
Automated Synthesis of Tableau Calculi

Renate A. Schmidt1 and Dmitry Tishkovsky1

School of Computer Science, The University of Manchester

Abstract This paper presents a method for synthesising sound and
complete tableau calculi. Given a specification of the formal semantics of
a logic, the method generates a set of tableau inference rules which can
then be used to reason within the logic. The method guarantees that the
generated rules form a calculus which is sound and constructively com-
plete. If the logic can be shown to admit finite filtration with respect to a
well-defined first-order semantics then adding a general blocking mecha-
nism produces a terminating tableau calculus. The process of generating
tableau rules can be completely automated and produces, together with
the blocking mechanism, an automated procedure for generating tableau
decision procedures. For illustration we show the workability of the ap-
proach for propositional intuitionistic logic.

1 Introduction

We are interested in the problem of automatically generating a tableau calculus
for a logic. We assume that the logic is defined by a high-level specification of
the formal semantics. Our aim is to turn this into a set of inference rules that
provide a sound and complete tableau calculus for the logic. For a decidable
logic we want to generate a terminating calculus. In previous work we have de-
scribed a framework for turning sound and complete tableau calculi into decision
procedures [6]. The prerequisites for this to work are that the logic admits the
effective finite model property shown by a filtration argument, and that (i) the
tableau calculus is sound and constructively complete, and (ii) a weak form of
subexpression property holds for tableau derivations. Constructive completeness
is a slightly stronger notion than completeness and means that for every open
branch in a tableau there is a model which reflects all the expressions (formulae)
occurring on the branch. The subexpression property says that every expression
in a derivation is a subexpression of the input expression with respect to a finite
subexpression closure operator.

In order to be able to exploit the ‘termination through blocking’ results in [6],
in this paper, our goal is to produce tableau calculi that satisfy the prerequi-
sites (i) and (ii). It turns out that provided that the semantics of the logic is
well-defined in a certain sense, the subexpression property can be imposed on
the generated calculus. Crucial is the separation of the syntax of the logic from
the ‘extras’ in the meta-language needed for the semantic specification of the
logic. The process can be completely automated and gives, together with the

unrestricted blocking mechanism and the results in [5,6], an automated proce-
dure for generating tableau decision procedures for logics, whenever they have
the effective finite model property with respect to a well-defined first-order se-
mantics.

That the generated calculi are constructively complete has the added advan-
tage that models can be effectively generated from open, finished branches in
tableau derivations. This means that the synthesised tableau calculi can be used
for model building purposes.

The method works as follows. The user defines the formal semantics of the
given logic in a many-sorted first-order language so that certain well-definedness
conditions hold. The method automatically reduces the semantic specification of
the logic to Skolemised implicational forms which are then rewritten as tableau
inference rules. Combined with some default closure and equality rules, this pro-
vides a sound and constructively complete calculus for the logic. Under certain
conditions it is then possible to refine the rules. If the logic can be shown to ad-
mit finite filtration, then the generated calculus can be automatically turned into
a terminating calculus by adding the unrestricted blocking mechanism from [5].

The method is intended to be as general as possible, and cover as many
logics as possible. Our main applications are non-classical logics and description
logics. As a case study we consider the application of the method to propositional
intuitionistic logic (e.g. [3]). Intuitionistic logic provides a nearly perfect example
because the semantics of the logical connectives is not Boolean and the semantics
is restricted by a background theory. In addition, the logic is simple.

The paper is structured as follows. Section 2 defines the apparatus for specify-
ing the semantics of the logic of interest. Section 3 is about synthesising tableau
rules. In Section 4 we prove that the generated rules form a sound and construc-
tively complete calculus for the logic. Section 5 discusses ways of refining the
rules in order to reduce branching and redundancy in the syntax of the calculus.
In Section 6 the approach is applied to intuitionistic logic. We conclude with a
discussion of the method.

This paper contains no proofs, but these are given in the long version [7].
The long version also contains more examples.

2 Specifying the Semantics of the Logic

For the sake of generality we assume the logic for which we want to develop a
tableau calculus is a many-sorted logic.

Let Sorts
def= {0, 1, . . . , N} be an index set of sorts and Conn a countable

set of the logical connectives of the logic. Every connective σ in Conn is as-
sociated with a tuple (i1, i2, . . . , im+1) ∈ Sorts(m+1), where m ≥ 0. The last
argument im+1 is the sort of the expression obtained by applying σ to expres-
sions of sorts i1, i2, . . . , im, respectively. We say that σ is an m-ary connective
of sort (i1, i2, . . . , im+1).

By L we denote an abstract sorted language defined over an alphabet given
by a set of sorts Sorts, a set of connectives Conn, a countable set of variable

2

symbols {pij | i ∈ Sorts, j ∈ ω}, and a countable set of constant symbols {qij |
i ∈ Sorts, j ∈ ω}. L is defined as a set of expressions over the alphabet closed
under the connectives in Conn. More formally, let L def=

⋃
i∈Sorts Li, where each Li

denotes a set of expressions of sort i defined as the smallest set of expressions
satisfying the following conditions:

– All variables pij and all constants qij in the alphabet belong to Li.
– For every connective σ ∈ Conn of sort (i1, i2 . . . , im+1), σ(E1, . . . , Em) be-

longs to Lim+1 , whenever E1, . . . , Em belong to Li1 , . . . ,Lim , respectively.

Symbols, expressions and connectives in L are also referred to as L-symbols,
L-expressions and L-connectives. Variables and constants in L are called atomic
L-expressions. We usually refer to expressions in L0 as individuals, expressions
in L1 as concepts, and expressions in L2 as roles.

For an L-expression E, the notation E(p1, . . . , pm) indicates that p1, . . . , pm
are variables in the expression E. E(E1, . . . , Em) denotes the expression ob-
tained by uniformly substituting Ei into pi, for all i = 1, . . . ,m. Similarly, if
X is a set of L-expressions depending on variables p1, . . . , pm, we indicate this
as X(p1, . . . , pm) and denote by X(E1, . . . , Em) the set of expressions which
are instances of expressions from X under uniform substitution of expressions
E1, . . . , Em into p1, . . . , pm, respectively.

Let ≺ be any transitive ordering on L-expressions, E an L-expression, and
X a set of L-expressions. We define sub≺(E) def= {E′ | E′ ≺ E} and sub≺(X) def=⋃
E∈X sub≺(E). We write sub≺(E1, . . . , Em) rather than sub≺({E1, . . . , Em}).

The language in which the semantics of the given logic is specified, is a
sorted first-order language with equality, denoted by FO(L). Formally, FO(L)
is an extension of the language L with: one additional sort, additional sym-
bols, the usual connectives and quantifiers of first-order logic, and the equality
predicate. The sorts of FO(L) are Sorts ∪ {N + 1} = {0, . . . , N,N + 1}. We
call the additional sort N + 1 the designated sort, and symbols that operate on
this sort, designated symbols. The additional symbols comprise of a countable
set of variable symbols {x, y, z, x0, y0, z0, . . .} of the designated sort, a countable
set of constants {a, b, c, a0, b0, c0, . . .} of the designated sort, function symbols
{f, g, h, f0, g0, h0, . . .} mapping argument terms to terms of sort N + 1, and a
countable set of constant predicate symbols {P,Q,R, P0, Q0, R0, . . .} of the des-
ignated sort (i.e., argument terms are required to be terms of sort N + 1). In
addition, FO(L) contains intersort symbols denoted by ν0, . . . , νN , i.e., one for
each sort in Sorts. The purpose of the intersort symbols is to define the seman-
tics of the connectives of the logic (similar to satisfaction conditions in standard
definitions of the semantics of connectives). In particular, ν0 is a unary function
symbol of sort (0, N + 1), and each of the remaining νi is a predicate symbol of
sort (i,N+1, . . . , N+1), with arity i+1. Furthermore, for every sort we assume
the presence of a binary predicate symbol functioning as equality predicate for
that sort. For reasons of simplicity, we use one symbol, namely ≈, for each of
the equality predicates.

We fix some more common notation. w denotes a sequence of first-order
variables: w def= w1, . . . , wn. Similarly, ∀w denotes the universal quantifier prefix

3

∀w def= ∀w1 · · · ∀wn. For any set S of formulae, ∀S denotes the universal closure
of S, i.e., the set ∀S def= {∀w φ(w) | φ(w) ∈ S}. The symbol ∼ denotes comple-
mentation, i.e., ∼ψ denotes ψ′ if ψ = ¬ψ′, and ¬ψ, otherwise.

Formulae of FO(L) in which all occurrences of the L-variables pij (of sorts
i = 0, . . . , N) are free are called L-open formulae. Similarly, any L-open formula
is an L-open sentence if it does not have free occurrences of variables of the
designated sort N + 1.

For any set S of L-open formulae in FO(L) and a set X of L-expressions, let
S�X be the set of substitution instances of formulae in S under substitutions
into the variables of L which do not contain expressions outside X. Formally,

S�X
def= {φ(E1, . . . , Em) | φ(p1, . . . , pm) ∈ S and

all L-expressions occurring in φ(E1, . . . , Em) belong to X}.

The semantics of L is specified in FO(L) as follows. Each expression in L
is interpreted as a term in FO(L). In particular, each variable symbol pij in Li
is interpreted as a variable of sort i in FO(L), each constant symbol qij in Li is
interpreted as a constant of sort i in FO(L), and every connective σ is interpreted
as a function of the same sort as σ.

An L-structure is a tuple I def= (L0, . . . ,LN , ∆I , νI0 , . . . , νIN , aI , . . . , P I , . . .)
where ∆I is a non-empty set, ν0(`)I ∈ ∆I for every individual ` ∈ L0, νIn ⊆
Ln × (∆I)n, for 0 < n ≤ N . aI ∈ ∆I and P I ⊆ (∆I)m, where m is the arity
of P . Observe that an L-structure I is a first-order model (interpretation) of the
language FO(L). For simplicity we omit the sets L0, . . . ,LN and simply write
I = (∆I , νI0 , . . . , ν

I
N , a

I , . . . , P I , . . .).
A valuation in I is a mapping ι from the set of variables and constants

of FO(L) to L ∪ ∆I such that ι(pij), ι(q
i
j) ∈ Li, and ι(xj), ι(aj) ∈ ∆I . We say

that a valuation ι in an L-structure is canonical if every variable and constant
of any sort i = 0, . . . , N is interpreted by itself, that is, ι(pij) = pij and ι(qij) = qij
for every variable pij and constant qij of the language L. This means that a
canonical valuation of every term of any sort i = 0, . . . , N is the term itself. It is
not difficult to see that any L-open formula φ is satisfiable in an L-structure iff it
is satisfiable in an L-structure under a canonical valuation. We write S |=c S

′ for
sets of formulae S and S′, if, for every L-structure I and a canonical valuation ι
in I, I, ι |= S implies I, ι |= S′. Similarly, we write I |=c S iff there is a canonical
valuation ι such that I, ι |= S.

We say that a concept C is satisfiable in I if there is an a ∈ ∆I such that
(C, a) ∈ νI1 , or equivalently I |=c ∃x ν1(C, x). A concept C is valid in I if
I |=c ∀x ν1(C, x).

Let S be a set of L-open sentences in FO(L). A formula φσ in the language
of S defines the connective σ with respect to S if it does not contain σ and the
following holds:

∀S |= ∀p1 . . . ∀pm ∀x (νn(σ(p1, . . . , pm), x) ≡ φσ(p1, . . . , pm, x)).(∗)

Here p1, . . . , pm are variables of appropriate sorts which match the signature
of σ, and n is the result sort of σ (for x = (x1, . . . , xn)). We also say S defines σ.

4

∀x (x ≈ x) ∀x∀y (x ≈ y → y ≈ x) ∀x∀y∀z (x ≈ y ∧ y ≈ z → x ≈ z)
∀x1 · · · ∀xn∀yi (P (x1, . . . , xn) ∧ xi ≈ yi → P (x1, . . . xi−1, yi, xi+1, xn))

∀p ∀x1 · · · ∀xn∀yi (νn(p, x1, . . . , xn) ∧ xi ≈ yi → νn(p, x1, . . . xi−1, yi, xi+1, xn))

∀p1 · · · ∀pm∀x1 · · · ∀xn∀yi (xi ≈ yi →
f(p1, . . . , pm, x1, . . . , xn) ≈ f(p1, . . . , pm, x1, . . . xi−1, yi, xi+1, . . . , xn))

Figure 1. Equality axioms in FO(L).

The L-open sentence ∀x (νn(σ(p1, . . . , pm), x) ≡ φσ(p1, . . . , pm, x) is said to be
a σ-definition (in S).

By definition, a (first-order) semantic specification of L is a set of L-open
sentences in FO(L) that defines the connectives of L. Given a semantic speci-
fication S, we use the notation S0 for the set of L-open sentences defining the
connectives of L.

For the sake of generality, we always include the usual equality axioms, listed
in Figure 1, in a semantic specification. This ensures that ≈ is a congruence on
every sort in any first-order interpretation of FO(L).

We consider a semantic specification S to be normalised if it consists of three
disjoint parts. More specifically, S = S+ ∪ S− ∪ Sb, where S+, S−, and Sb are
disjoint sets of sentences satisfying the following:

(n1) S+ is a set of L-open sentences ξE+ of the form:

ξE+
def= ∀x (νn(E(p1, . . . , pm), x)→ φE+(p1, . . . , pm, x)),

(n2) S− is a set of L-open sentences ξE− of the form:

ξE−
def= ∀x (φE−(p1, . . . , pm, x)→ νn(E(p1, . . . , pm), x)),

(n3) None of the L-open sentences in Sb contain non-atomic L-expressions.

In this definition, we suppose that multiple sentences of the form (n1) (resp. (n2))
for the same expression E in S+ and S− are all equivalently reduced to a single
sentence ξE+ (resp. ξE−). The intuition is that S+ and S− define the semantics
of the connectives. S+ defines it for positive occurrences of expressions E (with
free variables p1, . . . , pm), while S− defines it for negative occurrences of expres-
sions E. We refer to Sb as the background theory of the semantics S. Note that
Sb includes the equality axioms.

It can be seen that the set S0 ∪ Sb is a semantic specification which can
be turned into normalised form by decomposing each connective definition in S0

into two implications. In fact, S0 and S+∪S− play the same role in axiomatising
L-connectives in FO(L) modulo the background theory Sb.

For every L-expression E, let

ΦE+
def= {φF+(E1, . . . , Em, x) | E = F (E1, . . . , Em) for some ξF (p1,...,pm)

+ from S},

ΦE−
def= {φF−(E1, . . . , Em, x) | E = F (E1, . . . , Em) for some ξF (p1,...,pm)

− from S}.

5

Thus, ΦE+ (resp. ΦE−) is the set of instantiations of succedents (resp. antecedents)
of positive (resp. negative) specifications in S, where the antecedents (resp. succe-
dents) are unifiable with the given expression E.

The expression specifications in any normalised semantics S induce an order-
ing ≺ on expressions as follows. Let ≺ be the smallest transitive ordering satis-
fying: E′ ≺ E whenever there is a sentence ξF (p1,...,pm)

+ or a sentence ξF (p1,...,pm)
−

such that E = F (E1, . . . , Em), for some L-expressions E1, . . . , Em, and E′ oc-
curs in φF+(E1, . . . , Em, x) or φF−(E1, . . . , Em, x), respectively. Because we can
assume that S0 is also a normalised semantic specification, it similarly induces
an ordering ≺0 which is assumed to be well-founded.

Usually the semantics is defined by induction in terms of definitions of the
semantics of the connectives and the primitives in the logic which is lifted to
arbitrary L-expressions. This is equivalent to assuming a well-founded ordering
on expressions of L. For any reasonable definition such a well-founded ordering
exists. Thus, although it is not difficult to imagine formulae φσ such that ≺0

is not well-founded, we assume that the φσ are chosen in such a way that it
is possible to lift the semantics of L-primitives to all L-expressions, i.e., ≺0 is
well-founded.

Recall that S0 denotes the set of L-open sentences that define the L-connec-
tives. A semantic specification S is well-defined iff

(wd1) ∀S0,∀Sb |= ∀S,
(wd2) the ordering ≺ is well-founded, and
(wd3) ∀S0, Sb�sub≺(σ(p)) |=c ∀x

((∧
Φ
σ(p)
+ → φσ(p, x)

)
∧(

φσ(p, x)→
∨
Φ
σ(p)
−

))
.

According to this definition, a well-defined semantics S is equivalent to S0∪Sb
modulo the background theory Sb. This is ensured by condition (wd1) and the
assumption that S defines all L-connectives in S0. Through condition (wd2), S
imposes its own inductive structure on L-expressions. Condition (wd3) specifies
a correlation between S and S0 on instances of L-expressions. It can be seen
that S0 ∪ Sb is a well-defined semantic specification itself.

A (propositional) logic L over the language L is a subset of concepts in L
which is closed under arbitrary substitutions of variables with expressions of the
same sorts. A logic L is first-order definable iff there is a semantic specification SL
such that L coincides with the set of all concepts that are valid in all L-structures
satisfying ∀SL, i.e., L = {C ∈ L1 | ∀SL |=c ∀x ν1(C, x)}.

For a fixed semantic specification SL of logic L, if I is an L-structure satis-
fying SL then by definition I is a model of L or simply a L-model (with respect
to SL).

The following are examples of first-order definable logics, which all have a
normalised semantic specification according to the above definitions: most de-
scription logics, including ALCO, ALBO [5], SHOIQ [1], most propositional
modal logics, including K, S4, KD45, propositional intuitionistic logic [3], and
the logic of metric and topology [2].

6

3 Synthesising a Tableau Calculus

A tableau calculus is a set of tableau inference rules. A tableau inference rule
is a rule of the form X/X1 | · · · | Xm, where both the numerator X and all
denominators Xi (m ≥ 0) are finite sets of negated or unnegated atomic formulae
in the language FO(L). The formulae in the numerator are called premises, while
the formulae in the denominators are called conclusions. The numerator and all
the denominators are non-empty, but m may be zero, in which case the rule is a
closure rule and is usually written X/⊥. If m > 1, the rule is a branching rule.

Inference steps are performed as usual. A rule is applied to a set of (ground)
literals in a branch of a tableau derivation, if the literals are instances of the
premises of the rule. Then, in the case of a non-branching rule, the corresponding
(ground) instances of the conclusions of the rule are added to the branch. In
the case of a branching rule the branch is split into several branches and the
corresponding (ground) instances of the conclusions are added to each branch.

Let T denote a tableau calculus and C a concept. We take an arbitrary
constant a of the designated sort which does not occur in the rules of T . We
denote by T (C) a finished tableau derivation built by starting with the formula
ν1(C, a) as input and applying the rules of T . That is, all branches in the tableau
derivation are fully expanded and all applicable rules of T have been applied in
T (C). As usual we assume that all the rules of the calculus are applied non-
deterministically in a tableau derivation. A branch of a tableau derivation is
closed if a closure rule has been applied, otherwise the branch is called open.
The tableau derivation T (C) is closed if all its branches are closed and T (C)
is open otherwise. The calculus T is sound (for L) iff for any concept C, each
T (C) is open whenever C is satisfiable in an L-model. T is complete iff for
any unsatisfiable concept C there is a T (C) which is closed. T is said to be
terminating if every finished open tableau derivation in T has a finite open
branch.

Let L be a first-order definable propositional logic over L and SL a well-
defined semantic specification of L. We now describe how tableau rules can
be synthesised from SL. If SL is not already normalised we first normalise it.
Thus assume SL = S+

L ∪ S
−
L ∪ SbL. Now take a positive specification ξE+ in S+

L .
Eliminate quantifiers using Skolemisation and equivalently rewrite ξE+ into the
following implicational form

νn(E(p1, . . . , pm), x1, . . . , xn)→
J∨
j=1

Kj∧
k=1

ψjk,

where each ψjk denotes a literal. This is always possible. The implication is now
turned into the rule:

ρ+(ξE+) def=
νn(E(p1, . . . , pm), x1, . . . , xn), y1 ≈ y1, . . . , ys ≈ ys

ψ11, . . . , ψ1K1 | · · · | ψJ1, . . . , ψJKJ

,

where y1, . . . , ys denote the free variables in ψjk which are not among the vari-
ables x1, . . . , xn. Essentially, the antecedent of the implication has become the

7

main premise in the nominator and the succedent was appropriately turned into
the denominators of the rule. The purpose of the equations yi ≈ yi is domain
predication. We say the rule corresponds to ξE+ . Analogously a tableau rule is be
generated for each negative specification ξE− in S−L . The contrapositive of ξE− is
equivalently rewritten to Skolemised implicational form

¬νn(E(p1, . . . , pm), x1, . . . , xn)→
J∨
j=1

Kj∧
k=1

ψjk,

where each ψjk denotes a literal, and the corresponding rules have the form

ρ−(ξE−) def=
¬νn(E(p1, . . . , pm), x1, . . . , xn), y1 ≈ y1, . . . , ys ≈ ys

ψ11, . . . , ψ1K1 | · · · | ψJ1, . . . , ψJKJ

.

We refer to the rules ρ+(ξE+) and ρ−(ξE−) as decomposition rules.
For example, the generated decomposition rules for the existential restriction

operator in the description logic ALC are:

ν1(∃r.p, x)
ν2(r, x, f(p, x)), ν1(p, f(p, x))

,
¬ν1(∃r.p, x), y ≈ y
¬ν2(r, x, y) | ¬ν1(p, y)

.

These are not the familiar rules used in standard description logic tableau sys-
tems, but in Section 5 we see how to get those.

The sentences in the background theory of SL are turned into rules by first
equivalently transforming them into Skolemised disjunctive normal form. More
specifically, let ξ be an arbitrary sentence in SbL. It is first rewritten to

J∨
j=1

Kj∧
k=1

ψjk,(∗∗)

where each ψjk denotes a literal, and is then turned into the corresponding rule,
namely

ρ(ξ) def=
p1 ≈ p1, . . . , pm ≈ pm, x1 ≈ x1, . . . , xn ≈ xn

ψ11, . . . , ψ1K1 | · · · | ψJ1, . . . , ψJKJ

.

The p1, . . . , pm, x1, . . . , xn are the variables that are free in (∗∗). Rules corre-
sponding to sentences in SbL are called theory rules.

We use TL to denote the generated calculus. In summary, it consists of these
rules.

(t1) The decomposition rules ρσ+(ξ) and ρσ−(η) corresponding to all positive
specifications ξ in S+

L and all negative specifications η in S−L .
(t2) The theory rules ρ(ζ) corresponding to all sentences ζ in the background

theory SbL.
(t3) The closure rules (for every n = 1, . . . , N , and every constant predicate

symbol P in SL):

νn(p, x), ¬νn(p, x)
⊥

,
P (x), ¬P (x)

⊥
.

8

4 Ensuring Soundness and Constructive Completeness

It is possible to prove that every rule of the generated calculus TL preserves
satisfiability of FO(L)-formulae. That is, if all premises of a rule are true in an
L-model I (under a canonical valuation) then the conclusions of some branch
are also true. This is not difficult to see because the definitions of the rules mimic
the specified semantics. Hence:

Theorem 1 (Soundness). TL is sound for L, i.e., for every concept C satis-
fiable in an L-model, any finished tableau derivation TL(C) is open.

Now, we prove constructive completeness of TL. Let B denote an arbitrary
branch in a TL-tableau derivation. We define the following relation ∼B with
respect to B: t∼B t′

def⇐⇒ t ≈ t′ ∈ B, for any ground terms t and t′ of the
designated sort N + 1 in B. Let ‖t‖ def= {t′ | t∼B t′} be the equivalence class of an
element t. The presence of the rules generated from the equality axioms ensure
that ∼B is a congruence relation on all designated ground terms in B.

We say a model I, under a (canonical) valuation ι, reflects an expression E
occurring in a branch B iff for every ground terms t1, . . . , tn we have that

– (E, ι(t1), . . . , ι(tn)) ∈ νIn whenever νn(E, t1, . . . , tn) ∈ B, and
– (E, ι(t1), . . . , ι(tn)) /∈ νIn whenever ¬νn(E, t1, . . . , tn) ∈ B.

Similarly, I reflects predicate constant P from B under a (canonical) valuation ι
in I iff for every ground terms t1, . . . , tn we have that

– (ι(t1), . . . , ι(tn)) ∈ P I whenever P (t1, . . . , tn) ∈ B, and
– (ι(t1), . . . , ι(tn)) /∈ P I whenever ¬P (t1, . . . , tn) ∈ B.

A model I reflects branch B under a valuation ι if I reflects all predicate con-
stants and expressions occurring in B under ι.

A tableau calculus TL is said to be constructively complete (for L) iff for
any given concept C that is satisfiable, if B is an open branch in the tableau
derivation TL(C) then there is an L-model I such that:

(m1) The domain ∆I of I is the set of the equivalence classes ‖t‖ for each
ground term t occuring in B.

(m2) I reflects B under the canonical projection valuation π defined by π(t) def=
‖t‖, for every ground term t occuring in B.

It is clear that if TL is constructively complete then TL is complete for L.
Suppose now that SL is a semantic specification and ≺0 is a well-founded

ordering on L-expressions induced by the set S0
L of the definitions of the con-

nectives of the form (∗) with respect to SL.
Let B be an open branch in a finished tableau derivation in TL. Define inter-

pretations of predicate symbols in I(B) by induction on ≺0 as follows:

– P I(B) def= {(‖t1‖, . . . , ‖tn‖) | P (t1, . . . , tn) ∈ B}, for every n-ary constant
predicate symbol P in SL.

9

– For every n = 1, . . . , N the interpretation νI(B)
n of the νn symbols is defined

as the smallest subset of Ln × (∆I(B))n satisfying both (p, ‖t1‖, . . . , ‖tn‖) ∈
ν
I(B)
n ⇐⇒ νn(p, t1, . . . , tn) ∈ B and (σ(E1, . . . , Em), ‖t1‖, . . . , ‖tn‖) ∈
ν
I(B)
n ⇐⇒ I(B) |=c φ

σ(E1, . . . , Em, ‖t1‖, . . . , ‖tn‖), for every variable or
constant p of the sort n, every connective σ, and any expressions E1, . . . , Em.

A consequence of the definition of I(B) is that the definitions of the connec-
tives are valid in I(B), i.e., we have I(B) |= ∀S0

L.
It can be proved that I(B) reflects the branch B (under the valuation π) by

induction on the well-founded ordering ≺. As a consequence we obtain construc-
tive completeness.

Theorem 2 (Constructive completeness). TL is constructively complete.

5 Refining the Synthesised Calculus

In order to get inference rules that have better properties, in this section we
introduce two refinements.

The first refinement reduces the number of branches of a rule by constraining
the rule with additional premises rather than deriving new conclusions. Suppose
r

def= X/X1 | · · · | Xm is a tableau rule of a sound and constructively complete
tableau calculus TL. For some i ∈ {1, . . . ,m} suppose Xi = {ψ1, . . . , ψk}. With-
out loss of generality we can assume that i = 1. Consider the rules rj with
j = 1, . . . , k defined by

rj
def=

X ∪ {∼ψj}
X2 | · · · | Xm

.

Note that we can drop any domain predication equalities from the numerator
when they are not necessary. Let T ′L be the tableau calculus obtained from TL
by replacing rule r by the rules r1, . . . , rk. It is clear that T ′L is sound. In general,
T ′L is not constructively complete. However the following theorem is true.

Theorem 3. Let B be an open branch in a T ′L-tableau. Assume that for every
set Y of L-expressions the following holds.

If all expressions from Y are reflected in I(B) then for every E1, . . . , El ∈ Y ,

(†) X(E1, . . . , El, t1, . . . , tn) ⊆ B implies
I(B) |= Xi(E1, . . . , El, ‖t1‖, . . . , ‖tn‖) for some i = 1, . . . ,m.

Then, B is reflected in I(B).

Corollary 1. If the condition of Theorem 3 holds for every open branch B of
any T ′L-tableau then T ′L is constructively complete.

Generalising this refinement to moving more than one conclusion up to the
numerator is not difficult. The formulation of Theorem 3 does not change then.

10

Consider the generated rule for negative occurrences of the existential re-
striction operator given on p. 8. In most description logics it can be transformed
to the more often seen rule:

¬ν1(∃r.p, x), ν2(r, x, y)
¬ν1(p, y)

.

In order to preserve constructive completeness, the following condition is usually
proved by induction on ≺. This, in turn, inductively implies condition (†).

If ¬ν1(∃E.F, t) ∈ B and I(B) |= ν2(E, t, t′) then ¬ν1(F, t′) ∈ B.

Another example of a generated rule and a refinement are (for transitive R):

x ≈ x, y ≈ y, z ≈ z
¬R(x, y) | ¬R(y, z) | R(x, z)

,
R(x, y), R(y, z)

R(x, z)
.

Condition (†) holds in this case since, by definition of I(B), I(B) reflects all
atomic predicate constants in the branch B.

The second refinement we describe exploits the expressivity of the logic.
Suppose that the language L of the logic L is expressive enough to represent
its own semantics. That is, assume that for every n = 0, . . . , N and every n-
ary predicate constant P occuring in SL, there are concepts C+

n (p, `1, . . . , `n),
C−n (p, `1, . . . , `n), D+

P (`1, . . . , `n), and D−P (`1, . . . , `n), depending on variable p
of sort n and variables `1, . . . , `n of sort 0, such that

∀SL |= ∀x
(
ν1(C+

n (p, `1, . . . , `n), x)→ νn(p, ν0(`1), . . . , ν0(`n))
)
,

∀SL |= ∀x
(
ν1(C−n (p, `1, . . . , `n), x)→ ¬νn(p, ν0(`1), . . . , ν0(`n))

)
,

∀SL |= ∀x
(
ν1(D+

P (`1, . . . , `n), x)→ P (ν0(`1), . . . , ν0(`n))
)
,

∀SL |= ∀x
(
ν1(D−P (`1, . . . , `n), x)→ ¬P (ν0(`1), . . . , ν0(`n))

)
.

In this case we are able to express all tableau rules for L in the language L itself.
We only need to replace every positive occurrence of νn(E, x1, . . . , xn) in TL
with C+

n (E, `1, . . . , `n), every (negative) occurrence of ¬νn(E, x1, . . . , xn) in TL
with C−n (E, `1, . . . , `n), and, similarly, all the predicate constants P need to be
replaced with occurrences of D+

P or D−P depending on the polarity of P . In fact,
the sort N + 1 of FO(L) can be reflected in the sort 0.

A slight difficulty is caused by Skolem functions in FO(L) occurring in the
tableau calculus, since for them there could be no corresponding function sym-
bols in L. It can be solved by introducing new connectives fg into the lan-
guage L for every (Skolem) function and constant g of FO(L) so that for every
(p1, . . . , pm, `1, . . . , `n), fg(p1, . . . , pm, `1, . . . , `n) is a term of the sort 0 and its
semantics is defined by ν0(fg(p, `1, . . . , `n)) def= g(p, ν0(`1), . . . , ν0(`n)). An al-
ternative is to introduce unique, new individual names (for every p1, . . . , pm,
`1, . . . , `n) instead of new connectives.

11

Connective definitions

∀x
`
ν1(⊥, x) ≡ ⊥

´
∀x

`
ν1(p1 ∧ p2, x) ≡ ν1(p1, x) ∧ ν1(p2, x)

´
∀x

`
ν1(p1 ∨ p2, x) ≡ ν1(p1, x) ∨ ν1(p2, x)

´
∀x

`
ν1(p1 → p2, x) ≡ ∀y

`
R(x, y)→ (ν1(p1, y)→ ν1(p2, y)

´´
Background theory of a partial ordering R and ν1

∀x R(x, x)
∀x∀y (R(x, y) ∧R(y, x)→ x ≈ y)

∀x∀y∀z (R(x, y) ∧R(y, z)→ R(x, z))
∀x∀y

`
ν1(p, x) ∧R(x, y)→ ν1(p, y)

´
Figure 2. Specification of semantics of intuitionistic logic.

For example, in the description logic ALCO with full support of individuals,
we can set (for any atomic role r and individual equality):

C+
2 (r, `1, `2) def= `1 : ∃r.{`2}, D+

≈(`1, `2) def= `1 : {`2},
C−2 (r, `1, `2) def= `1 : ¬∃r.{`2}, D−≈(`1, `2) def= `1 : ¬{`2}.

Thus, the language of the tableau calculus can be significantly simplified. For
instance, the (refined) rules for the existential restriction operator become:

` : ∃r.p
` : ∃r.{f(r, p, `)}, f(r, p, `) : p

,
` : ¬∃r.p, ` : ∃r.{`′}

`′ : ¬p
.

6 Synthesising Tableaux for Intuitionistic Logic

Intuitionistic logic is an example of a logic where νn cannot be expressed in
the language of the logic. It also provides an example of a logics for which a
background theory is an essential part of the definition of the semantics.

The language of intuitionistic logic is a one-sorted language defined over a
countable set of propositional symbols p1

1, p
1
2, . . ., and the standard connectives

are →,∨,∧,⊥. The semantic specification in FO(L) is given in Figure 2 (cf. [3]).
R is the designated predicate symbol representing the partial order in the back-
ground theory. For intuitionistic logic the orderings ≺0 and ≺ coincide. The
ordering ≺ on subexpressions induced by the semantic definition of the connec-
tives is the smallest ordering satisfying: E1 ≺ E1σE2 and E2 ≺ E1σE2, for each
σ ∈ {→,∨,∧} and all intuitionistic formulae E1 and E2.

The tableau rules generated by our approach are those listed in Figure 3.
Together with the equality rules, they form a calculus, which is sound and con-
structively complete for propositional intuitionistic logic. This is an immedi-
ate consequence of Theorems 1 and 2. Refining the generated rules yields the
rules listed in Figure 4. Using Theorem 3 we conclude that these rules together
with suitably refined equality rules provide a sound and constructively complete
tableau calculus for intuitionistic logic.

12

Decomposition rules:

ν1(⊥, x)

⊥
ν1(p1 ∧ p2, x)

ν1(p1, x), ν1(p2, x)

¬ν1(p1 ∧ p2, x)

¬ν1(p1, x) | ¬ν1(p2, x)

¬ν1(⊥, x)

¬⊥
ν1(p1 ∨ p2, x)

ν1(p1, x) | ν1(p2, x)

¬ν1(p1 ∨ p2, x)

¬ν1(p1, x), ¬ν1(p2, x)

ν1(p1 → p2, x)

¬R(x, y) | ¬ν1(p1, y) | ν1(p2, y)

¬ν1(p1 → p2, x)

R(x, f(p1, p2, x)), ν1(p1, f(p1, p2, x)), ¬ν1(p2, f(p1, p2, x))

Theory rules:

x ≈ x
R(x, x)

x ≈ x, y ≈ y
¬R(x, y) | ¬R(y, x) | x ≈ y

x ≈ x, y ≈ y, z ≈ z
¬R(x, y) | ¬R(y, z) | R(x, z)

p ≈ p, x ≈ x, y ≈ y
¬ν1(p, x) | ¬R(x, y) | ν1(p, y)

Closure rules:

ν1(p, x), ¬ν1(p, x)

⊥
R(x, y), ¬R(x, y)

⊥

Figure 3. Generated tableau rules for intuitionistic logic.

A terminating tableau calculus is obtained if the calculus is enhanced with
the blocking mechanism of [5,6]. This follows from the results in [6], the sound-
ness and constructive completeness of the calculus, the subexpression property
and the fact that intuitionistic logic admits finite filtrations. The calculus can
be turned into a deterministic decision procedure using breadth-first search or
depth-first search, as we showed in [6].

7 Discussion and Conclusions

The method introduced in this paper automatically produces a sound and con-
structively complete tableau calculus from a semantic first-order specification
of a many-sorted logic. The method is directly applicable to many non-classical
logics and covers many types of ground tableau calculi commonly found in the
literature. These include two types of tableau calculi for relations satisfying ex-
tra theory conditions which can be accommodated either by structural rules or
propagation rules.

The results of the paper can be regarded as a mathematical formalisation and
generalisation of tableau development methodologies. Our formalisation is based
on, and provides the basis for, the implementation of tableau decision procedures
for modal and description logics in the MetTeL system [8]. The formalisation
separates the creative part of tableau calculus development, which needs to be
done by a human developer, and the automatic part of the development process,

13

Decomposition rules:

ν1(⊥, x)

⊥
ν1(p1 ∧ p2, x)

ν1(p1, x), ν1(p2, x)

¬ν1(p1 ∧ p2, x)

¬ν1(p1, x) | ¬ν1(p2, x)

ν1(p1 ∨ p2, x)

ν1(p1, x) | ν1(p2, x)

¬ν1(p1 ∨ p2, x)

¬ν1(p1, x), ¬ν1(p2, x)

ν1(p1 → p2, x), R(x, y), ν1(p1, y)

ν1(p2, y)

¬ν1(p1 → p2, x)

R(x, f(p1, p2, x)), ν1(p1, f(p1, p2, x)), ¬ν1(p2, f(p1, p2, x))

Theory rules:

x ≈ x
R(x, x)

R(x, y), R(y, x)

x ≈ y
R(x, y), R(y, z)

R(x, z)

ν1(p, x), R(x, y)

ν1(p, y)

Closure rules:

ν1(p, x), ¬ν1(p, x)

⊥

Figure 4. Refined tableau rules for intuitionistic logic.

which can be left to an automated (currently first-order) prover and an auto-
mated tableau synthesiser. The creative part is the specification of the logic so
that the conditions of well-foundness of the orderings ≺0 and ≺ hold. The auto-
matic part deals with verification of the first-order conditions (wd1) and (wd3),
and the generation of tableau rules from the (well-defined) semantics provided
by the developer. Then, the developer can transform the generated rules to re-
fined form by applying Theorem 3. Refinements are crucial for the success of the
method. With the described refinements the calculi that the method generates
are equivalent (modulo inessential variations) to the calculi common for intu-
itionistic logic, ALCO, most other first-order definable description logics, and
the common modal logics such as S4 and S5, for example.

For common modal and description logics conditions (wd1) and (wd3) are
simple to check, even trivial in many cases. In fact, a developer usually implicitly
formalises the logic’s semantics S in such way that S = S0 ∪ Sb. This is the
case for almost all of known logics. If the specification of the semantics satisfies
S = S0 ∪ Sb then conditions (wd1) and (wd3) hold trivially and the orderings
≺0 and ≺ coincide. This means the ordering used for the specification of the
semantics of the logical connectives (which is usually well-founded), is enough
for tableau synthesis.

This paper also presents a general method for proving (constructive) com-
pleteness of tableau calculi. In addition, the generated rules can be transformed
to an optimal form provided that the special condition (†) has been proven by
induction on the ordering ≺ for the refined calculus.

With enough expressivity for representing the basics of the semantics within
the logic it is possible to simplify the language of the tableau. In this case, the
obtained calculus is similar to tableau calculi for description logics with full sup-

14

port of individuals, hybrid modal logic, and labelled tableau calculi. Otherwise,
the calculus has the same flavour as the standard tableau calculus for intuition-
istic logic, where every node of a tableau is characterised by two complementary
sets of true and false formulae (concepts).

As a case study we considered tableau synthesis for propositional intuition-
istic logic. We believe the approach is also applicable to most known, first-order
definable modal and description logics. Non first-order translatable logics such
as propositional dynamic logic are currently beyond the scope of the method.

The tableau calculi generated are Smullyan-type tableau calculi, i.e., ground
semantic tableau calculi. We believe that other types of tableau calculi can be
generated using the same techniques. Exploiting the known relationships to other
deduction methods and the underlying ideas of [4] we expect synthesis of non-
tableau approaches is possible as well, but this is future work. In [4] we have
shown that it is possible to synthesise tableau calculi for modal logics by trans-
lation to first-order logic combined with first-order resolution. In this framework
the semantic specification of a logic is transformed into clausal form and then
a set of inference rules. Soundness and completeness of the generated calculus
follows from the soundness and completeness of the simulating resolution refine-
ment used. This approach has several advantages, but in this paper we have
taken a different, more direct approach. Rather than proceeding via simulation
by resolution we have shown that tableau rules can be generated directly from
the specification of the logic.

Our future goal is to further reduce human involvement in the development
of calculi by finding appropriate automatically verifiable conditions for optimal
calculi to be generated.

References

1. I. Horrocks and U. Sattler. A tableau decision procedure for SHOIQ. J. Automat.
Reasoning, 39(3):249–276, 2007.

2. U. Hustadt, D. Tishkovsky, F. Wolter, and M. Zakharyaschev. Automated reasoning
about metric and topology (System description). In JELIA06, vol. 4160 of LNAI,
pp. 490–493. Springer, 2006.

3. S. A. Kripke. Semantical analysis of intuitionistic logic I. In Formal Systems and
Recursive Functions, pp. 92–130. North-Holland, 1965.

4. R. A. Schmidt. Developing modal tableaux and resolution methods via first-order
resolution. In Advances in Modal Logic, Volume 6, pp. 1–26. College Publ., 2006.

5. R. A. Schmidt and D. Tishkovsky. Using tableau to decide expressive description
logics with role negation. In ISWC07, vol. 4825 of LNCS, pp. 438–451. Springer,
2007.

6. R. A. Schmidt and D. Tishkovsky. A general tableau method for deciding description
logics, modal logics and related first-order fragments. In IJCAR08, vol. 5195 of
LNCS, pp. 194–209. Springer, 2008.

7. R. A. Schmidt and D. Tishkovsky. Automated synthesis of tableau calculi, 2009.
http://www.cs.man.ac.uk/~dmitry/papers/astc2009.pdf.

8. D. Tishkovsky. MetTeL system. http://www.cs.man.ac.uk/~dmitry/

implementations/MetTeL/.

15

