
FAME: An Automated Tool for Semantic
Forgetting in Expressive Description Logics

Yizheng Zhao and Renate A. Schmidt

School of Computer Science, The University of Manchester, UK

Abstract. In this paper, we describe a high-performance reasoning tool,
called Fame, for semantic forgetting in expressive description logics. For-
getting is a non-standard reasoning service that seeks to create restricted
views of ontologies by eliminating concept and role names from ontologies
in a way such that all logical consequences up to the remaining signature
are preserved. Fame is a Java-based implementation of an Ackermann-
based method for forgetting concept and role names from ontologies ex-
pressible in the description logic ALCOIH. ALCOIH is the extension
of the basic description logic ALC with nominals, inverse roles and role
inclusions. Fame can be used as a standalone tool or a Java library for
forgetting or related tasks. Results of an evaluation of Fame on a corpus
of 396 biomedical ontologies have shown that: (i) in more than 90% of
the test cases Fame was successful (i.e., eliminated all specified concept
and role names) and (ii) the elimination was done within one second in
more than 70% of the successful cases.

1 Introduction

Ontologies, exploiting description logics as the representational underpinning,
provide a logic-based data model for knowledge representation thereby support-
ing effective reasoning of domain knowledge for a range of applications, most
evidently for applications in the life sciences, text mining and the semantic web.
However, with their growing utilisation, not only has the number of available
ontologies increased considerably, but they are often large in size and are be-
coming more complex to manage. Capturing domain knowledge in the form of
ontologies is moreover labour-intensive work. There is therefore a strong demand
for techniques and automated tools for creating restricted views of ontologies.
Forgetting is a non-standard reasoning service that seeks to create restricted
views of ontologies by eliminating concept and role names from ontologies in a
way such that complete information is preserved up to the remaining signature.
Forgetting allows users to focus on specific parts of ontologies that can be easily
reused, or to zoom in on ontologies for in-depth analysis of certain subparts. It
is also useful for information hiding, ontology summarisation, explanation gen-
eration (abduction), ontology debugging and repair, as well as computing logical
difference between ontology versions [3,4,5,8,10].

Forgetting can be defined in two closely related ways; it can be defined on
the syntactic level as the dual of uniform interpolation [5] and it can be defined

model-theoretically as semantic forgetting [10,13]. The two notions differ in the
sense that uniform interpolation preserves all consequences up to certain names,
whereas semantic forgetting preserves equivalence up to certain names. Hence,
semantic solutions are in general stronger than the uniform interpolants and
often require the target language to be extended to express them.

Fame is the first tool for semantic forgetting in expressive description log-
ics. It is a Java-based implementation of a semantic forgetting method devel-
oped in our recent work [11,12]. Being based on non-trivial generalisations of a
monotonicity property, called Ackermann’s Lemma [1], the method can elimi-
nate concept and role names from ontologies expressible in the description logic
ALCOIH, i.e., the basic ALC extended with nominals, inverse roles and role
inclusions. The universal role O and role conjunction u are included in the tar-
get language, making the language more expressive to represent the forgetting
solutions. For example, the semantic solution of forgetting the role name r from
the ontology {A1 v ∃r.B1, A2 v ∀r.¬B1} is {A1 v ∃O.B1, A1 u A2 v ⊥}, whereas
the uniform interpolant is {A1 uA2 v ⊥}, which is weaker.

The current version of Fame includes several significant improvements, as
well as a number of minor ones, over the prototypes used in [11,12]. It has
been evaluated on a corpus of biomedical ontologies, including SNOMED CT and
NCIT, with the results showing that: (i) in more than 90% of the test cases Fame
was successful (i.e., eliminated all specified concept and role names) and (ii) the
elimination was done within one second in more than 70% of the successful cases.

In this paper, we describe the top-level design of Fame, the main algorithm
used by Fame, and details of an evaluation on a corpus of biomedical ontologies.

2 Semantic Forgetting for ALCOIH

Let NC, NR and NI be countably infinite and pairwise disjoint sets of concept
names, role names and individual names, respectively. Roles in ALCOIH(O,u)
can be a role name r ∈ NR, the inverse r− of a role name r, the universal role O, or
a conjunction of a finite number of role names. Concepts in ALCOIH(O,u) can
be of the following forms: > | ⊥ | a | A | ¬C | CuD | CtD | ∃R.C | ∀R.C, where
a ∈ NI, A ∈ NC, C and D are any concepts and R is any role. The forgetting
method used by Fame works with TBox and ABox axioms in clausal normal
form. A TBox literal is a concept of the form a, ¬a, A, ¬A, ∃R.C, or ∀R.C. A
TBox clause is a disjunction of a finite number of TBox literals. An RBox atom
is a role name, an inverted role name, or the universal role. An RBox clause is a
disjunction of an RBox atom and a negated RBox atom. TBox and RBox clauses
are obtained from (TBox and RBox) axioms using the standard clausal normal
form transformation, where in the case of role axioms role negation is introduced.
Let S ∈ NC ∪ NR be a designated concept or role name. An occurrence of S is
assumed to be positive (negative) in a clause if it is under an even (odd) number
of negations. The semantics of ALCOIH(O,u) is as expected. For more details
of the logics considered in this paper, we refer the reader to [12]

Parse into own
data structure

Role forgetting

Concept forgetting
Parse into

Owl/Xml file

Load ontology

Save ontology

Fig. 1: The top-level design of Fame

By sigC(X) and sigR(X) we denote respectively the sets of the concept names
and role names occurring in X, where X ranges over concepts, clauses, sets of
clauses and ontologies. By sig(X) we denote the union of sigC(X) and sigR(X).

Definition 1 (Semantic Forgetting for ALCOIH). Let O be an ALCOIH-
ontology and let F be a subset of sig(O). An ontology O′ is a semantic solution
of forgetting F from O iff the following conditions hold: (i) sig(O′) ⊆ sig(O)\F
and (ii) for any interpretation I: I |= O′ iff I ′ |= O, for some interpretation I ′
F-equivalent to I, i.e., I and I ′ coincide but differ possibly in the interpretations
of the names in F .

In this paper, the notation F is used to denote the forgetting signature, i.e.,
the set of concept and role names to be forgotten. FC and FR are used to denote
respectively the concept names and role names in F .

3 Implementation

The top-level design of Fame is shown in Fig. 1. Fame uses the OWL API Ver-
sion 3.5.61 for the tasks of loading, parsing and saving ontologies. The ontology
to be loaded must be specified as an Owl/Xml file, or as a URL pointing to an
Owl/Xml file, though, internally, Fame uses its own data structure.

Fame defaults to eliminating role names first because during the role forget-
ting process concept definer names may be introduced (to facilitate the normal-
isation of the input ontology). These definer names, regarded as regular concept
names, can thus be eliminated as part of subsequent concept forgetting. Given
an ALCOIH-ontology O and a forgetting signature F = {r1, ..., rm, A1, ..., An},
where ri ∈ sigR(O) (1 ≤ i ≤ m) and Aj ∈ sigC(O) (1 ≤ j ≤ n), the forgetting
process in Fame includes four main phases: (i) the conversion of O into a set of
clauses (clausification), (ii) the role forgetting phase, (iii) the concept forgetting
phase, and (iv) the conversion of the resulting clause set into an ontology O′
(declausification). The role (concept) forgetting phase is an iteration of several

1 http://owlcs.github.io/owlapi/

Algorithm 1: forget(r sig, c sig, clause set)

Input : a set r sig of role names to be forgotten
a set c sig of concept names to be forgotten
a set clause set of clauses

Output: a set clause set of clauses (after forgetting)
1 do
2 if r sig is empty and c sig is empty then

// clause set does not contain any names in r sig or c sig; in

this case, clause set is a forgetting solution

3 return clause set

4 end
5 initialising final int sig size before to (r sig.size() + c sig.size())
6 initialising Set〈Name〉 pure sig to null

// get from r sig and c sig all names that are pure in clause set
7 pure sig := getPureNames(r sig, c sig, clause set)

// apply Purify to clause set to eliminate names in pure sig
8 clause set := purify(pure sig, clause set)

// simplify all axioms in clause set
9 clause set.getSimplified()

10 initialising Set〈Clause〉 sub clause set to null
11 foreach RoleName role in r sig do

// get from clause set all axioms that contain role

12 sub clause set := getSubset(role, clause set)
// remove from clause set all axioms in sub clause set

13 clause set.removeAll(sub clause set);
// attempt to transform sub clause set into r-reduced form

14 sub clause set.getRReducedForm(role, sub clause set);
// check whether sub clause set is in r-reduced form

15 if isRReducedForm(role, role clause set) then

// apply AckermannR to sub clause set to eliminate role

16 sub clause set := ackermann(role, sub clause set)
// simplify all axioms in sub clause set

17 sub clause set.getSimplified()
// add the resulting set sub clause set back to clause set

18 clause set.addAll(sub clause set)
// remove role from r sig

19 r sig.remove(role)
// add all introduced definer names to c sig

20 c sig.addAll(sub clause set.getDefiners())

21 else
// add the unchanged set sub clause set back to clause set

22 clause set.addAll(sub clause set)

23 end
24 Similar for loop over the concept names in the present c sig
25 initialising final int sig size after to (r sig.size() + c sig.size())

26 while sig size before != sig size after
// clause set still contains names in r sig or c sig

27 return clause set

rounds in which the role (concept) names in F are eliminated. The elimination
is based on the calculi AckR and AckC, described in detail in [12].

The calculus AckR includes four types of rules: (i) two PurifyR rules, (ii) one
AckermannR rule, (iii) two rewriteR rules, and (iv) definer introduction rules. The
PurifyR rules eliminate a role name when the name occurs only positively or only
negatively in the current clause set (i.e., the name is pure in the clause set). The
AckermannR rule eliminates a role name when the name occurs both positively
and negatively in the current clause set in a specialised form, called r-reduced
form (this means the clauses are suitable for application of the AckermannR

rule), where r is the current role name to be forgotten. The rewriteR rules and
definer introduction transform a clause set (not in r-reduced form) into r-reduced
form.

The calculus AckC includes three types of rules: (i) two PurifyC rules, (ii) one
AckermannC rule, and (iii) two rewriteC rules. The purifyC rules eliminate a con-
cept name when the name is pure in the current clause set. The AckermannC rule
eliminates a concept name when the name occurs both positively and negatively
in the current clause set in A-reduced form (hence suitable for application of the
AckermannC rule), where A is the current concept name to be forgotten. The
rewriteC rules transform a clause set (not in A-reduced form) into A-reduced
form. Note that using the rules in AckR (AckC), a role (concept) name cannot
always be eliminated. This is because there is a gap in the scope of the rewrite
rules: transforming a clause set into r-reduced form or A-reduced form is not
always possible.

The main algorithm used by Fame is shown in Algorithm 1. Fame performs
purification prior to other steps (lines 6–9). This is because the Purify rules do
not require the clause set to be normalised or in reduced form, and they can
be applied at any time (purification is relatively cheap). Moreover, applying the
Purify rules to a clause set often results in numerous syntactic redundancies, tau-
tologies and contradictions inside the clauses, leading to a much reduced set with
fewer clauses and fewer names after simplification. The getSubset(S, O) method
extracts from the clause set O all axioms that contain the name S. S can thus be
eliminated from this subset, rather than from the entire set O. Subsequent sim-
plifications are performed on the resulting subset (i.e., the elimination and the
simplification are performed locally). This significantly reduces the search space
and has improved the efficiency of Fame compared to the early prototypes used
in [11,12]. It is found that a name that could not be eliminated by Fame might
become eliminable after the elimination of another name [12]. We therefore im-
pose a do-while loop on the iterations of the elimination rounds. The breaking
condition checks if there were names eliminated during the previous elimination
rounds. If so, Fame repeats the iterations again, attempting to eliminate the
remaining names. The loop terminates when the forgetting signature becomes
empty or no names were eliminated during the previous elimination rounds.

What Fame outputs at the end of the forgetting process is an ontology O′
(i.e., a set of TBox and ABox axioms). If O′ does not contain any names in F ,
then Fame was successful and O′ is a solution of forgetting F from O.

Type of Axiom Representation

SubClassOf(C1 C2) SubClassOf(C1 C2)

EquivalentClasses(C1 C2) SubClassOf(C1 C2), SubClassOf(C2 C1)

DisjointClasses(C1 C2) SubClassOf(C1 ObjectComplementOf(C2))

EquivalentClasses(C ObjectUnionOf(C1. . . Cn))
DisjointUnion(C C1. . . Cn)

DisjointClasses(C1. . . Cn)
TBox

SubObjectPropertyOf(R1 R2) SubObjectPropertyOf(R1 R2)

SubObjectPropertyOf(R1 R2)
EquivalentObjectProperties(R1 R2)

SubObjectPropertyOf(R2 R1)

ObjectPropertyDomain(R C) SubClassOf(ObjectSomeValuesFrom(R owl:Thing), C)

ObjectPropertyRange(R C) SubClassOf(owl:Thing ObjectAllValuesFrom(R C))

ClassAssertion(C a) SubClassOf(a C)
ABox

ObjectPropertyAssertion(R a1 a2) SubClassOf(a1 ObjectSomeValuesFrom(R a2))

Table 1: Types of axioms that can be handled by Fame

Maximum Minimum Mean Median 90th percentile

#(O) 1833761 100 4651 1096 12570

#sigC(O) 847760 36 2110 502 5598

#sigR(O) 1390 0 54 12 144

#sigI(O) 87879 0 216 0 206

Table 2: Statistics of ontologies used for evaluation of Fame

4 Evaluation

We evaluated the current version of Fame on a corpus of real-world ontologies
taken from the NCBO BioPortal repository,2 a resource that currently includes
more than 600 ontologies originally developed for clinical research. The reposi-
tory covers a range of topics in biomedicine such as genomics, organology, and
anatomy. Differing in size, structure, and expressivity, the BioPortal ontologies
offer a rich, diverse and realistic test data set for the evaluation of Fame. The
corpus used for our evaluation was based on a snapshot of the repository taken
in March 2017 [9], containing 396 OWL API compatible ontologies.

The expressivity of the ontologies in the snapshot ranges from EL and ALC
to SHOIN and SROIQ. Since Fame can handle ontologies as expressive as
ALCOIH, we adjusted these ontologies to the language of ALCOIH. This in-
volved easy reformulations as summarised in Table 1, which also lists the types
of axioms that Fame can handle. Concepts not expressible in ALCOIH were re-
placed by >. Table 2 shows statistical information about the adjusted ontologies,
where #(O) denotes the number of axioms in the test ontologies, and #sigC(O),
#sigR(O) and #sigI(O) denote respectively the numbers of the concept names,
role names and individual names in the test ontologies.

To reflect real-world application scenarios, we evaluated the performance of
Fame for forgetting different numbers of concept names and role names from

2 https://bioportal.bioontology.org/

Settings Results

#FC (avg) Time (sec) Timeouts Success Rate Nominal Clause Growth

211 (10%) 0.307 1.8% 94.9% 7.6% -10.3%
844 (40%) 0.895 3.4% 93.4% 17.4% -41.2%
1477 (70%) 1.364 6.6% 90.2% 24.7% -72.4%

Table 3: Results of forgetting 10%, 40% and 70% of concept names

Settings Results

#FR (avg) Time (sec) Timeouts Success Rate Definer Clause Growth

5 (10%) 0.309 0.0% 100.0% 0.0% 0.9%
22 (40%) 0.977 2.5% 97.5% 0.0% 3.5%
38 (70%) 1.891 6.6% 93.4% 0.0% 6.7%

Table 4: Results of forgetting 10%, 40% and 70% of role names

each test ontology. In particular, we considered the cases of forgetting 10%, 40%
and 70% of concept names and role names in their signatures. The names to
be forgotten were randomly chosen. The experiments were run on a desktop
computer with an Intelr Coretm i7-4790 processor, four cores running at up to
3.60 GHz and 8 GB of DDR3-1600 MHz RAM. We ran the experiments 100
times on each ontology and averaged the results in order to verify the accuracy
of our findings. A timeout of 1000 seconds was imposed on each run.

The results obtained for forgetting different numbers of concept names from
the ontologies are shown in Table 3. The column headed ‘Success Rate’ shows
that Fame was successful in more than 90% of the test cases (i.e., eliminated all
concept names in F within the timeout). In the cases of forgetting 10% and 40%
of concept names the elimination was done within one second and in the cases of
forgetting 70% the elimination was done within two seconds (on average); see the
Time column. Because of the nature of one rewrite rule in the AckC calculus [12],
fresh nominals might be introduced during the forgetting process. The column
headed Nominal shows that forgetting solutions containing fresh nominals only
occurred in a small number of cases (≤ 25%). Compared to the input ontologies,
there was a decrease in the number of clauses in the forgetting solutions; see the
Clause Growth column. It can be observed that the forgetting solutions consisted
of fewer clauses when more concept names were forgotten.

The results obtained from forgetting different numbers of role names from
the ontologies are shown in Table 4. The column headed ‘Success Rate’ shows
that Fame was successful in more than 93% of the test cases (i.e., eliminated
all role names in F within the timeout). In the cases of forgetting 10% and 40%
of role names the elimination was done within one second and in the cases of
forgetting 70% of role names the elimination was done within two seconds (on
average). The column headed Definer shows that all introduced definer names
were eliminated from the results in all test cases. Compared to concept forgetting,
(i) an increase in the number of clauses in the forgetting solutions was observed;

see the Clause Growth column, and (ii) when more role names were forgotten,
the forgetting solutions consisted of more clauses.

The most closely related tools to Fame are Lethe [6,7] and the tool devel-
oped by [8]. Both tools use resolution-based methods for computing uniform in-
terpolants for ALC TBoxes, and in the case of Lethe several extensions of ALC
TBoxes. A preliminary comparison of a previous version of Fame and Lethe
has shown that Fame is considerably faster than Lethe [2]. The current version
of Fame can be downloaded via http://www.cs.man.ac.uk/~schmidt/tools/.

Acknowledgements

We thank EPSRC IAA 204 (AR4MO) and Babylon Health for funding.

References

1. W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematis-
chen Logik. Mathematische Annalen, 110(1):390–413, 1935.

2. R. Alassaf and R. A. Schmidt. A Preliminary Comparison of the Forgetting So-
lutions Computed using SCAN, LETHE and FAME. In Proc. SOQE’17, volume
2013 of CEUR Workshop Proceedings, pages 21–26, 2017.

3. W. Del-Pinto and R. A. Schmidt. Forgetting-Based Abduction in ALC. In Proc.
SOQE’17, volume 2013 of CEUR Workshop Proceedings, pages 27–35, 2017.

4. B. C. Grau and B. Motik. Reasoning over Ontologies with Hidden Content: The
Import-by-Query Approach. J. Artif. Intell. Res., 45:197–255, 2012.

5. B. Konev, D. Walther, and F. Wolter. Forgetting and Uniform Interpolation in
Large-Scale Description Logic Terminologies. In Proc. IJCAI’09, pages 830–835.
IJCAI/AAAI Press, 2009.

6. P. Koopmann. Practical Uniform Interpolation for Expressive Description Logics.
PhD thesis, The University of Manchester, UK, 2015.

7. P. Koopmann and R. A. Schmidt. LETHE: Saturation-Based Reasoning for Non-
Standard Reasoning Tasks. In Proc. DL’15, volume 1387 of CEUR Workshop
Proceedings, pages 23–30, 2015.

8. M. Ludwig and B. Konev. Practical Uniform Interpolation and Forgetting for ALC
TBoxes with Applications to Logical Difference. In Proc. KR’14, pages 318–327.
AAAI Press, 2014.

9. N. Matentzoglu and B. Parsia. BioPortal Snapshot 30.03.2017, Mar. 2017.
10. K. Wang, Z. Wang, R. W. Topor, J. Z. Pan, and G. Antoniou. Eliminating Con-

cepts and Roles from Ontologies in Expressive Descriptive Logics. Computational
Intelligence, 30(2):205–232, 2014.

11. Y. Zhao and R. A. Schmidt. Concept Forgetting in ALCOI-Ontologies Using an
Ackermann Approach. In Proc. ISWC’15, volume 9366 of LNCS, pages 587–602.
Springer, 2015.

12. Y. Zhao and R. A. Schmidt. Forgetting Concept and Role Symbols in
ALCOIHµ+(O,u)-Ontologies. In Proc. IJCAI’16, pages 1345–1352. IJCAI/AAAI
Press, 2016.

13. Y. Zhao and R. A. Schmidt. Role Forgetting for ALCOQH(O)-Ontologies Using an
Ackermann-Based Approach. In Proc. IJCAI’17, pages 1354–1361. IJCAI/AAAI
Press, 2017.

http://www.cs.man.ac.uk/~schmidt/tools/

	FAME: An Automated Tool for Semantic Forgetting in Expressive Description Logics

