systematic way sound and complete calculi
via other translation methods. If we use the functional translation (e.g. [17])
or the optimised functional translation (e.g. [18]) in combination with hyper-
resolution and splitting then prefix tableau calculi are produced. With the
axiomatic translation we can generate prefix modal tableau calculi based on
propagation rules. Without splitting, modal resolution calculi in which the
labels are prefixes are generated. Dualising everything (including the transfor-
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mations and the hyperresolution calculus) yields Rasiowa-Sikorski type calculi
with prefixed formulae.

The approach allows techniques from resolution theorem proving to be
carried over to modal deduction approaches. For example, using ordered hy-
perresolution produces deduction calculi with ordering restrictions [22]. In
tableau calculi the ordering can be used to determine the literal to branch on
when a splitting rule is applied. In modal resolution calculi the ordering re-
stricts the application of the resolution rule and thus reduces the search space
and improves the performance. Similarly for dual systems.

Another example is absorption. Absorption is a technique for avoiding
unnecessary branching on formulae from the background theory (if there is
one), which was introduced for description logics in [11]. It turns out that
absorption can be naturally explained, proved correct, and generalised via
simulation with hyperresolution [13].

In first-order resolution an important notion is redundancy elimination.
This notion carries over to other calculi leading to three forms of redundancy:
redundant formulae, redundant rule applications and notably redundant in-
ference rules [22]. This means that reasoning modulo redundancy can be
formalised also for modal deduction calculi leading to stronger results and
better systems.

Soundness and completeness of the simulating resolution refinement carries
over immediately to the extracted deduction calculus provided the extracted
approach corresponds in a linear, step-wise fashion with the simulating ap-
proach. Decidability of the generated approach is automatic when the simu-
lating resolution refinement is a decision procedure for the translation of the
logic. Finding a suitable combination of a translation, resolution refinement
and pre-saturation (if needed) is the easier part. More challenging is to de-
velop ways to guarantee termination and prove decidability—should suitable
decidability results not already be known. Ordered resolution can be used
to decide numerous fragments of first-order logic into which (dynamic) modal
logics can be embedded, for instance, the guarded fragments, the two-variable
fragment, fluted logic and Maslov’s class K, cf. [8]. For hyperresolution far
fewer decidability results are currently available than for ordered resolution.
Ways of using hyperresolution to decide modal logics, description logics and
related first-order fragments are described in e.g. [6,9,10,14].

One of the attractions of the develop via first-order resolution method is
the possibility to use existing first-order resolution theorem provers as imple-
mentations of the generated deduction calculi. Hyperresolution, or essentially
equivalent refinements, are standardly implemented in well-known first-order
resolution theorem provers. Ordering restrictions can be flexibly defined in
these and splitting is currently available in at least (m)spass [15,29] and
vampire [20]. With modest implementation effort it is therefore possible to
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use these provers as modal tableau provers, modal Rasiowa-Sikorski provers,
or modal resolution provers. All that is necessary, is to implement the appro-
priate translations and then choose the correct combination of flag settings so
that the prover uses the simulating refinement. All these basic ingredients are
already implemented in (m)spass. An adaptation of spass, which translates
resolution proofs back into modal tableau proofs and first-order models into
modal models has been been developed by AlBarakati [2]. This provides a
new and slightly unusual implementation of a modal theorem prover. Cur-
rently it caters for the dynamic modal logic K(m)(∧,∨,` , �) and extensions
with first-order frame correspondence properties.

The approach provides a common framework for the direct comparison of
different deduction approaches. Tableau and resolution methods are typically
regarded as quiet opposite. Interpreted within the framework the difference
is actually small [22]: Modal resolution can be viewed as semantic tableau
without splitting and semantic tableau can be viewed as modal resolution
with splitting.

The approach also provides a uniform framework for the empirical compar-
ison of different deduction approaches. Examples of empirical studies under-
taken with (m)spass following essentially this approach can be found in [5,16].
Such experiments allow more meaningful comparisons of different calculi, or
different styles of deduction, than experiments based on the comparisons of
independently implemented provers [12,16].

We know that the approach can be generalised and applied to more ex-
pressive logics to yield sound and complete modal deduction calculi for many,
if not all, first-order definable (dynamic) modal logics and the corresponding
description logics. The approach applies also to other first-order definable
logics and fragments of first-order logic. For example, linear correspondence
results between tableau systems and resolution have been obtained in [10] for
decidable first-order fragments closely related to the guarded fragment. This
allows us to immediately pull out sound, complete and terminating tableau
procedures for these fragments. Similarly, tableau decision procedure can be
defined for the solvable class BU introduced and studied in [9].

3 The direct tableau synthesis framework

In this section we describe the (direct) tableau synthesis framework introduced
in [27]. It provides an alternative approach to generating sound, complete and
terminating tableau calculi.

The tableau synthesis framework consists of two stages:

(i) Automated synthesis of a tableau calculus.

(ii) Addition of a blocking mechanism to ensure termination.
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The first stage takes a high-level specification of the formal semantics of a
logic and transforms it into a set of tableau inference rules. In particular, the
user defines the formal semantics of the given logic in a many-sorted first-order
language. Then the method automatically reduces the semantic specification
of the logic to Skolemised implicational forms, which are then rewritten as
tableau inference rules. These are combined with default closure and equality
rules. A set of rules obtained in this way provides a sound and constructively
complete calculus when certain well-definedness conditions are true for the
specification [27].

A standard way of turning ground semantic tableau methods into decision
procedures is to add blocking. Various different blocking mechanisms have
been developed for different modal and description logics. In our framework we
use a form of blocking, called unrestricted blocking [25]. Unrestricted blocking
provides a very general and powerful mechanism to guarantee termination.
Unrestricted blocking is based on a cut rule and ground equality reasoning.
The idea is that two terms (labels) on a branch are identified; if this leads to
a contradiction backtracking is performed and a lemma is added, which says
that the two terms are different. To control the application of δ-rules, δ-rules
may only be applied to formulae with minimal terms in any equivalence class.
δ-rules are any rules triggering the creation of new terms, for example, 3-rules.
A second important restriction is that at some point in a branch blocking has
been applied exhaustively before the application of any δ-rule.

For logics with the effective finite model property the unrestricted blocking
mechanism ensures termination provided the following conditions all hold [26].

(a) The effective finite model property can be shown by a filtration argument.

(b) The tableau calculus is sound and constructively complete.

(c) A weak form of subformula property holds for tableau derivations.

Constructive completeness is a slightly stronger notion than completeness.
It means that for every open branch in a tableau there is a model, which
reflects all the formulae occurring on the branch. The result provides a general
methodology for turning sound and constructively complete tableau calculi for
modal-type logics (not only generated ones) into terminating calculi [26].

The direct tableau synthesis framework generates tableau calculi satisfying
the prerequisites (b) and (c). It turns out that provided the semantic specifi-
cation of the logic is well-defined in a certain sense, the subformula property
can be imposed on the generated calculi. Crucial is the separation of the syn-
tax of the logic from the ‘extras’ in the meta-language needed for the semantic
specification of the logic [27].

An important element of the method is rule refinement. The set of rules
generated from a well-defined semantic specification is not immediately opti-
mal, but can be transformed into improved and more elegant forms through
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two refinements [27]. The first refinement reduces the number of branches of
a rule by constraining a rule with additional premises rather than deriving
new conclusions. The second refinement simplifies the language of the tableau
calculus when there is enough expressivity in the language of the logic for
representing the basics of the semantics of the logic.

For various logics, including intuitionistic logic [27] and basic modal
logic K(m) with nominals (alternatively description logic ALCO or basic hy-
brid logic), the calculi produced are equivalent modulo inessential variations
and a different kind of blocking to calculi commonly found in the literature.
By design the method can generate tableau calculi for expressive description
logics such as ALBO [25]. ALBO extends the description logic ALC with
various role operators including role inverse, role union and role negation. It
is equivalent to Boolean modal logic extended with the relational inverse oper-
ator and nominals, and has the same expressivity as the two-variable fragment
of first-order logic. We have applied the method to develop a tableau-based
algorithm for testing the admissibility of modal rules, for which we needed to
devise a tableau calculus for a logic that has not been considered before [4]. We
believe the direct tableau synthesis approach is also applicable to most known,
first-order definable modal and description logics. Non first-order translatable
logics such as propositional dynamic logic are currently beyond the scope of
the method.

That the generated calculi are constructively complete has the advan-
tage that models can be effectively generated from open, finished branches
in tableau derivations. This means that the synthesised tableau calculi can be
used for model building.

The direct tableau synthesis framework can be regarded as a mathematical
formalisation and generalisation of tableau development methodologies. It
essentially presents a general method for proving (constructive) completeness
and termination of tableau calculi. The formalisation separates the creative
part of tableau calculus development, which needs to be done by a human
developer and the automatic part of the development process, which can be
left to an automated tableau synthesiser and an automated theorem prover.
The creative part is the specification of the logic and proving the effective finite
model property based on filtration if this is not already known for the logic.
The automatic part generates the tableau rules and verifies the conditions for
well-definedness of the semantic specification and the conditions justifying the
preservation of constructive completeness by rule refinement.

The MetTeL system [28] is an implementation of a generic tableau theo-
rem prover incorporating the main features of the tableau synthesis framework.
Though not a tableau calculus synthesiser it can handle different logics in a
flexible way.
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4 Concluding remarks

We have sketched two methods for synthesising deduction calculi for modal-
type logics. Both approaches use the observation that tableau rules are es-
sentially normal forms of the specification of the semantics of the logic. The
develop via first-order resolution approach exploits the generality and versa-
tility of first-order resolution to simulate different deduction approaches.

The direct tableau synthesis framework is currently limited to generating
tableau calculi. It ensures that the generated tableau calculi are sound and
constructively complete. This ensures that adding the unrestricted blocking
mechanism produces a terminating tableau calculus, whenever the logic can
be shown to admit finite filtration.

Though blocking has so far mainly been used in conjunction with tableau
methods for non-classical logics, blocking can be used in a more general set-
ting. We have defined and experimented with various forms of blocking as
enhancements of bottom-up model generation methods for first-order logic [5].
Bottom-up model generation methods are closely related to hyperresolution
and hypertableau methods. Using these methods in combination with the
unrestricted blocking mechanism should allow us to devise new decision pro-
cedures for a wide range of logics and solvable first-order fragment. I expect
that it is possible to do so in a systematic way.

All in all, a lot remains to be done, but I am confident that the ideas of
both methods to synthesising deduction calculi can be taken a lot further.
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