
M4M 2009

A Tableau Method for Checking Rule
Admissibility in S4

Sergey Babenysheva, Vladimir Rybakova, Renate A. Schmidtb

and Dmitry Tishkovskyb

a Department of Computing and Mathematics,
Manchester Metropolitan University, UK

b School of Computer Science,
The University of Manchester, UK

Abstract

Rules that are admissible can be used in any derivations in any axiomatic system of a logic. In this paper
we introduce a method for checking the admissibility of rules in the modal logic S4. Our method is based
on a standard semantic ground tableau approach. In particular, we reduce rule admissibility in S4 to
satisfiability of a formula in a logic that extends S4. The extended logic is characterised by a class of models
that satisfy a variant of the co-cover property. The class of models can be formalised by a well-defined first-
order specification. Using a recently introduced framework for synthesising tableau decision procedures this
can be turned into a sound, complete and terminating tableau calculus for the extended logic, and gives a
tableau-based method for determining the admissibility of rules.

Keywords: Tableau calculus, admissible rule, modal logic, S4, tableau synthesis framework.

1 Introduction

Logical admissible rules were first considered by Lorenzen [12]. Initial investigations
were limited to observations on the existence of interesting examples of admissible
rules that are not derivable (see Harrop [7], Mints [13]). The area gained new mo-
mentum when Friedman [2] posed the question whether algorithms exist for recog-
nising whether rules in intuitionistic propositional logic IPC are admissible. This
problem and the corresponding problem for modal logic S4 are solved affirmatively
in Rybakov [15,17]. The same approach can be used for a broad range of proposi-
tional modal logics, for example K4, S4, GL [18]. Roziere [14] presents a solution to
Friedman’s problem for IPC that uses methods of proof theory.

The theory of admissible rules in S4 does not have the finite approximation
property [11] in the strict sense. The algorithm in [15] is based on the existence of
a model (of bounded size) that witnesses the non-admissibility of a rule, but is not
necessarily a model for all the other admissible rules. In [1] it is observed that a
witnessing model can be obtained by filtration.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Babenyshev et al

Admissibility of rules has direct connections to the problem of unification. A
refined technique [18] is used for admissibility of rules with meta-variables, for uni-
fication, for unification with parameters, and for the solvability of logical equations
in transitive modal logics.

Algorithms deciding admissibility for some transitive modal logics and IPC,
based on projective formulae and unification, are described in Ghilardi [3,4,5,6].
They combine resolution and tableau approaches for finding projective approxima-
tions of a formula and rely on the existence of an algorithm for theorem proving. A
practically feasible realisation for S4 built on the algorithm for IPC in [5] is described
in [24]. These algorithms were specifically designed for finding general solutions for
matching and unification problems. In contrast, the original algorithm of [15] can
be used to find only some solution of such problems in S4.

In this paper we focus on S4 and introduce a new method for recognising the
admissibility of rules. Our method is based on the reduction of the problem of
rule admissibility in S4 to the satisfiability of a certain formula in an extension
of S4. We refer to the extended logic as S4u,+. S4u,+ can be characterised by a
class of models, which satisfy a variant of the co-cover property that is definable by
modal formulae. This property is expressible in first-order logic and means that the
semantics of the logic can be formalised in first-order logic. We exploit this property
in order to devise a tableau calculus for S4u,+ in a recently introduced framework
for automatically synthesising tableau calculi and decision procedures [21,22].

The tableau synthesis method of [22] works as follows.

(i) The user defines the formal semantics of the given logic in a many-sorted
first-order language so that certain well-definedness conditions hold.

(ii) The method automatically reduces the semantic specification of the logic to
Skolemised implicational forms which are then rewritten as tableau inference
rules. These are combined with some default closure and equality rules.

The set of rules obtained in this way provides a sound and constructively complete
calculus. Furthermore, this set of rules automatically has a subformula property
with respect to a finite subformula operator. If the logic can be shown to admit
finite filtration with respect to a well-defined first-order semantics then adding a
general blocking mechanism produces a terminating tableau calculus [21].

We show how, using this method, a sound, complete and terminating tableau
calculus can be synthesised for the extended logic S4u,+. This tableau calculus is
then incorporated into a method for solving the rule admissibility problem in S4.

The paper is structured as follows. In Section 2 we define the syntax and seman-
tics of the modal logic S4, and its extension S4u with the universal modality, in such
a way that they can be accommodated in the tableau synthesis framework of [22].
The section also defines standard modal logic constructions and notions required
for the main results of the paper. In Section 3, we give definitions of derivable
and admissible rules for S4 and state Rybakov’s criterion for testing admissibility
of rules in S4. The reduction of rule admissibility in S4 to satisfiability in S4u,+

is described in Section 4. In Section 5, we show how the formulaic variant of the
co-cover property can be expressed by a set of first-order formulae that provide a
suitable background theory for the specification of the semantics of S4u,+ in the

2

Babenyshev et al

Definitions of connectives Background theory

∀x
(
ν(¬p, x) ↔ ¬ν(p, x)

)
∀x, y, z

(
R(x, y) ∧R(y, z)→ R(x, z)

)
∀x
(
ν(p ∨ q, x) ↔ ν(p, x) ∨ ν(q, x)

)
∀x R(x, x)

∀x
(
ν(3p, x) ↔ ∃y (R(x, y) ∧ ν(p, y))

)
Figure 1. Specification of the semantics of S4 in SS4

tableau synthesis framework. Within this framework we can then synthesise sound
and complete tableau calculi for the logics S4u,+ and S4u. Under certain conditions
it is possible to refine the rules of the calculus that are generated by default [22].
These conditions are true for the logics we consider and is discussed in Section 6.
Section 7 describes how terminating tableau calculi can be obtained by adding the
unrestricted blocking mechanism of [20,21]. In Section 8, we finally give an algo-
rithm for testing rule admissibility, but also rule derivability, in S4. In Section 9
we conclude with a discussion of the applicability of the algorithm and method to
other logics and various problems closely related to admissibility.

For lack of space some of the details of the tableau synthesis framework are
omitted; for these the interested reader is referred to [22] and also [20,21].

2 Syntax and Semantics

We denote the language of the modal logic S4 by LS4. LS4 is given by the standard
modal language over a countable set of propositional variables {p, q, p0, q0, . . .}, the
Boolean logical connectives ¬ and ∨, and the modal connective 3. Other Boolean
connectives such as >, ⊥, ∧, →, and↔ and the modal connective 2 are defined via
¬, ∨, and 3 as usual.

Let Lu
S4 denote the extension of the language LS4 with the ‘somewhere’ modality

〈u〉. The dual modality ¬〈u〉¬ is the universal modality, which is denoted by [u].
For a formula φ, we denote by sub(φ) the set of all subformulae of φ. Let

sub(Σ) def=
⋃
{sub(φ) | φ ∈ Σ} for any set of formulae Σ. We usually write

sub(φ1, . . . , φn) rather than sub({φ1, . . . , φn}). A set of formulae Σ is called a sig-
nature iff sub(Σ) = Σ.

Following the tableau synthesis framework in [22], we accommodate Lu
S4 in a

multi-sorted first-order specification language. This specification language includes
a countable set {x, y, z, x0, y0, z0, . . .} of first-order variables that represent elements
in models, the binary predicate symbol R of the background theory that represents
the accessibility relation, and a binary (intersort) predicate symbol ν which repre-
sents the forcing relation |=. ν can be thought of as a holds predicate. Figure 1
gives the first-order semantic specification of the standard semantics of S4 in the
framework. We denote the specification by SS4. In addition to the formulae of
Figure 1, SS4 includes the usual congruence axioms for the equality predicate ≈,
see [22] for details.

Thus, an S4-(Kripke) model (of a signature Σ) is a first-order model M =
〈WM , RM , νM 〉 that validates all the formulae of Figure 1 under arbitrary substi-

3

Babenyshev et al

tutions of LS4-formulae (from the signature Σ) for variables p and q.
Let S4u be the extension of S4 with the somewhere (or universal) modality. The

semantic specification of S4u, denoted by SS4u , is the extension of the specification
SS4 of S4 with

∀x (ν(〈u〉p, x)↔ ∃y ν(p, y)).(1)

This defines the somewhere modality 〈u〉. An S4u-model (of a signature Σ) is by
definition a first-order model M = 〈WM , RM , νM 〉 that validates this formula in
addition to all the formulae of Figure 1 under arbitrary substitutions of Lu

S4-formulae
(from the signature Σ) for propositional variables p and q.

Note that if M is a model of the signature Σ then M is also a model of any
signature Σ′ ⊆ Σ. In the other direction, it is clear that every model M of a smaller
signature Σ′ can be extended to a model of a bigger signature Σ by (re)defining the
interpretation of ν on formulae from Σ\Σ′ (by induction on their length). We often
use these facts when defining models.

A (Kripke) frame of S4 (resp. S4u) is a first-order structure F = 〈WF , RF 〉 that
validates all the formulae of the background theory of SS4 (resp. SS4u). A model M
is based on a frame F (or the underlying frame of M is F) iff WM = WF and
RM = RF .

A cluster of a model M is a set U ⊆WM such that for all w ∈WM and u ∈ U
it holds that (w, u), (u,w) ∈ RM iff w ∈ U . Any set of RM -incomparable clusters
of M is called an anti-chain in M . A cluster U ⊆ WM is maximal iff (u,w) ∈ RM
implies w ∈ U for all w ∈WM and u ∈ U .

Let Σ be a fixed signature and M a model of the signature Σ. We say that a
formula φ ∈ Σ is true (satisfied) in a world w ∈ WM (in symbols M,w |= φ) iff
(φ,w) ∈ νM . A formula φ (from Σ) is valid in M (in symbols M |= φ) iff M,w |= φ

for every w ∈ WM . And, as usual, φ is satisfiable in M iff there is w ∈ WM such
that M,w |= φ. A formula φ ∈ Σ is valid in a frame F (in symbols F |= φ) iff it is
true in every model M of the signature Σ based on F .

For a signature Σ and every element w of WM we define a Σ-type τΣ(w) of w
as the set of all formulae from Σ which are true in w, namely:

τΣ(w) def= {ψ ∈ Σ |M,w |= ψ}.

We omit the superscript Σ and write τ(w) if Σ is known from the context. A model
M of a signature Σ is called Σ-differentiated iff τΣ(w) = τΣ(v) implies w = v for
all w, v ∈ WM . A model M is formulaic iff for every element w ∈ WM there is a
formula φ such that M,w |= φ and M, v 6|= φ for all v ∈WM \ {w}. It is clear that
if Σ is finite then every Σ-differentiated model is also formulaic.

We call a Kripke model M of a signature Σ′ a definable variant of a model N of
a signature Σ if M and N are based on the same frame and for every propositional
variable p ∈ Σ′ there is a formula φ ∈ Σ such that M,w |= p ⇐⇒ N,w |= φ for
every w ∈WM = WN .

Let Σ be the set of all formulae in n variables p1, . . . , pn. An S4-model M of
signature Σ is called an n-characterising model for S4 iff M |= φ ⇐⇒ φ ∈ S4 for
every φ ∈ Σ.

4

Babenyshev et al

3 Rules Admissible for S4

Since the language of S4 contains conjunction, without loss of generality we consider
only one-premise rules. A rule is a pair 〈α, β〉 of LS4-formulae, usually written α/β.
A rule r = α/β is valid in a model M (written M |= r) iff M |= α implies M |= β.
A rule r is valid on a frame F (written F |= r) iff r is valid in any model M
based on F . Two rules r1, r2 are semantically equivalent, or simply equivalent, if
F |= r1 ⇐⇒ F |= r2 for any frame F .

A rule r = α/β is derivable in S4 iff β is derivable from α and the theorems of
S4 with the rule of modus ponens and the rule of necessitation. It is clear that r
is derivable in S4 iff r is valid in every S4-model. The following variant of the
deduction theorem in S4 can be proved by standard methods.

Theorem 3.1 A rule α/β is derivable in S4 iff [u]α ∧ ¬β is unsatisfiable in S4u.

A rule r = α/β is admissible for the modal logic S4, written r ∈ Adm(S4), if for
every substitution σ from σ(α) ∈ S4 it follows that σ(β) ∈ S4.

A series Chn(S4), n > 0, of formulaic and n-characterising S4 models is described
in [18]. These models are used in the description of the following admissibility
criterion.

Theorem 3.2 (Corollary of Theorem 3.3.3 [18]) A rule is admissible in S4 iff
it is valid in a definable variant of Chn(S4) for each n > 0.

The most important property for the result of this paper is that the models
Chn(S4), n > 0, and their definable variants possess the co-cover property. That the
admissible rules for S4 can be characterized by the class of models with the co-cover
property is shown in [16]. A more general result appears in [18, Theorem 3.5.1].
Similar characterisation results for IPC appear in [9, Theorem 4.1(iv)] and [10,
Corollary 3.14].

By definition, a model M has the co-cover property (CCP) if for every finite anti-
chain D ⊆ WM (D may be empty), there exists a one-element cluster {w} ⊆ WM

such that

{u ∈WM | (w, u) ∈ RM} = {w} ∪
⋃
v∈D
{u ∈WM | (v, u) ∈ RM}.

The one-element cluster is called a co-cover for D. Note that a co-cover for the
empty anti-chain is a maximal one-element cluster of M .

A rule r is said to be in reduced normal form if it has the form

(rnf) r =
(∨

16j6s

φj
)
/p0,

and each disjunct φj has the form

φj =
∧

06i6n

p
t(i,j,0)
i ∧

∧
06i6n

(3pi)t(i,j,1),

5

Babenyshev et al

where (i) all φj are different, (ii) p0, . . . , pn denote propositional variables, (iii) t is a
Boolean function t : {0, . . . , n}×{1, . . . , s}×{0, 1} → {0, 1} (i.e., t(i, j, z) ∈ {0, 1}),
and (iv) α0 def= ¬α and α1 def= α for any formula α.

Using the renaming technique any modal rule can be transformed into an equiv-
alent rule in reduced normal form [15].

Lemma 3.3 Any rule r = α/β can be transformed in exponential time to an equiv-
alent rule in reduced normal form.

Proof We describe the algorithm of [18] (Lemma 3.1.3 and Theorem 3.1.11). Let
r = α/β be a rule. We need a set of new variables {qγ | γ ∈ sub(α, β)}. The first
step is to replace r = α/β with r1 = α ∧ (qβ ↔ β)/qβ. It is easy to see that r is
refuted on a frame F iff r1 can be refuted on the same frame F . Therefore r and
r1 are equivalent.

Inductive step: Suppose the rule ri = γi/qβ was obtained in the ith step. We
call a formula δ ∈ sub(γi) ∩ sub(α, β) final, if it is not a variable and not a proper
subformula of any other formula in sub(γi)∩ sub(α, β). Let Ti be the set of all final
formulae obtained at the ith step. We replace the rule ri with a new one, namely
ri+1 = γi+1/qβ, where

γi+1 = ti(γi) ∧
∧

qγ∨qδ∈Ti

((qγ ↔ γ) ∧ (qδ ↔ δ)) ∧
∧

¬qδ,3qδ∈Ti

(qδ ↔ δ),

and ti(γi) is the formula obtained from γi by replacing all final subformulae δ with
qδ. It is straightforward to check that ri and ri+1 are equivalent.

Note that every inductive step reduces the maximal height of the non-Boolean
subformulae of the rule. Therefore after a finite number of steps we get a premise γk,
which is a Boolean combination of literals of the form p or 3p, where p is a propo-
sitional variable. We denote this intermediate form by do(r) (depth-one form).

Finally, we transform the premise of the obtained rule rN = γk/qβ into disjunc-
tive normal form over literals. This requires no more than exponential time on the
number of variables, i.e., on the number of subformulae of the original rule, which is
the same as for the reduction of any Boolean formula to disjunctive normal form.2

The reduced normal form, obtained in Lemma 3.3, is uniquely defined and is
denoted by rnf(r). Note that Lemma 3.3 proves more than the equivalence of r
and rnf(r). In particular, from the proof it follows that if r is refutable in a model N
then rnf(r) is refutable in a definable variant M of N with M,w |= qγ ⇐⇒ N,w |=
γ for all γ ∈ sub(α, β).

Let r be any rule in reduced normal form (rnf). Let Θ(r) def= {φ1, . . . , φs} be the
set of all disjuncts of r. For every φj ∈ Θ(r), let

θ(φj)
def= {pi | t(i, j, 0) = 1} and θ3(φj)

def= {pi | t(i, j, 1) = 1}.

That is, θ(φj) denotes the set of variables of r with positive occurrences in φj , and
θ3(φj) is the set of variables pi of r with the positive occurrence of 3pi in φj .

Historically the first algorithm for recognising admissible rules of S4 was based
on the next theorem. Its formulation requires the following definition, which is

6

Babenyshev et al

taken from [15]. For every subset of disjuncts W ⊆ Θ(rnf(r)), let M(rnf(r),W)
denote the Kripke model in which WM def= W ,

RM
def= {(φ1, φ2) | θ3(φ2) ⊆ θ3(φ1)} and (pi, φj) ∈ νM

def⇐⇒ pi ∈ θ(φj).

Theorem 3.4 (Theorem 3.9.6 [18]) A rule rnf(r) is admissible for S4 iff for any
set W ⊆ Θ(rnf(r)), the modelM(rnf(r),W) fails to have at least one of the following
properties.

(a1) There is φj ∈W such that M(rnf(r),W), φj 6|= p0.
(a2) M(rnf(r),W), φj |= φj for all φj ∈W .
(a3) For any subset D of M there exists φj ∈W such that

θ3(φj) = θ(φj) ∪
⋃
φ∈D

θ3(φ).

Note that in (a3), D can be empty.
Theorem 3.4 implies that we can employ this algorithm for recognising the ad-

missibility of a rule r in S4 [15].

Step 1. Reduce rule r to depth-one-form do(r).
Step 2. Construct from the do(r) the reduced form rnf(r).
Step 3. For every subset W of the set of disjuncts of rnf(r), check whether the

conditions of Theorem 3.4 hold.
Step 4. If the conditions (a1)–(a3) of Theorem 3.4 are satisfied for some W , then r

is not admissible for S4, otherwise r is admissible for S4.

Step 1 can be done in polynomial time, Step 2 can be done in exponential time,
and Step 3 can be done in exponential time. This means the time complexity of
the algorithm is bounded by a doubly-exponential function in the length of r. A
more detailed complexity analysis based on the techniques from [8,9] implies that
the rule admissibility problem for S4 is coNExpTime-complete [10].

4 Semantic Characterisation of Admissibility

We now give a semantic characterisation of admissibility in S4. We say that an
S4u-model satisfies the formula definable co-cover property if the following (infinite)
set of axioms hold (for n > 0):

∃x∀p (ν(3p, x)→ ν(p, x))(FCCP)

∀x1 · · · ∀xn∃x∀p
(
R(x, x1) ∧ · · · ∧R(x, xn)∧

ν(3p, x)→ (ν(p, x) ∨ ν(3p, x1) ∨ · · · ∨ ν(3p, xn))
)
.

Let SFCCP be the semantic specification consisting of the (FCCP) formulae and
the formulae in SS4u . Let FCCP(Σ) be the class of all S4u-models of the signature
Σ that satisfy all instances of the formulae of SFCCP under substitutions of Lu

S4-
formulae in Σ for propositional variables.

Let S4u,+ be the modal logic with the language Lu
S4 that has SFCCP as semantic

specification. The following theorem is a direct consequence of the definitions above

7

Babenyshev et al

and the fact that all n-characterising models Chn(S4) for S4 satisfy the (FCCP)
formulae.

Theorem 4.1 S4u,+ is a conservative extension of S4.

Now we prove that S4u,+ has the effective finite model property. Let Σ be a
fixed signature and M an S4u,+-model of the signature Σ. We define the filtrated
(through Σ) model M as follows. The equivalence ∼ on the set WM is defined by
w ∼ v

def⇐⇒ τ(w) = τ(v). Further, [w] def= {v ∈ WM | w ∼ v} and WM def= {[w] | w ∈
WM}. Next, RM def= {([w], [v]) | M,v |= ψ implies M,w |= 3ψ for every 3ψ ∈ Σ}
and, finally, νM def= {(ψ, [w]) | (ψ,w) ∈ νM} for every ψ ∈ Σ.

The following lemma can be proved by induction on the structure of formulae
in Σ by verifying that all semantic conditions in SFCCP hold.

Lemma 4.2 (Filtration Lemma) M is an S4u,+-model of the signature Σ.

Note that by definition M is Σ-differentiated and it is finite whenever Σ is finite.

Theorem 4.3 (The Effective Finite Model Property) Let φ be a formula
and n the length of φ (i.e., the number of symbols in φ). If φ is satisfiable in
an S4u,+-model (of the signature sub(φ)) then it is satisfiable in a finite S4u,+-model
(of the signature sub(φ)) and its size does not exceed 2n.

Theorem 4.4 α/β ∈ Adm(S4) iff [u]α ∧ ¬β is unsatisfiable in S4u,+.

Proof Suppose α/β is not admissible and p1, . . . , pn are all the propositional vari-
ables occurring in α and β. Then there is a model M—a definable variant of
Chn(S4) such that M 6|= α/β. This model has the co-cover property and it is
routine to transform M into an S4u,+-model satisfying [u]α ∧ ¬β.

For the converse, let Σ def= sub([u]α∧¬β) and suppose [u]α∧¬β is satisfiable in an
S4u,+-model. Then it is satisfiable in a finite Σ-differentiated S4u,+-model M (of the
signature Σ), by the Filtration Lemma. Let sub3(α, β) def= {3γ | γ ∈ sub(α, β)} ∪
sub(α, β) for any LS4-formulae α and β. For every w ∈ WM let τ3(w) def= {γ ∈
sub3(α, β) |M,w |= γ} and

φ(w) def=
∧

γ∈sub(α,β)

qχ(γ)
γ ∧

∧
γ∈sub(α,β)

3qχ(3γ)
γ ,

where χ is the characteristic function of the set τ3(w). Let us consider the model
M∗

def= 〈WM∗ , RM
∗
, νM

∗〉, where WM∗ def= {φ(w) | w ∈ WM}, (φ(u), φ(v)) ∈
RM

∗ def⇐⇒ (u, v) ∈ RM , and (qγ , φ(w)) ∈ νM
∗ def⇐⇒ M,w |= γ. Each φ(w) is a

disjunct in reduced normal form rnf(r). Therefore we have that

• WM∗ ⊆ Θ(rnf(r)),
• 〈WM∗ , RM

∗〉 is isomorphic to the underlying frame of M ,
• M∗ satisfies conditions (a1)–(a3) of Theorem 3.4.

By Theorem 3.4, rnf(r) is not admissible, and hence neither is r. 2

8

Babenyshev et al

5 Synthesising a Tableau Calculus

We now apply the method of [22] to generate a sound and constructively complete
tableau calculus for S4u,+. In order to apply the method we must ensure that the
semantic specification SFCCP of S4u,+ is well-defined in the sense of [22]. First,
SFCCP must be normalised in the following sense: (i) all the formulae specifying
semantics are Lu

S4-open, i.e., they do not contain quantifiers of propositional vari-
ables, and (ii) all the formulae in SFCCP are divided into three groups: positive and
negative definitions of the semantics of the connectives of the logic, and a back-
ground theory that imposes frame conditions. It is also required that all formulae
in the background theory do not contain any non-atomic modal terms.

Every definition of the Lu
S4 connectives in SFCCP (in Figure 1 and (1)) can be

split into two implications. The resulting set of formulae can be divided into the
required two groups of positive and negative connective definitions. The third group,
the background theory of S4u,+, consists of formulae specifying the reflexivity and
transitivity for the relation R and the (FCCP) formulae.

The main difficulties for the normalisation of the specification SFCCP are the oc-
currences of the non-atomic modal term 3p and the quantification of the variable p
in (FCCP). To solve this problem we first replace every formula ν(3p, y) by its
semantic equivalent ∃z(R(y, z) ∧ ν(p, z)) and transform the resulting formulae into
the prenex normal form. This gives us:

∃x∀p∀y
(
(R(x, y) ∧ ν(p, y))→ ν(p, x)

)
∀x1 · · · ∀xn∃x∀p∀y∃z

(
R(x, x1) ∧ · · · ∧R(x, xn)∧

(R(x, y) ∧ ν(p, y))→
(
ν(p, x) ∨ (ν(p, z) ∧ (R(x1, z) ∨ · · · ∨R(xn, z)))

))
.

These formulae are still not Lu
S4-open formulae as required in [22] because of the

quantifiers on p. However, using Skolemisation it is possible to eliminate all exis-
tential quantifiers preceding the p-quantifiers in the formulae and then we can omit
the quantifiers of p. In addition, we split the long formulae in two parts. We get:

∀y
(
(R(g0, y) ∧ ν(p, y))→ ν(p, g0)

)
(FCCP′)

∀x1 · · · ∀xn
(
R(gn(x1, . . . , xn), x1) ∧ · · · ∧R(gn(x1, . . . , xn), xn)

)
∀x1 · · · ∀xn∀y∃z

(
(R(gn(x1, . . . , xn), y) ∧ ν(p, y))→(

ν(p, gn(x1, . . . , xn)) ∨ (ν(p, z) ∧ (R(x1, z) ∨ · · · ∨R(xn, z)))
))
.

Here, gn (n ≥ 0) denote the introduced Skolem symbols.
We use the notation S′FCCP for the semantic specification obtained from SFCCP

where all (FCCP) formulae have been replaced by the corresponding (FCCP′) for-
mulae. It is clear that for every first-order structure M , the universal closure of
SFCCP and the universal closure of S′FCCP are equisatisfiable in M . Hence, the
transformed semantics S′FCCP is equivalent to SFCCP and axiomatises the same
class of models.

Now we are ready to synthesise tableau calculi from S′FCCP . The generated
tableau rules are given in Figure 2. The symbols f3, fu, gn, hn denote Skolem
functions and g0 denotes a Skolem constant.

9

Babenyshev et al

Decomposition tableau rules:

ν(¬p, x)

¬ν(p, x)

¬ν(¬p, x)

ν(p, x)
ν(p ∨ q, x)

ν(p, x) | ν(q, x)

¬ν(p ∨ q, x)

¬ν(p, x), ¬ν(q, x)
ν(3p, x)

R(x, f3(p, x)), ν(p, f3(p, x))

ν(¬3p, x)

¬R(x, y) | ¬ν(p, y)

ν(〈u〉p, x)

ν(p, fu(p))

ν(¬〈u〉p, x), y ≈ y
¬ν(p, y)

Theory tableau rules:

x ≈ x
R(x, x)

x ≈ x, y ≈ y, z ≈ z
¬R(x, y) | ¬R(y, z) | R(x, z)

Infinite set of (FCCP) tableau rules (n > 0):

(cc0):
p ≈ p, y ≈ y

¬R(g0, y) | ¬ν(p, y) | ν(p, g0)
(ccn0):

x1 ≈ x1, . . . , xn ≈ xn, y ≈ y
R(gn(x), x1), . . . , R(gn(x), xn)

(ccn1):
p ≈ p, x1 ≈ x1, . . . , xn ≈ xn, y ≈ y

¬R(gn(x), y) | ¬ν(p, y) | ν(p, gn(x)) | R(x1, hn(p, x, y)), ν(p, hn(p, x, y)) | · · ·

Closure tableau rules:

ν1(p, x), ¬ν1(p, x)

⊥
R(x, y), ¬R(x, y)

⊥

Figure 2. Generated tableau rules for S4u,+

R(x, y)

x ≈ x, y ≈ y
¬R(x, y)

x ≈ x, y ≈ y
¬ν(p, x)

p ≈ p, x ≈ x
ν(p, x)

p ≈ p, x ≈ x
R(x, y), x ≈ z

R(z, y)

R(x, y), y ≈ z
R(x, z)

ν(p, x), x ≈ y
ν(p, y)

x ≈ y
y ≈ x

x ≈ y, y ≈ z
x ≈ z

Figure 3. Equality congruence rules for predicates occurring in SS4u .

Let T be the tableau calculus consisting of the rules of Figure 2 and the standard
tableau rules for equality listed in Figure 3. The equality tableau rules are obtained
from the equality congruence axioms, which are always included in the background
theory of any semantic specification, see [22].

Given a formula φ, and assuming our aim is to determine the satisfiability of φ,
the start of any tableau derivation is the formula ν(φ, a), where a is an arbitrary
constant a that does not occur in the rules of T . a can be viewed as a Skolem
constant introduced for ∃x in the formula ∃x ν(φ, x). The rules of the calculus are
applied top-down in the familiar way.

We assume the following definitions from [21,22]. Let T denote a tableau calculus
and φ is a formula. We denote by T (φ) a finished tableau derivation for testing the
satisfiability of φ. That is, all branches in the tableau derivation are fully expanded
and all applicable rules of T have been applied in T (φ). As usual we assume that
all the rules of the calculus are applied non-deterministically. A branch of a tableau
derivation is closed if a closure rule has been applied, otherwise the branch is called
open. The tableau derivation T (φ) is closed if all its branches are closed and T (φ)
is open otherwise. A calculus T is sound (for a logic L) iff for any formula φ, each
T (φ) is open whenever φ is satisfiable in an L-model. T is complete iff for any

10

Babenyshev et al

unsatisfiable formula φ there is a T (φ) which is closed. T is constructively complete
(for L) iff for any open branch in a finished tableau derivation in T it is possible to
construct an L-model from terms of the branch such that the model reflects all the
formulae occurring in the branch. (Constructive completeness is a stronger notion
than completeness.) T is said to be terminating if every finished open tableau
derivation in T has a finite open branch.

It is easy to check that the specification S′FCCP for S4u,+ is well-defined in the
sense of [22]. A consequence of [22, Theorems 1 and 2] is this result.

Theorem 5.1 T is a sound and constructively complete calculus for S4u,+.

6 A Refined Tableau Calculus

The generated calculus T can be refined as follows. First, it is possible to refine
the calculus by moving negated conclusions in certain rules up to premise positions.
We move formulae that contain only propositional variables and do not contain any
complex modal terms upwards. It is not difficult to check for each rule that the
condition given in [22, Theorem 3] for this refinement to preserve soundness and
constructive completeness is true.

Second, we can apply the second refinement described in [22, Section 5]. For this
we extend the language Lu

S4 by introducing a countable set {i, j, k, . . .} of nominal
variables and logical connectives (acting on nominals) which correspond to Skolem
functions and constants. The @ operator can be introduced and specified in such a
way that @iφ

def= [u](i→ φ) for every nominal term i and formula φ (of the extended
language). It is not difficult to see that the semantics of all the connectives of the
extended language can be represented in the language itself (see [22, Section 5]).

Summing up, the refined rules we obtain are given in Figure 4. In these rules,
i, j, k, i1, . . . , in denote nominal variables, and f3, fu, gn, and hn (n ≥ 0) denote
‘nominal functions’ which correspond to the Skolem functions with same names.

Let T+ be the tableau calculus which consists of the rules of Figure 4 and the
refined equality rules given in Figure 5. In T+, a tableau derivation for testing the
satisfiability of φ starts with a formula @i0φ where i0 is a fresh nominal constant.

Theorem 6.1 T+ is a sound and constructively complete tableau calculus for S4u,+.

7 A Terminating Tableau Calculus

Our proof of Theorem 4.3 that S4u,+ has the effective finite model property uses a
filtration argument. That is, in the terminology of [21], S4u,+ admits finite filtration.
Using the results of [21], this means that the tableau calculi generated in Section 5
and 6 can be turned into terminating tableau calculi. In particular, we are interested
only in the refined calculus T+.

Adding the following unrestricted blocking rule to T+ gives a terminating tableau
calculus.

(ub):
@ii, @jj

@ij | @i¬j
The conditions that blocking must satisfy are:

11

Babenyshev et al

Decomposition tableau rules:

(¬):
@i¬¬p

@ip

(∨):
@i(p ∨ q)
@ip | @iq

(¬∨):
@i¬(p ∨ q)
@i¬p, @i¬q

(3):
@i3p

@i3f3(p, i), @f3(p,i)p
(¬3):

@i¬3p, @i3j

@j¬p

(〈u〉):
@i〈u〉p
@fu(p)p

(¬〈u〉):
@i¬〈u〉p, @jj

@j¬p

Theory tableau rules:

(refl):
@ii

@i3i
(trans):

@i3j, @j3k

@i3k

Infinite set of (FCCP′) tableau rules (n > 0):

(cc′00):
@g0g0

(cc′01):
@g03i, @ip

@g0p

(cc′n0):
@i1 i1, . . . , @in in

@gn(i)3i1, . . . , @gn(i)3in

(cc′n1):
@gn(i)3j, @jp

@gn(i)p | @i13hn(p, i, j), @hn(p,i,j)p | · · · | @in3hn(p, i, j), @hn(p,i,j)p

Closure tableau rules:

(⊥):
@ip, @i¬p
⊥

Figure 4. Refined tableau rules for S4u,+

(refl≈):
@ip

@ii
(sym≈):

@ij

@ji
(trans≈):

@ij, @jk

@ik

(con≈0):
@ip, @ij

@jp
(con≈1):

@i3j, @jk

@i3k

Figure 5. Refined equality congruence rules

(b1) The rules (3) and (〈u〉) are never applied to formulae of the form @i3j and,
respectively, @i〈u〉j where j is a nominal term.

(b2) If @ij appears in a branch and i < j (i.e., nominal i appeared strictly earlier
than nominal j in the derivation) then all further applications of the tableau
rules which produce new nominals (in our case the (3), (〈u〉), (cc′00) and (cc′n0)
rules) to the formulae with occurrences of j are not performed within the
branch.

(b3) In every open branch there is some node from which point onwards before
any application of any tableau rule that produces new nominals (i.e., the (3),
(〈u〉), (cc′00) and (cc′n0) rules) all possible applications of the (ub) rule have
been performed.

We denote the extended calculus by TS4u,+ .
Since T+ is sound and constructively complete for S4u,+, and S4u,+ admits finite

filtration the results in [20] allow us to state:

Theorem 7.1 TS4u,+ is a sound, (constructively) complete and terminating tableau

12

Babenyshev et al

calculus for S4u,+.

Let TS4u be the tableau calculus which consists of the same set of rules as TS4u,+

but excludes the (FCCP′) rules: (cc′00), (cc′01), (cc′n0), and (cc′n1). Applying tableau
synthesis to S4u in a similar way gives the following result.

Theorem 7.2 TS4u is a sound, (constructively) complete and terminating tableau
calculus for S4u.

8 A Tableau Method for Testing Rule Admissibility

Putting all the results together (in particular Theorems 3.1, 4.4, 7.1 and 7.2) here
is a method for determining whether a modal rule is admissible in S4, or not.

Step 1. Given an S4-rule α/β, rewrite it to [u]α ∧ ¬β.
Step 2. Use the tableau calculus TS4u to test the satisfiability of [u]α ∧ ¬β in S4u.
Step 3. If TS4u([u]α ∧ ¬β) is closed, i.e., [u]α ∧ ¬β is unsatisfiable in S4u, then stop

and return ‘derivable’.
Step 4. Otherwise (i.e., TS4u([u]α ∧ ¬β) is open), continue the tableau derivation

with the rules in TS4u plus the rules (cc′00), (cc′01), (cc′n0), and (cc′n1). In
particular, continue the derivation with a finite open branch of TS4u([u]α ∧
¬β) using the rules of TS4u,+ until the derivation stops.

Step 5. If TS4u,+([u]α ∧ ¬β) is closed then return ‘not derivable and admissible’.
Otherwise, i.e., if TS4u,+([u]α ∧ ¬β) is open, return ‘not admissible’.

The answers returned by the method are either ‘derivable’, ‘not derivable and
admissible’, or ‘not admissible’. If a rule is derivable it is also admissible but not
conversely.

Figure 6 demonstrates the algorithm for the rule 3p ∧ 3¬p/⊥. The Step 1
rewrites the rule to ¬〈u〉(¬3p ∨ ¬3¬p) modulo standard modal equivalences. The
black triangles in the figure denote branching points in the derivation. A branch
expansion after a branching point is indicated by appropriate indentation.

9 Concluding Remarks

A major difficulty in dealing with S4-admissibility, is that the theory of S4-ad-
missible rules does not have the finite approximation property [11] in this sense:
for a rule r /∈ Adm(S4), there is no single finite Kripke model M separating r

from Adm(S4), (i.e., such that M |= Adm(S4), but M 6|= r). Therefore the tableau
algorithm that we have introduced in this paper builds open branches that represent
a (possibly) infinite Adm(S4)-model and is a counter-model to a non-admissible
rule. The subsequent filtration provides a finite model (not necessarily an Adm(S4)-
model) witnessing the refutation.

A known algorithm that can handle S4-admissibility appears in Zucchelli [24]
and is based on the research of Ghilardi [3,4,5,6] on projective approximations. This
algorithm is based on the algorithm from [5] for IPC, which combines resolution and
tableau approaches for finding projective approximations of a formula and relies
on the existence of an algorithm for theorem proving. This algorithm (as well as

13

Babenyshev et al

1. @i0¬〈u〉(¬3p ∨ ¬3¬p) given
2. @i0 i0 . (refl≈),1
3. @i0¬(¬3p ∨ ¬3¬p)(¬〈u〉),1,2
4. @i0¬¬3p . (¬∨),3
5. @i0¬¬3¬p . (¬∨),3
6. @i03p . (¬),4
7. @i03¬p . (¬),5

8. @i03i1 (3),6: i1
def
= f3(p, i0)

9. @i1p . (3),6
10. @i1 i1 . (refl≈),9

11. @i03i2(3),7: i2
def
= f3(¬p, i0)

12. @i2¬p . (3),7
13. @i2 i2 . (refl≈),12
14. @i2¬(¬3p ∨ ¬3¬p) (¬〈u〉),1,13
15. @i2¬¬3p . (¬∨),14
16. @i2¬¬3¬p . (¬∨),14
17. @i23p . (¬),15
18. @i23¬p . (¬),16
19. I@i0 i1 . (ub),2,10
20. @i1 i0 . (sym≈),19
21. @i0p . (con≈0),9,20
22. @i13i1 . (con≈0),8,19
23. @i03i0 . (con≈1),8,20
24. I@i0 i2 . (ub),2,13
25. @i2 i0 .(sym≈),24
26. @i0¬p . (con≈0),12,25

Unsatisfiable . 21,26
27. I@i0¬i2 . (ub),2,13

28. @i23i3 (3),17: i3
def
= f3(p, i2)

29. @i3p . (3),17
30. @i3 i3 . (refl≈),29

31. @i23i4 (3),18: i4
def
= f3(¬p, i2)

32. @i4¬p . (3),18
33. @i4 i4 . (refl≈),32
34. I@i0 i3 . (ub),2,30
35. @i3 i0 . (sym≈),34
36. @i23i0(con≈1),28,35
37. @i23i2 (trans),11,36
38. I@i2 i4 . (ub),13,33
. .

Satisfiable in S4u .
The rule is not derivable

39. @g0g0 . (cc′00)
40. @g0¬(¬3p ∨ ¬3¬p) (¬〈u〉),1,35
41. @g0¬¬3p (¬∨),40
42. @g0¬¬3¬p (¬∨),40
43. @g03p . (¬),41
44. @g03¬p . (¬),42

45. @g03i5 (3),43: i5
def
= f3(p, g0)

46. @i5p . (3),43

47. @g03i6 (3),44: i6
def
= f3(¬p, g0)

48. @i6¬p . (3),44
49. @g0p . (cc′01),45,46

50. @g0¬p (cc′01),47,48

Unsatisfiable in S4u,+ 49,50
51. I@i2¬i4 . (ub),13,33
. Similarly to 39–50

Unsatisfiable in S4u,+
52. I@i0¬i3 . (ub),2,30
. Similarly to 39–50

Unsatisfiable in S4u,+
53. I@i0¬i1 . (ub),2,10
. Similarly to 39–50

Unsatisfiable in S4u,+ .
The rule is not derivable and admissible

Figure 6. A derivation for testing admissibility of 3p ∧3¬p/⊥.

its precursor for IPC [5]) is specifically constructed for describing general solutions
(maximal general unifiers, maximal since there can be more than one) for matching
and unification problems (all other solutions can be obtained as substitution variants
of general solutions). Applicability of this algorithm to the admissibility problem is
a side effect, depending on some specific properties of S4 (see [6]). In contrast, the
original algorithm of [15] can be used to find only some solution of matching and
unification problems in S4. In particular, this can be done through the relation:

an equation α ≡ β is solvable iff a rule α ≡ β/⊥ is not admissible.

We expect that our method can be modified for finding the general solutions of
logical equations as well.

Recently Wolter and Zakharyaschev [23] showed that modal logics with the
universal modality that are situated between Ku and K4u are undecidable with
respect to admissibility and even with respect to only unification. They posed the
question [23] whether the logic S4u is decidable with respect to admissibility. This
question is solved positively in Rybakov [19]. We strongly believe that our tableau
method can also be extended to rule admissibility in S4u.

In fact, our method of replacing the first-order co-cover condition with its formu-
laic variant (which is also first-order but in the extended language) is not restricted
to S4. We expect that it can be modified to deal with a number of other modal

14

Babenyshev et al

logics, especially those covered by the general theory of [18]. Similarly, it can be ap-
plied to their superintuitionistic counterparts (either through Gödel’s translation or
directly) and to transitive modal logics augmented with the universal modality [19].

References

[1] S. Babenyshev. The decidability of admissibility problems for modal logics S4.2 and S4.2Grz and
superintuitionistic logic KC. Algebra Logic, 31(4):205–216, 1992.

[2] H. Friedman. One hundred and two problems in mathematical logic. J. Symb. Log., 40(3):113–130,
1975.

[3] S. Ghilardi. Unification in intuitionistic logic. J. Symb. Log., 64(2):859–880, 1999.

[4] S. Ghilardi. Best solving modal equations. Ann. Pure Appl. Logic, 102(3):183–198, 2000.

[5] S. Ghilardi. A resolution/tableaux algorithm for projective approximations in IPC. Log. J. IGPL,
10(3):229–243, 2002.

[6] S. Ghilardi and L. Sacchetti. Filtering unification and most general unifiers in modal logic. J. Symb.
Log., 69(3):879–906, 2004.

[7] R. Harrop. Concerning formulas of the types a → b ∨ c, a → ∃xb(x) in intuitionistic formal system.
J. Symb. Log., 25:27–32, 1960.

[8] R. Iemhoff. On the admissible rules of intuitionistic propositional logic. J. Symb. Log., 66(1):281–294,
2001.

[9] E. Jeřábek. Admissible rules of modal logics. J. Log. Comput., 15(4):411–431, 2005.

[10] E. Jeřábek. Complexity of admissible rules. Arch. Math. Logic, 46(2):73–92, 2007.

[11] V. R. Kiyatkin, V. V. Rybakov, and T. Oner. On finite model property for admissible rules.
Mathematical Logic Quarterly, 45:505–520, 1999.

[12] P. Lorenzen. Einführung in die operative Logik und Mathematik. Springer, 1955.

[13] G. Mints. Derivability of admissible rules. Journal of Soviet Mathematics, 6(4):417–421, 1976.

[14] P. Roziere. Admissible and derivable rules. Mathematical Structures in Computer Science, (3):129–136,
1993.

[15] V. V. Rybakov. A criterion for admissibility of rules in modal system S4 and the intuitionistic logic.
Algebra Logic, 23(5):369–384, 1984.

[16] V. V. Rybakov. Semantic admissibility criteria for deduction rules in S4 and Int. Mat. Zametki,
50(1):84–91, 1991.

[17] V. V. Rybakov. Rules of inference with parameters for intuitionistic logic. J. Symb. Log., 57(3):912–923,
1992.

[18] V. V. Rybakov. Admissibility of logical inference rules, vol. 136 of Studies in Logic and the Foundations
of Mathematics. Elsevier, 1997.

[19] V. V. Rybakov. Logics with universal modality and admissible consecutions. J. Appl. Non-Classical
Log., 17(3):381–394, 2007.

[20] R. A. Schmidt and D. Tishkovsky. Using tableau to decide expressive description logics with role
negation. In ISWC07, vol. 4825 of Lect. Notes Comput. Sci., pp. 438–451. Springer, 2007.

[21] R. A. Schmidt and D. Tishkovsky. A general tableau method for deciding description logics, modal
logics and related first-order fragments. In IJCAR08, vol. 5195 of Lect. Notes Comput. Sci., pp. 194–
209. Springer, 2008.

[22] R. A. Schmidt and D. Tishkovsky. Automated synthesis of tableau calculi. In TABLEAUX09, vol.
5607 of Lect. Notes Artif. Intell., pp. 310–324. Springer, 2009.

[23] F. Wolter and M. Zakharyaschev. Undecidability of the unification and admissibility problems for
modal and description logics. ACM Transdactions on Computational Logic, 9(4):1–20, 2008.

[24] D. Zucchelli. Studio e realizzazione di algoritmi per l’unificazione nelle logiche modali. Laurea
specialistica in informatica (Masters Thesis), Università degli Studi di Milano, 2004. In Italian.
Supervisor: Silvio Ghilardi.

15

	Introduction
	Syntax and Semantics
	Rules Admissible for S4
	Semantic Characterisation of Admissibility
	Synthesising a Tableau Calculus
	A Refined Tableau Calculus
	A Terminating Tableau Calculus
	A Tableau Method for Testing Rule Admissibility
	Concluding Remarks
	References

