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Abstract. In this paper we propose a novel minimality criterion for
models of modal logics based on a variation of the notion of simula-
tion, called subset-simulation. We present a minimal model sound and
complete tableau calculus for the generation of this new kind of mini-
mal models for the multi-modal logic K(m), and we discuss extensions
to cover more expressive logics. The generation of minimal models is
performed incrementally by using a minimality test to close branches
representing non-minimal models, or to update the set of minimal mod-
els. Subset-simulation minimal models have the advantage that they are
semantically more natural than models obtained by using syntactic min-
imality criteria.

1 Introduction

For fault analysis, verification of systems and validation of the logical formalisa-
tion of an application, model generation methods are useful for finding counter-
examples as a means of debugging [14]. Models can be generated using tableau
methods. For example, Smullyan-type labelled tableau calculi can be used to gen-
erate the essential parts of any model. However, even for the most well-behaved,
decidable logics, in general, there are uncountably many different models for sat-
isfiable formulae and models can be very large. The import of Herbrand’s the-
orem is that we can restrict attention to the class of Herbrand models, because
they are kinds of canonical models sufficient for showing soundness and com-
pleteness of many deductive systems. For the purposes of model generation, the
class of Herbrand models has the advantage that it can be ordered by the subset
relation. It is thus possible to focus on generating models minimal under this or-
dering. Generating minimal Herbrand models for classical logics has been studied
in [4, 12] and for modal logics in [13]. For the modal logics K, KT, KB, KTB it
has been shown minimal Herbrand models are finite [13], but for other extensions
of K minimal Herbrand models are in general infinite.

By contrast, domain minimal models are finite for all logics with the finite
model property. Another possibility therefore is to focus on the generation of
models with minimised domains. Domain minimal models, however, tend to
be counter-intuitive for verification and debugging purposes because too many
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Table 1. Modalities and their corresponding frame conditions

[Ri] Axiom Frame condition

K

T [Ri]p→ p reflexivity

B p→ [Ri]〈Ri〉p symmetry

D [Ri]p→ 〈Ri〉p seriality

4 [Ri]p→ [Ri][Ri]p transitivity

5 〈Ri〉p→ [Ri]〈Ri〉p Euclideanness

worlds are collapsed to a single world. For instance, in a modal logic with doxastic
modalities there are models in which belief states (those in the image of the
belief relation) are identified and reflexive loops created. In most formalisations
the belief relation is however not reflexive. This means there is a need to find
classes of models better suited for debugging purposes.

As Herbrand models are too large and domain minimal models are too small,
in this paper we study subset-simulation minimal models as a middle ground
between the two. Subset-simulation is a relationship between models based on
a variation of the notion of simulation [5, 7, 8]. Being applied directly on the
graph representation of models means subset-simulation minimality preserves
the semantics in minimal models, and is suitable for a large number of non-
classical logics. It also results in more natural and intuitive minimal models
than minimal Herbrand models and domain minimal models (Section 3).

We present a tableau calculus designed to generate subset-simulation mini-
mal models for the multi-modal logic K(m) in Section 5. The tableau is minimal
model complete, but it is not minimal model sound. That is, it generates all mini-
mal models, but also non-minimal models are generated. Section 6 shows how the
calculus can be extended with a minimality test, called subset-simulation test,
in order to generate only minimal models and achieve minimal model soundness.
The resulting approach iteratively computes exactly the models minimal mod-
ulo subset-simulation by updating the set of minimal models as the derivation
proceeds. Although the calculus we present is for the multi-modal logic K(m),
extensions to cover more expressive logics are easy to obtain. We conclude the
paper with a discussion of possible extensions of the calculus and remarks on
implementation (Section 7).

2 Preliminaries

We work with modal formulae of propositional multi-modal logic K(m) pos-
sibly extended with universal modalities or a subset of the well-known ax-
ioms T, B, D, 4, and 5. Table 1 lists the axioms and their semantic meaning.

A modal formula is a formula of the form >, ⊥, pi, ¬φ, φ1 ∧ φ2, φ1 ∨ φ2,
〈Ri〉φ, [Ri]φ, [U ]φ, 〈U〉φ, where > and ⊥ are two nullary logical operators for,
respectively, true and false; pi is a propositional symbol; ¬, ∧, ∨, 〈Ri〉, [Ri] are,
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respectively, the logical operators negation, conjunction, disjunction, diamond
and box; [U ] and 〈U〉 are universal modalities; and φ1, φ2, φ are modal formulae.

We adopt the standard semantics of modal formulae known as Kripke seman-
tics. A frame for multi-modal logics is a tuple (W,R), where W is a non-empty
set of worlds and R = {R1, . . . , Rn} is a set of accessibility relations over W . An
interpretation I is a tuple (W,R, V ) composed of a frame and an interpretation
function V that assigns to each world u ∈W a set propositional symbols meaning
that such propositional symbols hold in u. Given an interpretation I = (W,R, V )
and a world u ∈W , truth of a modal formula φ is inductively defined as follows.

I, u 6|= ⊥ I, u |= >
I, u |= pi iff pi ∈ V (u)

I, u |= ¬φ iff I, u 6|= φ

I, u |= φ1 ∨ φ2 iff I, u |= φ1 or I, u |= φ2

I, u |= φ1 ∧ φ2 iff I, u |= φ1 and I, u |= φ2

I, u |= [Ri]φ iff for every v ∈W if (u, v) ∈ Ri then I, v |= φ

I, u |= 〈Ri〉φ iff there is a v ∈W such that (u, v) ∈ Ri and I, v |= φ

I, u |= [U ]φ iff for every v ∈W I, v |= φ

I, u |= 〈U〉φ iff there is a v ∈W such that I, v |= φ

Given an interpretation I, a world u and a modal formula φ, if I, u |= φ
holds, then I is a model of φ.

3 Subset-Simulation as Minimality Criterion

Subset-simulation is a variation of the notion of simulation [8, 7, 5], and is known
from [1, 11], where it is used for the description logic EL and is simply called
simulation. As we use both simulation and its variation, we decided to call the
latter subset-simulation.

Let M = (W,R, V ) and M ′ = (W ′,R′, V ′) be two models of a modal for-
mula φ. A simulation is a binary relation S ⊆ W ×W ′ such that for any two
worlds u ∈W and u′ ∈W ′, if uSu′ then the following hold.

– V (u) = V ′(u′) and
– if uRv for some R ∈ R, then there exists a v′ ∈W ′ such that R ∈ R′, u′Rv′,

and vSv′.

Let M = (W,R, V ) and M ′ = (W ′,R′, V ′) be two models of a modal for-
mula φ. A subset-simulation is a binary relation S⊆ ⊆W ×W ′ such that for any
two worlds u ∈W and u′ ∈W ′, if uS⊆u

′ then the following hold.

– V (u) ⊆ V ′(u′) and
– if uRv for some R ∈ R, then there exists a v′ ∈W ′ such that R ∈ R′, u′Rv′

and vS⊆v
′.
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Fig. 1. Simulations between symmetric models modulo subset-simulation

If S is such that for all u ∈ W there is at least one u′ ∈ W ′ such that uSu′,
then we call S a full (subset-)simulation from M to M ′. We say a (subset-)sim-
ulation S is a maximal (subset-)simulation if there is no other (subset-)simu-
lation S′ 6= S such that S ⊂ S′. Given two models M and M ′, if there is a
full (subset-)simulation S from M to M ′, we say that M ′ (subset-)simulates M ,
or M is (subset-)simulated by M ′.

In this paper we are only interested in full and maximal (subset-)simula-
tions. For this reason, when we refer to (subset-)simulations we mean full and
maximal (subset-)simulations. Where ambiguous, we explicitly state what kind
of (subset-)simulation we mean.

Subset-simulation has properties that allow us to use it to define a minimality
criterion for modal logic models. Specifically, subset-simulation is a reflexive and
transitive relation on models. Hence, it forms a preorder on models. This means
that we can consider as minimal models all the models that are minimal with
respect to subset-simulation. As subset-simulation is not anti-symmetric (which
means it is not a partial order), it is possible for models to form a symmetry
class. A symmetry class is a set of models that subset-simulate each other. This
may result in minimal models belonging to large symmetry classes, and therefore
also a large number of minimal models. To overcome this problem, we aim to be
more restrictive by using also the notion of simulation within a symmetry class
of minimal models.

Let M be a model of a modal formula φ. M is minimal modulo subset-
simulation iff for any other model M ′ of φ, if M subset-simulates M ′, then M ′

subset-simulates M and either there is no simulation relationship between M
and M ′, or M ′ simulates M .

The use of a simulation check within a symmetry class allows us to recognise
bisimilar models, models that are embedded in other models, and to impose an
extra ordering over symmetric models. Figure 1 shows two examples of what
kinds of minimal models are excluded due to the use of simulation. The two
models on the right belong to a symmetry class, and the two models on the left
belong to a different symmetry class (that is, the models on the right subset-
simulate each other, and the models on the left subset-simulate each other).
The dashed lines in the figure represent the simulation relationships between
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Fig. 2. Minimality modulo subset-simulation vs. minimal Herbrand models

the models. As the models at the bottom simulates the models at the top, only
the two models at the top are minimal modulo subset-simulation.

Models minimal modulo subset-simulation have interesting properties. First,
the interpretation function is minimal with respect to a given frame. This means
that given a set of worlds and the accessibility relations between them, the in-
terpretation function assigns to each world the minimal number of propositional
variables such that the resulting interpretation is a model for a given formula.
Second, as subset-simulation is directly based on the graph structure of models,
the minimality criterion is able to discern models semantically, thus avoiding
semantically redundant minimal models (in opposition to the minimal Herbrand
models criterion). In other words, the criterion is able to compare models having
distinct domains by comparing directly the labelling functions and the accessi-
bility relations. Being based on the graph structure of models makes minimality
modulo subset-simulation a criterion suitable for a large number of modal logics.
Finally, subset-simulation gives priority to finite loop-free models, meaning that
usually models minimal modulo subset-simulation are not domain minimal.

We conclude this section with two examples of models minimal modulo
subset-simulation in order to compare the notion with other minimality criteria.
The first example shows that the new minimality criterion does not suffer the
syntactic restriction that affects Herbrand models. For lack of space we cannot
give the formal definition of modal Herbrand models for which we refer to [13].
Even though there are a few differences, it might help to think of them as the
Herbrand models of the translation of a modal formula into a first-order formula.
Let us consider the modal formula φ = 〈R1〉p ∨ 〈R1〉(p ∧ 〈R1〉q). The minimal
Herbrand models of φ are shown in Figure 2. As can be seen, the model on
the right is completely embedded in the model on the left. Due to the syntactic
restrictions of Herbrand models, however, it is not possible to recognise this rela-
tion between models, and the method proposed in [13] would consider both the
as being minimal models. By contrast, subset-simulation minimality considers
only the model on the right as minimal because it is subset-simulated by the
other model, but not the other way around.

The second example shows that models minimal modulo subset-simulation
are more natural than domain minimal models. Consider the formula φ =
〈has father〉doctor. Figure 3 shows two models that satisfy φ. The left model
in the figure is the domain minimal model, and the right model is the model
minimal modulo subset-simulation. In the domain minimal model φ is satisfied
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Fig. 3. Minimality modulo subset-simulation vs. domain minimality

by creating a loop, meaning that there is a person who is their own father and
who is a doctor. Even though such a model satisfies φ, it does not reflect our
intuition of the has father relation. This problem is avoided in the model mini-
mal modulo subset-simulation, where a new successor is required, thus ensuring
that a person is not their own father. Admittedly this is a simple example, but
it illustrates problems avoided for relations where reflexivity is counter-intuitive.
Our main point is avoiding loops in models if they are not necessary for the
finiteness of the model, and we only create loops containing the least positive
information by minimising the interpretation function when necessary.

4 Computing Subset-Simulation between Models

Even though not concerned with modal logic models, the paper [8] presents
algorithms for computing simulations between graphs. One of the algorithms
presented in [8] computes maximal self-simulation, which is the maximal simu-
lation between a graph and itself. This algorithm can be modified for computing
full and maximal subset-simulation between two models of a modal formula φ.

Figure 4 shows the pseudo-code of the algorithm that takes as input two
models M = (W,R, V ) and M ′ = (W ′,R′, V ′), and returns the full and maximal
subset-simulation from M to M ′ or the empty set, if there is no full subset-
simulation. The following variables and functions are used in the algorithm.

– outrel(u) returns the set of outgoing accessibility relations from u.
– sim(u) represents the set of worlds in W ′ that are subset-similar to u.
– post(Ri, u) returns all the Ri-successors of u.
– pre(Ri, u) returns all the Ri-predecessors of u.
– pre(Ri,W ) is the union of the sets resulting by the application of the pre

function with respect to the relation Ri to all the elements of W , that
is, pre(Ri,W ) =

⋃
u∈W pre(Ri, u).

The basic idea behind the algorithm is that subset-simulation is computed
by overestimating the possible subset-simulation, and then pruning false guesses
by checking the second property of subset-simulation. To obtain the algorithm
in Figure 4 from the algorithm presented in [8], the following must be taken into
consideration. First, if a full subset-simulation does not exist, then the empty
set is returned. Second, the input is composed of two different models, this is
because we are not interested in self subset-simulations. Reflexive edges need to
be correctly handled. The two graphs have more than one accessibility relation.
This last point is the reason why the algorithm loops over the set of accessibility
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1: for all v ∈W do
2: sim(v)← {u ∈W ′ | V (v) ⊆ V ′(u) and outrel(v) ⊆ outrel(u)}
3: if sim(v) = ∅ then
4: return ∅
5: for all Ri ∈ R do
6: for all v ∈W do
7: remove(v)← pre(Ri,W

′) \ pre(Ri, sim(v))

8: while there is a vertex v ∈W s.t. remove(v) 6= ∅ do
9: aux remove v ← ∅

10: for all u ∈ pre(Ri, v) do
11: for all w ∈ remove(v) do
12: if w ∈ sim(u) then
13: sim(u)← sim(u) \ {w}
14: for all w′ ∈ pre(Ri, w) do
15: if post(Ri, w

′) ∩ sim(u) = ∅ then
16: if u = v then
17: aux remove v ← aux remove v ∪ {w′}
18: else
19: remove(u)← remove(u) ∪ {w′}
20: if sim(u) = ∅ then
21: return ∅
22: remove(v)← aux remove v

23: return {(u, v) | u ∈W and v ∈ sim(u)}

Fig. 4. Pseudo-code for computing full, maximal subset-simulation between two models

relations and refines the subset-simulation by incrementally computing the in-
tersection of the subset-simulation with respect to a single accessibility relation.
For reason of space we omit a more detailed description of the algorithm.

Soundness of computing the subset-simulation in this way is a consequence
of the following theorem.

Theorem 1. Let M = (W,R, V ) and M ′ = (W ′,R′, V ′) be two models of a
modal formula φ such that M is subset-simulated by M ′. The full and maximal
subset simulation S⊆ can be computed as the intersection of all the full and max-
imal subset-simulations with respect to each single accessibility relation R ∈ R.

5 Tableau Calculus

We present a generic tableau calculus for the generation of minimal models
modulo subset-simulation for the multi-modal logic K(m). The calculus is generic
in the sense that it can be easily extended to more expressive modal logics. Such
extensions are discussed in Section 7.

The input of the calculus is a modal formula in negation normal form labelled
by an initial world u. Transformation to negation normal form is not essential,
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Table 2. Rules of the basic tableau calculus

(α)
u : (φ1 ∧ . . . ∧ φn) ∨ Φ+

α

u : φ1 ∨ Φ+
α

...
u : φn ∨ Φ+

α

(�)
(u, v) : Ri u : [Ri]φ

v : φ

(β)
u : A ∨ Φ+

u : A u : Φ+

u : neg(Φ+)
where A is of the form 〈Ri〉φ, [Ri]φ, or pi, and
neg(Φ+) = ¬p1 ∧ . . . ∧ ¬pn, where each pi is a disjunct of Φ+.

(♦)
u : 〈Ri〉φ

(u, u1) : Ri . . . (u, un) : Ri (u, v) : Ri
u1 : φ un : φ v : φ

where each ui appears on the branch, and v is fresh.

(SBR)
u : p1, . . . , u : pn u : ¬p1 ∨ . . . ∨ ¬pn ∨ Φ+

α

u : Φ+
α

but it simplifies the presentation. It also means that there is no need for prepro-
cessing before applying the calculus, and it allows us to reduce the number of
rules in the calculus.

In the calculus, disjunctions and conjunctions are assumed to be flattened
for example, we write φ1 ∨ φ2 ∨ φ3 instead of φ1 ∨ (φ2 ∨ φ3). By A we mean a
modal formula of the form pi, 〈Ri〉φ or [Ri]φ. We use Φ+ to denote a non-empty
disjunction, where all disjuncts are of the form A, and Φ+

α to denote a possibly
empty disjunction where all disjuncts are of the form A or are conjunctions.
By neg(Φ+) we mean the conjunction ¬p1 ∧ . . . ∧ ¬pn, where the pi are all the
positive propositional variables appearing as disjuncts of Φ+. If Φ+ does not
contain any pi, then neg(Φ+) = >.

Table 2 presents the rules of the calculus for the multi-modal logic K(m).
A branch B of the tableau is a sequence N0, N1, . . . , Ni of sets of formulae of
the form u : φ or (u, v) : R, where N0 = {u : φ} and φ is the input formula.
Given an input formula u : φ, the rules of the calculus are exhaustively applied.
At most one rule is applied to any formula appearing as the main premise,
where the main premise of multi-premises rules is the premise on the right. For
fairness, each instance of a rule application is applied exactly once. Each rule
application extends the current branch. That is, a rule applied to a formula in the
set Ni extends the branch with the set Ni+1, where Ni+1 is the set Ni plus the
conclusions of the applied rule. Given an open branch B, a model M = (W,R, V )
can be extracted from B as follows. The domain W is the set of all the labels
in B, the accessibility relations are composed of all the instances (u, v) ∈ Ri
in B, the interpretation function V is such that V (u) = {pi | u : pi ∈ B}.
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Even though the input formula is in negation normal form, the calculus
can be thought of as a calculus for formulae in clausal form. This is achieved
by the (α) rule that not only deals with conjunctions, but also performs lazy
clausification. If such a lazy clausification is performed in a clever way, for
example, by using a good heuristic for choosing the right conjunction to ex-
pand, it can result in the reduction of inferences due to the implicit restriction
of Φ+

α in the premise of the rule. For instance, let us assume that the premise
is u : (p1 ∧ p2)∨ (¬p3 ∧¬p4). If the (α) rule is applied to the first conjunction, it
results in the two modal formulae u : p1 ∨ (¬p3 ∧ ¬p4) and u : p2 ∨ (¬p3 ∧ ¬p4).
The (α) rule is again applicable to both of them. If instead, the (α) rule is ap-
plied to the other conjunction first, the resulting formulae are u : ¬p3 ∨ (p1 ∧ p2)
and u : ¬p4 ∨ (p1 ∧ p2), and the (α) rule is not applicable to any of them.

The (�) rule is the common rule for box formulae, and simply expands formu-
lae in the scope of a box modality as required by the semantics of box formulae.

The (β) rule is one of the two branching rules of the calculus. Its purpose is
to branch over disjunctions without any negated propositional variables, and to
close the left branch if it is not minimal. This latter point is achieved by the use
of a limited form of complement splitting (a more common use of complement
splitting can be found in [4]). The reason why complement splitting is applied
only on positive propositional variables is that the negation of diamond formulae
or box formulae would result in new modal formulae (specifically, box formulae
and diamond formulae) that can compromise the minimality of the resulting
model. For example, let us assume that the (β) rule is applied to u : p∨ [R1]q. If
the complement 〈R1〉¬q of [R1]q would have been added to the left branch, the
left branch would still be open, and the resulting model would still be a model for
the original formula, but the newly introduced diamond formula would generate
unnecessary information. The resulting model would not be minimal. A similar
example can be given for the case of the negation of diamond formulae.

The (♦) rule is the expansion rule for diamond formulae. As it can lead to
the expansion of a diamond formula in all possible worlds plus a fresh one, it
is an expensive rule. It is, however, required to achieve minimal model com-
pleteness. This rule is known from literature, for example [9, 10, 3]. It is worth
pointing out that the (♦) rule in general does not guarantee termination for the
purpose of minimal model generation, but it ensures termination in case we are
only interested in checking the satisfiability of a modal formula belonging to a
logic with the finite model property. The termination issue for minimal model
generation does not affect the multi-modal logic K(m), but it has to be taken
into consideration when generalising to more expressive logics.

Finally, the (SBR) rule is a selection-based resolution rule. It can be seen as
a weaker version of the (SBR) rule in [13], the PUHR rule in [4], or the hyper-
tableau rule in [2]. The aim of this rule is twofold. First, it provides the closure
rule of the calculus, because atomic closure is sufficient. Second, it allows to
remove negative information (that is, all negative propositional variables) from
a disjunction. The reason behind the (SBR) rule is that if a disjunction contains
negative information (that is, at least one negated propositional variable) that
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is not in conflict with any formula on the branch, then any expansion of such
a disjunction results in either the minimal model, where the disjunction is true
due to the negative information, or in a non-minimal model. Hence, there is no
advantage in expanding a disjunction as long as it is not possible to remove all
the negative information from it. The (SBR) rule is the reason why other rules,
specifically the (β) rule and the (α) rule, can be applied only to disjunctions of
the form Φ+ or Φ+

α . This decreases the number of required inferences.

The calculus presented so far does not yet constitute the full method for the
generation of models minimal modulo subset-simulation, but is a starting point
for it.

Theorem 2. The tableau calculus is refutationally sound and complete for K(m).

For lack of space we do not provide a formal proof, but the calculus does not
differ much from known calculi. All the rules have already been applied in other
calculi, or are sound variations of common rules. The main differences are due
to variations of rules in order to not expand formulae that are already minimally
satisfied, for example, the restrictions due to Φ+ or Φ+

α .

Theorem 3. The tableau calculus is subset-simulation minimal model complete.
That is, it generates all models minimal modulo subset-simulation.

Proof. Suppose M,u |= φ, where M = (W,R, V ) is a model minimal mod-
ulo subset-simulation, u ∈ W and φ is a modal formula. We first show that
the tableau having as input u : φ has an open, fully expanded branch B =
N0, . . . , Ni, . . ., where N0 = {u : φ} and for all i ≥ 0 the following holds: M |=
Ni implies M |= Ni+1, where M |= Ni means that for each formula u : φ ∈ Ni
we have that M,h(u) |= φ, where h is a function mapping labels in Ni to do-
main elements in M such that h(u) = u for the starting label u. Suppose Ni+1

is obtained from Ni by the application of a rule ρ. We consider several cases.

ρ is the (�) rule. This means the expanded formula is a labelled box for-
mula u : [Ri]φ

′, and (u, v) : Ri is in Ni for some v. As M |= Ni, we have
that M,h(u) |= [Ri]φ

′ and (h(u), h(v)) ∈ Ri. This implies M,h(v) |= φ′. That
is, M is a model for the conclusion of the application of the (�) rule.

ρ is the (α) rule. This means that the expanded formula is a labelled dis-
junction, where at least one disjunct φα is a conjunction. As M |= Ni, we have
that M,h(u) |= φ. This implies that M,h(u) |= φ′α, where φ′α is the result of
distributing the conjunction of φα over φ. Hence, M is a model for all the con-
juncts of φ′α. That is, M is a model for the conclusions of the application of
the (α) rule.

ρ is the (♦) rule. This means that the expanded formula is a labelled diamond
formula, let us say u : 〈Ri〉φ′. As M |= Ni, we have that M,h(u) |= 〈Ri〉φ′. This
implies that there exists an Ri-successor v of h(u) such that M, v |= φ′. If there
is no w in Ni such that h(w) = v, then we choose the right-most conclusion
of the (♦) rule and let h(w) = v. If there is already a world w in Ni such
that h(w) = v, then choose the conclusion where w is used as witness.
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ρ is the (β) rule. This means that the expanded formula is a labelled disjunc-
tion where the disjuncts are propositional variables, diamond formulae or box
formulae. As M |= Ni, we have that M,h(u) |= φ. This implies that M satisfies
at least one of the disjuncts. Suppose A is one such disjunct and Φ+ is the re-
maining part of the disjunction. Assume A is expanded in the left branch, then
two cases are possible. First, M,h(u) |= neg(Φ+), that is, M is a model for all the
conclusions in the left branch. Second, M,h(u) 6|= neg(Φ+). That is, there is a
propositional variable pi that appears as disjunct in Φ+ such that M,h(u) |= pi.
This means that u : φ is already satisfied because pi is satisfied, that is, one of
the disjunct of Φ+ is satisfied. Hence, M,h(u) |= Φ+ and the correct expansion
of Ni is the right branch of the (β) rule.

ρ is the (SBR) rule. This means that the expanded formula u : φ is of the
form u : ¬p1∨ . . .∨¬pn∨φ′ and that u : p1, . . . , u : pn appear in Ni. As M |= Ni,
we have that M,h(u) |= φ and M,h(u) |= pi for all i within 1 ≤ i ≤ n. This
implies that M,h(u) |= φ iff M,h(u) |= φ′. That is, M is a model for the
conclusion of the (SBR) rule.

This proves by induction that there is a branch B validated by M .

It remains to show that the model M ′ = (W ′,R′, V ′) extracted from B
is equivalent to M . From the construction of the branch, the domain of M ′

is such that W ′h ⊆ W , where W ′h = {v | h(u) = v for all u ∈ W ′}. This is,
because the starting node u belongs to both W ′ and W , only applications of
the (♦) rule create worlds, and these are mapped by following what holds in
the minimal model M . The same reasoning is also applicable for the set of
accessibility relations.

The interpretation function V ′ is such that for all u : pi ∈ B, pi ∈ V ′(u). This
implies that for all u ∈W ′ we have that V ′(u) ⊆ V (h(u)). This is because M |=
Ni for all i and, specifically, M,h(u) |= pi for all u : pi ∈ B.

From these observations it follows that M ′ is either smaller (containing fewer
worlds, fewer relational links, or there is some world for which the interpretation
function is a subset of the interpretation function of M) or equal to M .

Assume that the frame of M ′ is smaller than the frame of M ′. This implies
M is not minimal because either M subset-simulates M ′ (when for some u ∈W ′
we have that V ′(u) ⊂ V (h(u))) or M simulates M ′ (when for all u ∈W ′ we have
that V ′(u) = V (h(u))). The (subset-)simulation is simply the set {(u, h(u)) | u ∈
W ′}. This contradicts the minimality of M . Hence, M ′ and M are based on the
same frame.

Assume that for some u ∈ W ′ we have that V ′(u) ⊂ V (h(u)). This con-
tradicts the assumption that M is a model minimal modulo subset-simulation
because M ′ is subset-simulated by M (the subset-simulation is as in the previous
case). This implies that for all u ∈W ′, V ′(u) = V (h(u)).

As the frames and the interpretation functions of M and M ′ are the same,
M and M ′ are the same model. This completes the proof. ut
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6 Minimal Model Soundness

Although the calculus is minimal model complete as presented up to now, it
is not yet minimal model sound. This means, although among all the gener-
ated models there are all the minimal ones, the calculus does not generate only
minimal models. However, as the calculus is minimal model complete, minimal
model soundness can be achieved by closing all the branches of the tableau from
which non-minimal models can be extracted. In order to prune properly the
search space, we introduce a minimality test called subset-simulation test. This
test allows us either to detect non-minimal models before they are completely
computed, or to refine the minimal models found so far (that is, updating the
set of minimal models by deleting models and inserting a new one).

Following an idea in [4, 13], the aim of the minimal model test is to use previ-
ously extracted models to judge the minimality of the partial model that can be
extracted from the currently selected branch. A crucial difference with [4, 13] is
that we cannot guarantee that the first extracted model is minimal. Our solution
is to compute minimal models incrementally, meaning it is only known at the
end of the complete derivation whether a model is minimal. The incremental
generation of minimal models is achieved in the calculus by always selecting the
left-most branch with the least number of worlds for further expansion first. This
means, the calculus generates first all the models with the smallest domain, and
then incrementally increases the domain size of the generated models. This ex-
pansion strategy alone is not enough to make the calculus minimal model sound
because domain minimal models have good chances of not being minimal. Nev-
ertheless, we think this is a good heuristic, because the minimality test can only
be performed by comparing already extracted models with one (partial) model,
and because the complexity of the algorithm presented in Section 4 depends on
the number of worlds in the two models. Hence, finding domain minimal models
first is likely to speed up the incremental generation of minimal models.

The subset-simulation test is divided into two cases. First, M is the partial
model extracted from an open but not fully expanded branch. If there exists
an already extracted model M ′ that is subset-simulated by M and M is not
subset-simulated by M ′, then M is not minimal and the branch from which it
was extracted is closed.

Second, M is the model extracted from an open and fully expanded branch.
Then M is compared with the already extracted models and branches are closed
accordingly. The closure of branches involves consideration of these three cases.

– M subset-simulates some minimal model M ′, but M ′ does not subset-sim-
ulate M . This means M is not minimal, and the branch from which M was
extracted must be closed.

– M does not subset-simulate any minimal model M ′, but M ′ subset-simu-
lates M . This means M ′ and all the models belonging to the symmetry class
of M ′ are not minimal, and the branches from which those models were
extracted must be closed.

– Some minimal model M ′ subset-simulates M , and M subset-simulates M ′.
This means M belongs to the same symmetry class of M ′. Hence, simulation
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relationships between M and the models of the symmetry class need to be
checked in order to refine the symmetry class. All the branches from models
of the symmetry class which are no longer minimal must be closed.

The first case of the subset-simulation test allows us to prune the tree deriva-
tion before a branch is fully expanded. This is possible because if a partial model
is already non-minimal, none of its possible extensions can be minimal. Hence,
the branch can be closed without compromising minimal model completeness of
the calculus.

As it is not always possible to recognise a non-minimal model before the
branch is fully expanded, and because minimal models are computed incremen-
tally by continuously refining the set of minimal models, the first case of the
subset-simulation test is clearly not enough. The second case performs the re-
finement step of the current set of minimal models, meaning that even previously
open and fully expanded branches can be closed. In other words, the second case
requires checking subset-simulation relationships between M and representative
models of all the symmetry classes of minimal models. This is because if M is
subset-simulated by one model of a symmetry class, then it is subset-simulated
by all of them due to subset-simulation being transitive.

From a theoretical perspective, it is not important when the minimality test
is applied as long as it is always applied to open and full expanded branches (that
is, as long as the second case of the minimality test is extensively performed). In
order to avoid complex subset-simulation tests and to prune the derivation tree
as soon as possible, heuristics can be used to fix the order of application of the
rules and when the minimality test is performed. Our suggestion is to apply the
rules in the following order: (SBR) rule, (α) rule, (�) rule, (β) rule, and (♦) rule.
The idea behind this order is to close a branch as soon as a contradiction occurs
on the branch, and to delay the application of branching rules. Given this order
of rule application, a sensible heuristic for the application of the minimality
test is to perform it just before the application of the (♦) rule. This is because
the (♦) rule has the highest branching factor, and the complexity of the subset-
simulation test gradually increases after each application of this rule.

Using the proposed branch selection strategy and the minimality test, the
calculus in Table 2 becomes minimal model sound.

Theorem 4. Augmenting the tableau calculus with the subset-simulation test
provides an approach that is minimal model sound when a fair expansion strategy
is used. That is, it generates only models minimal modulo subset-simulation.

7 Discussion

In the minimal model soundness theorem we required the expansion strategy
of the calculus to be fair. The proposed expansion strategy to select the left-
most branch with the least number of worlds can be seen as a variation of the
common depth-first iterative deepening expansion strategy, where the weight
used to select a branch is the number of worlds appearing on the branch. This
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strategy is not the only possible fair expansion strategy that can be applied to
the calculus. Other variations of the depth-first iterative deepening strategy or
a breadth-first strategy can also be used, and the resulting procedure is still
minimal model sound and complete. Among the common strategies, depth-first
expansion is probably the only one that cannot be applied. This is because it
is possible to have infinitely long branches, and depth-first expansion would not
result in a complete tree derivation. As we have already pointed out, this is not
the case for the multi-modal logic K(m).

Even though the idea for the subset-simulation test is inspired by the model
constraint propagation rule in [13, 4], there are differences to that minimality
test. The main difference is that we need the complete tree derivation for es-
tablishing which models are minimal, while in [13, 4] this is not the case; the
reason being that [13, 4] are concerned with the generation of minimal Herbrand
models, which means a subset (the set of minimal models) of a subset (the set of
Herbrand models) of all possible models. Minimality modulo subset-simulation,
instead, needs to evaluate many more models. It is interesting to note that if min-
imality modulo subset-simulation is applied only to Herbrand models, then the
resulting set of minimal models is a refinement of the set of minimal Herbrand
models.

The calculus in Table 2 can be extended easily to cover extensions of modal
logic K(m) by introducing rules that properly deal with such extensions. Table 7
shows the rules that allow the expansion of the tableau calculus to modal logics
enriched with universal modalities, or to extensions in which the accessibility
relations satisfy frame conditions from Table 1. Any extended version of the
calculus results in a minimal model sound and complete tableau calculus as long
as the minimality test and the described expansion strategy are used. A property
that could be lost is termination of the calculus. We have already pointed out that
the (♦) rule does not guarantee termination for the purpose of subset-simulation
minimal model generation.

The extensions allowed by the rules in Table 7 are not the only possible
extensions. One of the advantages of using minimality modulo subset-simulation
is that the minimality criterion is applied to the graph representation of models.
This means that the minimality criterion can be applied to all non-classical
logics defined by a Kripke semantics. This includes logics such as modal logics,
description logics, and temporal logics (even those that are not translatable to
fragments of first-order logic). It is known from the literature, for example [6],
that bisimulation needs to be extended depending on the expressivity of the logic.
This is because bisimulation, like simulation and subset-simulation, is a local
definition. It is however not required to extend the notion of subset-simulation for
minimality modulo subset-simulation because the criterion requires full subset-
simulation, changing the scope of the definition from local to global.

From the point of view of implementation, the calculus presents several chal-
lenges. Many well-known optimisation techniques such as backjumping or unit
propagation, or a variation of them can be applied to speed up the implemen-
tation. The main problem, depending on the logic under consideration, is the
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Table 3. Structural rules for extending the calculus. Note: all worlds in the conclusion
of a rule with empty premises must already appear on the branch

(T)
(u, u) : Ri

(B)
(u, v) : Ri
(v, u) : Ri

(4)
(u, v) : Ri (v, w) : Ri

(u,w) : Ri
(5)

(u, v) : Ri (u,w) : Ri
(v, w) : Ri

(D)
(u, u1) : Ri . . . (u, un) : Ri (u, v) : Ri

where u does not have an Ri-successor, each ui appears on
the branch, and v is fresh.

(〈U〉) u : 〈U〉φ
u1 : φ . . . un : φ v : φ

where each ui appears on the branch, and v is fresh.

([U ])
u : [U ]φ

v : φ
where v appears on the branch.

possibility that the computation does not terminate. In this case, it might be
sensible to impose a termination strategy at the cost of losing minimal model
soundness and completeness, but preserving at least refutational soundness and
completeness. This means not to stop the computation before the first model is
found. After the first model has been found an early termination strategy can
be used. This produces the best minimal models computed so far. As we are
able to establish minimality of a model only in the complete derivation tree,
stopping the computation at an early point does not guarantee the minimality
of the models obtained so far. The idea of stopping the computation at a certain
point can be seen as a branch and bound strategy, that is, the returned minimal
models are the best minimal models extracted from the tableau up to this point.
When to stop the derivation requires a new heuristic in the implementation,
which one would probably make dependant on the domain of application. An
alternative might be the use of a blocking mechanism such that the resulting
procedure is strongly terminating. We are currently investigating blocking tech-
niques to achieve strong termination while preserving minimal model soundness
and completeness for logics with the finite model property. An appropriate block-
ing technique or a simplification of the (♦) rule might result in a more efficient
tableau calculus.

8 Conclusion

We presented minimality modulo subset-simulation as a novel minimality crite-
rion for modal logics. The minimal models obtained following this new minimal-
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ity criterion have the benefit that they reflect the semantics of a modal formula in
a more faithful way than other minimality criteria. Although we emphasised the
application of the criterion to the multi-modal logic K(m), its semantic nature
makes it applicable to a large number of non-classical logics.

We presented a minimal model complete tableau calculus for the multi-modal
logic K(m), and discussed how to achieve minimal model soundness through
the use of the subset-simulation test. The resulting minimal model sound and
complete calculus can easily be expanded to cover extensions of the multi-modal
logic K(m).

Even though the expansion rule for diamond formulae is expensive and ter-
mination is not always guaranteed, we believe that variations of the calculus can
be efficiently implemented in such a way that the generated models are semanti-
cally meaningful and useful for applications. An implementation of the calculus,
its extensions and variations can give important further insight regarding the
generation of minimal models for non-classical logics.
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