
Labelled Tableaux for Temporal Logic with
Cardinality Constraints

Clare Dixon, Boris Konev
University of Liverpool, UK

{CLDixon, Konev}@liverpool.ac.uk

Renate A. Schmidt, Dmitry Tishkovsky
University of Manchester, UK

{schmidt, dmitry}@cs.man.ac.uk

Abstract—Frequently when formalising systems that change
over time, we must represent statements, coming from physical
constraints or representational issues, stating that exactly n
literals (or less than n literals) of a set hold. While we can write
temporal formulae to represent this information, such formulae
both complicate and increase the size of the specification and
adversely affect the performance of provers. In this paper, we
consider reasoning about problems specified in propositional
linear time temporal logics in the presence of such constraints on
literals. We present a sound, complete and terminating tableau
calculus which embeds constraints into its construction avoiding
their explicit evaluation. We use METTEL2, an automated tableau
prover generator, to provide an implementation of the calculus
and give experimental results using the prover.

Keywords-Temporal Logic, Constraints, Tableau Calculus, Au-
tomated Reasoning

I. INTRODUCTION

Temporal logics have been used to represent and reason
about systems that change over time [4], [12]. Often when
representing such systems we need to formalise that exactly n
or less than or equal to m propositions from a set hold or do
not hold. This may come about for two reasons. First, they
may represent real constraints in the world, for example, n
machines are available to perform a task or a room has capacity
of at most m. Alternatively, such constraints may come about
from representational issues. For example, consider a number
of robots moving about an n×n grid. Each robot may occupy
exactly one square in the grid, so, if at(i)x,y denotes that the
robot i is in square (x, y), then exactly one of the propositions
at(i)0,0, at(i)0,1, . . . , at(i)n,n holds for each robot i.

One way to deal with such constraints is to rewrite them
as temporal formulae, for example, if we are required to
make exactly one from the set {p, q, r} true we can rep-
resent this as the formulae (p ∨ q ∨ r), (¬p ∨ ¬q),

(¬p ∨ ¬r), (¬q ∨ ¬r), where is the operator ‘at
every moment in time’ from propositional linear-time temporal
logic (PTL). However, introducing such additional formulae
lengthen and complicate the specification and adversely affect
the performance of provers. Instead, we consider a logic, called
TLC, introduced in [8]. TLC is a propositional linear-time
temporal logic that allows sets of constraints as input. As well
as presenting some case studies, [8] provided an algorithm
explicitly constructing the Kripke frame representing a tem-
poral model of the given formula. Notice that the satisfiability

problem for PTL with just one proposition is already PSPACE-
complete [7]; therefore, the complexity of the satisfiability
problem for TLC is also PSPACE-complete, in general. How-
ever, if we restrict our consideration to formulae in a certain
normal form, the size of the associated Kripke frame is
exponential in the number of unconstrained propositions and
only polynomial in the number of constrained propositions [8].
An implementation of this algorithm showed that using this
approach was advantageous for formulae in the normal form,
particularly when a large proportion of the propositions were
constrained. These experimental results suggested that dealing
with constraints expressed explicitly may also be beneficial for
TLC formulae not in the normal form. Such formulae were
poorly handled by the system described in [8] as the transla-
tion into the normal form introduces additional unconstrained
propositions. We also identified a number of disadvantages:
the need to explicitly enumerate all the sets of propositions
satisfying the constraints and that the expensive breadth-first
style of construction is undesirable.

The aim of this paper is twofold. First, it builds on and
extends the work in [8] and its related implementation in a
number of ways. We develop a tableau calculus that includes
rules for reasoning about constraints in a more goal-directed,
incremental way. This retains the advantages of using con-
straints and overcomes the disadvantages encountered in the
approach from [8]. In particular, we are not always forced to
explicitly enumerate the constraints. Further we can construct
the tableau derivation branch by branch in a depth-first left-
to-right manner.

Second, we are interested in exploring the possibilities
of extending our METTEL2 tableau prover generation tech-
nology [23] to temporal logic. METTEL2 presents a first
step to implement the tableau calculus synthesis framework
introduced in [18] and extends it to a tableau prover generation
platform. The framework provides a theoretical foundation for
sound, complete and terminating implementations of tableau
procedures for a wide class of logics with first-order repre-
sentable semantics and, in particular, for many logics which
can be specified in METTEL2. The method transforms the
definition of a logic into a set of tableau rules that form a
sound, complete and terminating tableau calculus for the logic,
under certain conditions, if this is possible. Temporal logic is
an interesting case study for the tableau synthesis endeavour
because logics with eventualities such as temporal logics

cannot be handled with standard, essentially first-order tableau
approaches. In the current form the tableau calculus synthesis
framework is not applicable to temporal logic or other logics
with eventualities. In this paper we show however how the
tableau prover generator METTEL2 can be used to generate
an implemented prover for the tableau calculus introduced for
TLC. Here we use the standard representation of the semantics
for PTL which involves fix-point operators.

II. TEMPORAL LOGIC WITH CARDINALITY CONSTRAINTS

A TLC problem is a pair (ϕ, C), where ϕ is a PTL
formula and C is a finite set of cardinality constraints. The
set of PTL formulae is defined as the smallest set such that
all propositions are PTL formulae, and if ϕ and ψ are in
PTL formulae, then so are true, ¬ϕ,ϕ ∨ ψ, gϕ,ϕ U ψ. A
cardinality constraint C∝m is a tuple (C,∝,m), where C is a
set of literals (propositions and their negations), ∝∈ {=,≤}
and m ∈ Z. The size #C of a literal set C is the number of
literals in C.

A model for TLC problem (ϕ, C) can be characterised as a
sequence of states of the form σ = s0, s1, s2, s3, . . . , where
each state si is a set of propositional symbols representing
those propositions, which are satisfied at the ith moment in
time. We define the relations

σ |= C=m iff for all i ≥ 0,
((si ∩ C) ∪ {¬p ∈ C | p /∈ si}) = m

σ |= C≤m iff for all i ≥ 0,
((si ∩ C) ∪ {¬p ∈ C | p /∈ si}) ≤ m

and

(σ, i) |= p iff p ∈ si where p is a proposition
(σ, i) |= ¬ϕ iff it is not the case that (σ, i) |= ϕ
(σ, i) |= ϕ ∨ ψ iff (σ, i) |= ϕ or (σ, i) |= ψ
(σ, i) |= gϕ iff (σ, i+ 1) |= ϕ
(σ, i) |= ϕU ψ iff ∃k ∈ N. k ≥ i and (σ, k) |= ψ and

∀j ∈ N, if i ≤ j < k then (σ, j) |= ϕ

Notice that the satisfiability of constraints does not depend
on the time moment—constraints hold at every moment of
time. The semantics of true, false and the other Boolean
operators (∧, ⇒, ⇔) are as usual and we define (al-
ways in the future), ♦ (sometime in the future) and W
(unless) as follows: ♦ϕ = true U ϕ, ϕ = ¬♦¬ϕ and
ϕW ψ = (ϕU ψ) ∨ (ϕ). For a PTL formula ϕ and a set
of constraints C we say that (ϕ, C) is satisfiable iff there is
some σ such that (σ, 0) |= ϕ and σ |= C for every C ∈ C; for
a set of PTL formulae S, we define that (S, C) is satisfiable
iff (

∧
ϕ∈S , C) is satisfiable.

Notice that the addition of constraints does not extend the
logic, that is, we can rewrite any constraint C∝m into the
syntax of PTL, for example, as follows. For a constraint C∝m

define PTL formulae

pos(C∝m) =
∧

U⊆C
|U |=|C|+1−m

∨
li∈U li

neg(C∝m) =
∧

U⊆C
|U |=m+1

∨
li∈U ¬li

Then (it easily follows from [21]) that σ |= C=m iff
(σ, 0) |= pos(C=m) ∧ neg(C=m) and σ |= C≤m iff (σ, 0) |=
neg(C≤m). For a constraint of the form C≤k, such a direct
encoding contains

(
n

k+1

)
clauses, which for k = dn/2e − 1

reaches O
(
2n/
√
n/2

)
clauses [21]. This blow-up can be

avoided by introducing extra propositions and using an n-bit
counter to represent 2n different values. For example, we could
represent a constraint of the form {p1, p2, p3, p4}=1 using just
two propositional variables t′1, t

′
2 by adding a conjunction of

these formulae.

(p1 ⇔ (t′1 ∧ t′2)) (p3 ⇔ (¬t′1 ∧ t′2))
(p2 ⇔ (t′1 ∧ ¬t′2)) (p4 ⇔ (¬t′1 ∧ ¬t′2)).

Other translations based on different counter encodings can be
found in the literature, see, for example, [2], [5], [21].

Our explicit representation of constraints, in contrast with
the translations, not only is succinct but it also allows the
prover to make use of this information in a lazy, on-the fly way.
An evaluation of these approaches can be found in Section V.

III. THE TABLEAU CALCULUS

In line with the type of tableau calculi generated in the
framework of [18] and the kind of tableau calculi definable
in the specification language of METTEL2 [23], our tableau
calculus for TLC is a ground semantic tableau calculus which
operates on labelled expressions and equalities among labels
and expressions.

First, we define labels. We introduce an additional function
symbol f representing the successor function on labels. Then
the set of all labels can be obtained by applying the following
definitions inductively: (i) 0 is a label, and (ii) f(`) is a
label whenever ` is a label. For i ≥ 0, f i(0) denotes the
label representing the ith successor of 0, that is, f0(0)def=0 and
f i+1(0)def=f(f i(0)).

Expressions in the language of the tableau calculus are
TLC formulae defined with the additional binary connective
E♦ and ternary connective EU operating on PTL formulae.
Expressions of the form E♦(`, ϕ) and EU (`, ϕ, ψ) are used
to indicate (as yet) unfulfilled eventualities respectively of
the kind ♦ϕ and ϕU ψ within a branch of a derivation. We
refer to E♦(`, ϕ) and EU (`, ϕ, ψ) as eventuality expressions.
Expressions in the tableau language are thus either PTL
formulae, constraints, or eventuality expressions. A labelled
expression has the form ` : ϕ, where ` is a label and ϕ is an
expression of the extended language.

Finally, tableau formulae are either labelled expressions or
equalities of the form ` ≈ `′ or ϕ ≈ ψ, where ` and `′ denote
labels and ϕ and ψ denote expressions. The equalities trigger
rewriting within branches, as described below.

In this paper a tableau or tableau derivation is a finitely
branching, ordered tree whose nodes are sets of tableau for-
mulae. Assuming that S and C are respectively the input sets
of PTL formulae and constraints to be tested for satisfiability
the root node of the tableau is the set {0 : ϕ | ϕ ∈ S} ∪ {0 :

C∝m | C∝m ∈ C}. Successor nodes in the tableau are
constructed through the application of the inference rules

in the calculus. The inference rules have the general form
X0/X1 | . . . | Xn, with Xi being sets of tableau formulae.
X0 is the set of premises and the Xi, for 1 ≤ i ≤ n,
are the sets of conclusions. If n = 0, the rule is called a
closure rule, written X0/⊥. An inference rule is applicable to
a selected tableau formula E in a leaf node of the tableau,
if E together with possibly other tableau formulae in the
node, are simultaneous instantiations of all the premises of
the rule. Then n successor nodes are created that contain the
formulae of the current node and the appropriate instances of
X1, . . . , Xn. We call these successor nodes derived nodes.

As is standard, we assume that no rule is applied more than
once to the same set of premises. Additionally, in order to
avoid trivial redundancies we stipulate that a rule application
to a leaf node N is redundant if there is an instantiated
conclusion set Xi, for 1 ≤ i ≤ n, of the rule application such
that all formulae from Xi already appear in N . In a tableau,
a maximal path from the root node is called a branch.

Our calculus uses ordered rewriting to handle the equalities.
The ordering ≺ we use is a lexicographical path ordering
based on the order of appearance of variables, constants, and
connectives during the inference process. Thus, for labels we
have: f i(0) ≺ f j(0), if i < j. Note that, since eventuality
expressions are not allowed to appear in the input set (and
hence in the root node) and the way the rules are defined, it
always holds that♦ϕ ≺ E♦(`, ϕ) and (ϕU ψ) ≺ EU (`, ϕ, ψ).
≺ is a reduction ordering and, thus, a strict, total, and well-
founded ordering on labels and expressions. The equalities on
the branch form a ground rewrite system. Both forward and
backward rewriting is used each time new conclusions are
derived. In particular, if an equality of the form f i(0) ≈ f j(0)
or ψ ≈ ϕ is added to a derived node, backward rewriting is
applied. This means the rewrite system is rebuilt with respect
to the newly added equality, and all formulae of the node are
rewritten with respect to the rewrite system. Forward rewriting
with respect to the current rewrite system is applied to all
newly derived nodes during the derivation.

For a branch B of a tableau we write E ∈ B to indicate that
the tableau formula E has been derived and persists in B, that
is, for some node N of the branch B, E belongs to N and
every node that is a descendant from N . This means that E is
not rewritten in N and all subsequent nodes. We say that E
appears in a node of B if E belongs to this node or can
subsequently be rewritten in B.

The tableau rules of our calculus for TLC are listed in
Figure 1. The rules for the temporal operators, apart from
(♦) and (U), are standard decomposition rules for PTL
formulae. These decompose formulae into subformulae that
must hold now and, where necessary, in the next moment.
The (♦)-rule is not the usual diamond rule, but replaces ♦ϕ
by E♦(`, ϕ) indicating that the eventuality ♦ϕ is not yet
fulfilled. Until eventualities are handled in a similar way to
diamond eventualities. Note that there is no rule for negated
W formulae since we assume that the input does not contain
any negated occurrences of W .

To understand the rules for the constraints suppose that ∝

Rules for temporal operators:
` : ¬¬ϕ
` : ϕ

(¬¬)
` : ϕ ∨ ψ
` : ϕ | ` : ψ

(∨)
` : ¬(ϕ ∨ ψ)

` : ¬ϕ, ` : ¬ψ (¬∨)
` : fϕ
f(`) : ϕ

(g)
` : ¬ fϕ
` : f¬ϕ (¬ g)

` :♦ϕ
` : E♦(`, ϕ)

(♦)
` : ¬♦ϕ
` : ¬ϕ (¬♦)

` : ϕ

` : ϕ, f(`) : ϕ
()

` : ¬ ϕ

` :♦¬ϕ (¬)

` : ϕU ψ
` : EU (`, ϕ, ψ)

(U)
` : ¬(ϕU ψ)

` : ¬ψW¬(ϕ ∨ ψ)
(¬U)

` : ϕW ψ

` : ψ | ` : ϕ, f(`) : ϕW ψ
(W)

Rules for constraints:
` : ({p} ∪ C)∝m, ` : ¬p

` : C∝m
(C+
−)

` : ({p} ∪ C)∝m, ` : p

` : C∝(m−1)
(C+

+)

` : ({¬p} ∪ C)∝m, ` : p

` : C∝m
(C−+)

` : ({¬p} ∪ C)∝m, ` : ¬p
` : C∝(m−1)

(C−−)

` : ({p} ∪ C)∝m

` : p | ` : ¬p (cut+)
` : ({¬p} ∪ C)∝m

` : p | ` : ¬p (cut−)

Rules for fulfilling eventualities:
` : E♦(`′, ϕ)

` : ϕ,E♦(`′, ϕ) ≈♦ϕ | f(`) : E♦(`′, ϕ)
(E♦)

` : EU (`′, ϕ, ψ)

` : ψ,EU (`′, ϕ, ψ) ≈ (ϕU ψ) | ` : ϕ, f(`) : EU (`′, ϕ, ψ)
(EU)

Closure rules:
` : ϕ, ` : ¬ϕ

⊥ (clash)
` : C∝−1

⊥ (empty)
` : C=m,#C < m

⊥ (cap)

` : E♦(`′, ϕ)

⊥ (E♦-test)
` : EU (`′, ϕ, ψ)

⊥ (EU -test)

Unrestricted blocking rule:
` : ϕ, `′ : ψ

` ≈ `′ | ` 6≈ `′ (ub)

Fig. 1. Tableau rules for TLC

denotes =. The intuition of the rule (C+
−) is as follows:

if ({p} ∪ C)=m is true and ¬p is true, that is, p is not
true, then C=m must be true. The rule (C+

+) says that if
({p} ∪ C)=m and p are true then C=(m−1) must be true.
The rules (C−+) and (C−−) are duals. The intuitions are similar
for ∝ denoting ≤. The (cut+) and (cut−)-rules are DPLL type
analytic cut rules enumerating the possible truth assignments
to propositional symbols occurring in constraints.

The (E♦)-rule tries to fulfil a ♦ eventuality or delegate
fulfilment to the next moment of time. Note that in the left
derived node when an eventuality is fulfilled the equality
E♦(`, ϕ) ≈ ♦ϕ is added as well. This triggers rewriting
of E♦(`, ϕ) to ♦ϕ in this node. Then there are no more
occurrences of E♦(`, ϕ) in the node and means that the
eventuality ♦ϕ is fulfilled. The idea of the (EU)-rule is the
same as for the (E♦)-rule.

The calculus includes the standard closure rule (clash), two
closure rules for constraints and two closure rules for eventu-
alities. The rule (empty) closes a branch for a constraint C=−1

or C≤−1, because constraints cannot contain a negative num-
ber of literals. The (cap)-rule is an early closure rule for the
case that m literals of a constraint must hold but the constraint
already contains less than m literals. The rules (E♦-test)
and (EU -test) close a branch when the eventualities are not
fulfilled. It is clear that without an appropriate strategy for
rule application the calculus is not sound.

The (ub)-rule is the unrestricted blocking rule introduced
in [17] for deciding expressive description logics with full
role negation. It conjectures the equality of labels occurring
in a leaf node. Through rewriting the time points ` and `′ are
joined in the left derived node. If no models can be found
by continuing the derivation, that is, the sub-tableau from this
point onward is closed, then the right derived node is expanded
further. Combined with the rule application strategy we define
next it performs a form of ancestor blocking.

The calculus is sound and complete if the priority of the
rules from highest to lowest are:

(clash), (empty), (cap)

> (¬¬), (¬∨), (¬ f), (♦), (¬♦), (¬), (U), (¬U)

> (C+
−), (C+

+), (C−+), (C−−) > (∨) > (cut+), (cut−)
> (ub) > (f), (), (W), (E♦), (EU) > (E♦-test), (EU -test)

This is the rule application priority used in our implementa-
tion (described in Section V), but there is in fact more flexibil-
ity. What is crucial is that the (E♦-test) and (EU -test) rules are
only applied if no other rules are applicable, because then the
branch cannot be continued to fulfil the eventualities. Further,
any application of a label-introducing rule (that is, a δ-rule),
namely the rules (g), (), (W), (E♦) and (EU), must be
delayed until after all local rules have been applied. The local
rules are the rules: (clash), (empty), (cap), (¬¬), (¬∨), (¬ g),
(♦), (¬♦), (¬), (U), (¬U), (C+

−), (C+
+), (C−+), (C−−),

(∨), (cut+) and (cut−). It is sensible to delay the application
of the (ub)-rule until the local rules have been applied to a
label, because then all labels are ‘maximally expanded’.

Additionally, in order to obtain termination of the calculus,
we assume that the following avoid huge branch (AHB) deriva-
tion strategy (cf. [19]) is used in the tableau derivations: Limit
the number of different labels in every node to 2n+1 + 4n+1,
where n is the length of the input, and discard branches where
the leaf node contains more labels. 2n+1 + 4n+1 is the model
bound established in the effective finite model property result
below (Lemma 1).

We use the notation TTLC(S, C) for a maximally expanded
tableau (using the AHB strategy) built by applying the rules
of the calculus TTLC starting with a set S of PTL formulae
and a constraint set C as input. As usual we assume that all
the rules of the calculus are applied non-deterministically to a
tableau within the constraints of the rule application strategy. A
branch of a tableau is closed if a closure rule has been applied
in this branch, otherwise the branch is called open. The tableau
TTLC(S, C) is closed if all its branches are closed or discarded

and TTLC(S, C) is open otherwise. The calculus TTLC is sound
iff each TTLC(S, C) is open whenever (S, C) is satisfiable. TTLC
is complete iff for any unsatisfiable (S, C) there is a closed
TTLC(S, C). TTLC is said to be terminating (for satisfiability)
iff for every finite (S, C) every tableau TTLC(S, C) is finite.

Next we show the application of the tableau calculus to
an example. Here, we consider a tableau TTLC(S, C) for the
set of formulae S = { ¬p, q, r,♦r} and the set of
constraints C = {{p, q}=1, {q, r, s}=2}. This TLC problem
is satisfiable and a model is, for example, si = {q, r} for
all i ∈ N. The tableau derivation is shown in Figure 2. As
our tableau rules are accumulating we write the contents of
the nodes in a tableau derivation in the order in which the
formulae are derived (where a depth-first left-to-right search
strategy is used). Each line in the figure is numbered on the
left. The rule applied and the number of the premise(s) to
which it was applied to produce the labelled expression in
each line are specified on the right. The black triangles denote
branching points in the derivation. A branch expansion after
a branching point is indicated by appropriate indentation.

Note that the lines 12, 14, 16, 20 are redundant as f(0)
rewrites to 0. Also note in the open branch after line 26
applications of the rules (cut+) and (cut−) are redundant and
not performed. Similarly, line 29 is redundant because using
forward rewriting f(0) rewrites 0 and 0 : E♦(0, r) is already
in the branch. Further, while the application of the (ub)-rule
at step 10 allows to find a maximally expanded open branch
quickly by identifying labels f(0) and 0 the derivation on the
right branch with 0 6≈ f(0) can potentially be infinite if the
AHB strategy is not used; for instance, if we change r to
¬r in the example. In this case♦r would never be fulfilled

and the tableau would not terminate.

IV. SOUNDNESS, COMPLETENESS AND TERMINATION

Next we address soundness, completeness and termination
of the calculus. Missing proofs can be found in the technical
report [10].

We extend the notion of satisfiability to the additional
constructs of the tableau language:

(σ, i) |= f j(0) : ϕ iff (σ, j) |= ϕ
(σ, i) |= E♦(`, ϕ) iff (σ, i) |= ` :♦ϕ
(σ, i) |= EU (`, ϕ, ψ) iff (σ, i) |= ` : (ϕU ψ)

As a consequence, rewriting of E♦(`, ϕ) to ♦ϕ and
EU (`, ϕ, ψ) to ϕU ψ in a satisfiable tableau node cannot
change satisfiability of the node.

Given a set of TLC-formulae S and a set of constraints C we
define the length of the input (S, C) as the sum of lengths of
all formulae in S in symbols plus the number of literals in all
constraints from C. A sequence of states σ = s0, s1, s2, s3, . . .
is ultimately periodic [22] with index i and period m if for all
k ≥ i we have sk = sk+m. Notice that a TLC-problem (S, C)
has the same models as the the union of S and a representation
of constraints as PTL formula. Therefore, Theorem 4.7 in [22]
has the following corollary.

1. 0 : ¬p . given
2. 0 : q . given
3. 0 : r . given
4. 0 :♦r .given
5. 0 : {p, q}=1 . given
6. 0 : {q, r, s}=2 . given
7. 0 : E♦(0, r) . (♦),4
8. 0 : ¬p . (),1
9. f(0) : ¬p . (),1

10. I0 ≈ f(0) . (ub),1,9
. f(0) is/will be rewritten to 0

11. 0 : q . (),2
12. f(0) : q . (),2
13. 0 : r . (),3
14. f(0) : r . (),3
15. 0 : {p, q}=1 . (),5
16. f(0) : {p, q}=1 . (),5
17. 0 : {q}=1 . (C+

−),15,8
18. 0 : {}=0 . (C+

+),17,11

19. 0 : {q, r, s}=2 . (),6
20. f(0) : {q, r, s}=2 . (),6
21. 0 : {r, s}=1 . (C+

+),19,11
22. 0 : {s}=0 . (C+

+),21,13
23. I0 : s . (cut+),22
24. 0 : {}=−1 . (C+

+),22,23
Closed . (empty),24

25. I0 : ¬s . (cut+),22
26. 0 : {}=0 . (C+

−),22,25
27. I0 : r . (E♦),7
28. E♦(0, r) ≈♦r . (E♦),7

. .E♦(0, r) is rewritten to ♦r
Maximally expanded, open .

29. If(0) : E♦(0, r) . (E♦),7
. redundant as f(0) rewrites to 0

30. Closed . (E♦-test),7
31. I0 6≈ f(0) . (ub),1,9
. .

Fig. 2. Example of derivation in TLC

Lemma 1 (Effective Finite Model Property): Let S be a set
of TLC-formulae, C be a set of constraints and n be the length
of the input (S, C). S is satisfiable with respect to C iff S is
satisfiable with respect to C in an ultimately periodic model
with i+m ≤ 2n+1 + 4n+1.

It is not difficult to see that all the rules of the TLC tableau
calculus except the rules (E♦-test) and (EU -test) preserve
satisfiability. Using Lemma 1, the following can be proved
similarly to Theorem 14 in [19].

Theorem 1: Let S be a set of TLC-formulae which is
satisfiable with respect to a set of constraints C and n be the
length of (S, C). Then in every TTLC tableau for the input
(S, C), there exists an open branch B such that the number of
persistent labels in B does not exceed 2n+1 + 4n+1.

As a corollary, soundness of the tableau calculus follows.

Theorem 2 (Soundness): TTLC is sound, that is TTLC(S, C)
is open for every satisfiable input (S, C).

Inspecting all the tableau rules in TTLC further, it is not
difficult to show that the number of (unlabelled) expressions
which can appear under labels in a tableau TTLC(S, C) is
limited by an exponential function in the size of the input
(S, C). Since all the branches with more than 2n+1 + 4n+1

labels are discarded according to the AHB strategy, the number
of all labelled formulae in every branch of a tableau can be
limited and, consequently, the number of rule applications in
every branch can be limited, too. As a corollary, we obtain
termination of the calculus.

Theorem 3 (Termination): TTLC is a terminating tableau
calculus for satisfiability in TLC if the AHB strategy is used.

Now we concentrate on proving completeness. Let B be
a maximally expanded open branch in TTLC-tableau. We
construct an (ultimately periodic) TLC-model σB from the

open branch as follows. Recall that all the branches in
the tableau derivation are finite (if a branch becomes too
long, it is discarded according to the AHB strategy). Let
0, f(0), . . . , fn−1(0) be all the labels which occur in persistent
formulae of B (that is, they are never rewritten to smaller
labels). Thus, fn(0) have been rewritten in B to some fk(0)
with some k in {0, . . . , n − 1}. Let states of the model be
defined as follows:

si
def=

{
{p | f i(0) : p ∈ B}, if i ∈ {0, . . . , n− 1},
sk+[(i−k) (mod n−k)], otherwise.

Lemma 2: (σB, i) |= ϕ for every persistent labelled formula
f i(0) : ϕ ∈ B.
A direct consequence of this lemma is the Completeness
Theorem.

Theorem 4 (Completeness): TTLC is complete tableau cal-
culus for TLC. That is, if TTLC(S, C) is open then S is
satisfiable in an (ultimately periodic) TLC-model with respect
to the set of constraints C.

V. IMPLEMENTATION AND EXPERIMENTS

We have implemented the tableau calculus described in
Section III as a prover, called LTLC. The LTLC prover has
been built using the METTEL2 automated prover generator
technology. The input of the METTEL2 system is the definition
of the syntax of a logic or logical theory plus the definition
of a tableau calculus within the specified syntax. When run, it
attempts to generate automatically the JAVA code of a prover
for the specified tableau calculus. JAVA was chosen as it is a
widely known object-oriented programming language and, as
such, enables the easy modification of generated provers. The
code for LTLC was generated automatically with METTEL2

from the definition of the TLC syntax and the tableau rules

0	

1	

2	

3	

4	

5	

6	

7	

8	

2	 5	 10	 20	

Ti
m
e	
(s
ec
.)	

Formula	 depth	

0	

100	

200	

300	

400	

500	

600	

700	

2	 5	 10	 20	
Formula	 depth	

TLC	

PTL+Simple	

PTL+Counter	

Fig. 3. Problems with 1 constraint (left) and 5 constraints (right)

presented in Section III. For the implementation we used
several additional tableau rules not necessary for completeness
of the calculus. In particular, in order to improve performance
the rule specification for the implementation includes unit
propagation rules. The reasoning core of METTEL2 also fully
supports dynamic backtracking and backjumping techniques
which are commonly used to reduce search space in tableau
derivations. Consequently, both the techniques are available
in LTLC. LTLC uses depth-first left-to-right search selection
strategy which is the default in METTEL2.

In the implementation, we have limited the language of con-
straints to constraints of the form C=m. Since the specification
languages of METTEL2 do not yet support connectives with
variable arity and schematic rules, for the current prototype
implementation the total number of literals that can occur in
a constraint is at most 4. Then, constraints can be represented
by a finite set of connectives C=,m,n for 0 ≤ m ≤ n and
2 ≤ n ≤ 4. For example, the constraint {x, y, z, w}=1 is
represented as C=,1,4(x, y, z, w), where C=,1,4 is a connective
of arity 4 specifying that at most 1 out of its 4 arguments
is true at time point ` (here, x, y, z, w denote literals). The
connectives C=,m,n for n < 2 are omitted because C=,1,1(x)
is equivalent to x, C=,0,1(x) is equivalent to ¬x, C=,0,0 is
equivalent to true, and C=,−1,n(x1, . . . , xn) is equivalent to
false for 0 ≤ n ≤ 4. In addition, appropriate instances of the
constraint tableau rules plus the (empty) and (cap) rules in the
calculus need to be added. For example, the tableau calculus
rule (C+

−) for C=1 is instantiated as three tableau rules for the
constraints of the lengths 2, 3 and 4. The instance of this rule
for the constraint C=,1,4 is as follows (below top).

` : C=,1,4(p, x1, x2, x3), ` : ¬p
` : C=,1,3(x1, x2, x3)

` : C=,1,n(x1, x2, . . . , xn)
` : C=,1,n(x2, . . . , xn, x1)

In order to simulate the property that every constraint C∝m

is an unordered set we generate permutations of arguments
of C=m,n by the three rules for n = 2, 3, 4 shown above
(bottom). These rules allow the above rule for constraint
reduction to be applied to p regardless of in which position it

can be found in the original constraint. Similar instantiations
take place for other constraint rules in the calculus.

METTEL2 is a prototypical system intended for experiment-
ing with tableau calculi and prover generation for various
logics and we do not expect the LTLC prover to compete with
the highly optimised state-of-the-art temporal tableau-based
or resolution-based provers. In order to check the feasibility
of our approach to constraint reasoning, we have applied
LTLC to randomly generated problems and to their translations
to PTL. Then the same reasoning engine is applied to the
TLC and PTL formulae, which allows us to see relative
advantages and disadvantages of a constraint language and an
associated calculus compared with constraints being expressed
as PTL formulae.

Because constraints are approximated in the current version
of METTEL2, in all our experiments the constraints were
“exactly one out of four literals is true at any time”; however,
one input problem can contain a number, m, of such con-
straints. The PTL part of the input was randomly generated as
follows: first a tree of specified height, n, was generated with
every internal node having one or two successors with equal
probability. Then unary (or binary) temporal and Boolean
operators were assigned equi-probably to nodes with one
(respectively, two) successors. The literals in the formula
leaves and in the constraints were randomly drawn from the
set of size 20. We have generated 100 random problems for
every set of values (m,n).

All experiments were conducted on a PC equipped with
an Intel 2.93GHz Core i7 CPU and 4GiB of main memory
running under MacOS X 10.6.8. Every computation was
restricted to a 600 second time limit and a 1GiB memory
limit. We compared the performance of LTLC on a given TLC
problem and on its two translations defined in Section II:
the “simple” translation and the translation using a two-bit
counter to determine which one of the four literals is true.
Any computation that did not successfully terminate within
the specified limits was recorded as a timeout (600 seconds).

The performance of LTLC on problems with one and five
constraints and the formula depths varying between 2 and 20
is given in Fig. 3. Interestingly, in both cases the running
time decreases as the formula depth grows. This is caused by

0	

100	

200	

300	

400	

500	

600	

700	

2	 3	 4	 5	

Ti
m
e	
(s
ec
.)	

Number	 of	 constraints	

TLC	

PTL+Simple	

PTL+Counter	

Fig. 4. Problems with a varying number of constraints and depth 2 formulae

the growing proportion of unsatisfiable problems in the input:
all problems with formulae of depth 2 are satisfiable, while
only 30% of problems with formulae of depth 5 and 20% of
problems of depth 10 and 20 are satisfiable. For unsatisfiable
problems the prover does not have to explore all possible
tableau branches so the the running time is smaller.

As the graphs show, when the formula depth and the
number of constraints are small the overheads of working with
explicit constraints degraded the performance of the system;
this discrepancy diminished as the formula depth grew. In
case of 5 constraints, constraint reasoning outperformed both
simple and counter-based constraint representation.

In Fig. 4 we give the running times of LTLC on formulae
of depth 2 with the number of constraints varying between 2
and 5. It can be seen that reasoning in the presence of explicit
constraints was faster as compared with either translation to
PTL, especially as the number of constraints grew.

The above results show that the LTLC prover outperformed
the ‘simple’ translation and the ‘counter’ translation for three
constraints for the formula depths tried. Figure 3 shows
that it is not worth using LTLC on problems with a low
number of constraints which confirms earlier results from
the implementation related to [8]. Regarding the ‘counter’
translation this performed much worse than the other two
cases in Figure 3 (right) and Figure 4. We believe this to
be because it uses⇔ and generates many -formulae which
slowed down the prover. While the results for the ‘simple’
translation Figure 3 (right) and Figure 4 were better than for
the ‘counter’ translation we expect the performance of the
prover on problems using the ‘simple’ translation to degrade
with longer constraints. Due to restrictions in this version
of METTEL2 we are limited to constraints with a maximum
length of 4 so could not test this hypothesis. Overall we believe
that the results show the potential of this logic and calculus.

VI. DISCUSSION AND RELATED WORK

The tableau method for PTL was originally introduced
by [24] and implemented in several systems, for example, the
Logics Workbench [3] based on the algorithms in [15], [20],
the Tableau Workbench [1], those of Widmann and Goré based
on [20], [24], Goranko et al. [14] based on [24] and TTM [13].
In this paper we used METTEL2 to provide an implementation
for our TLC calculus. Alternatively we could have considered
using the Tableau Workbench [1] or the LoTReC system [11]

which both allow the generation of implementations of user-
defined tableau calculi as well as providing pre-defined tableau
implementations for several logics. However, our tableau cal-
culus may have had to be designed differently to satisfy the
requirements of these systems.

Since TLC has fix-point operators, the tableau synthesis
method from [18] can not be straightforwardly applied to TLC.
That is why we designed the calculus and proved its soundness
and completeness directly. However, we are interested in
extending the tableau synthesis framework of [18] to fix-point
logics with guaranteed soundness and completeness of the
synthesised calculi for such logics. LTL and TLC constitute
good case studies for research in this direction. Because
METTEL2 was initially designed to provide prover generation
for the logics covered by the tableau synthesis framework,
the logics outside the framework such as LTL and TLC are
also attractive case studies for testing the flexibility of the
METTEL2 specification languages and the prover generation
technology which is implemented in METTEL2.

Following a traditional tableau approach for modal and
description logics we choose to design the TLC calculus for
METTEL2 as a calculus in which the rules operate on labelled
expressions. The search strategy required for the soundness,
completeness and termination of the calculus means that there
are some similarities to state-less tableau calculi operating
on sets of formulae. However our tableau calculus and im-
plementation is different to any other approaches and imple-
mentations. Most other tableau provers for PTL use equality
blocking (usually implicitly). Our blocking is realised through
the unrestricted blocking rule [17] and equality reasoning
based on ordered rewriting. For PTL and TLC, because the
constructed model is based on a linear sequence of states, this
amounts to doing ancestor blocking. The models constructed
with our method tend to have smaller domains.

Our technique to handle eventualities is inspired by algo-
rithms which are commonly used for calculating fix-points in
the µ-calculus [16]. Bad loops and good loops in the tableau
derivation are identified by checking that all eventualities in
the current branch are fulfilled. A somewhat similar technique
is used in [6] for propositional dynamic logic but our tech-
nique is different in various ways. We discuss the diamond
operator below but until eventualities are handled similarly.
We extend the logical language with connectives, E♦ and
EU , and introduce the rules (E♦) and (EU) for unravelling
the eventualities. It is important that in contrast to [6] the
left conclusions of these rules contain equality expressions
and since METTEL2 supports rewriting of arbitrary (ground)
expressions the rules trigger rewriting in the left derived nodes.
In this case, the particular eventuality expression E♦(`, ϕ),
is rewritten and disappears from the node indicating that
eventuality ♦ϕ, is fulfilled for the label `. In the right derived
node the rule (E♦) leaves the expression E♦(`, ϕ), untouched
indicating that the eventuality is not fulfilled yet. As the other
introduced rule (E♦-test) is applied only when no other rules
are applicable and the branch is not already too long, these
rules close the branch in the case that some eventuality is still

not fulfilled in the branch.
Further difficulty in devising the TLC tableau calculus for

generating a prover in METTEL2 is that unsatisfiable branches
of tableau derivations using the presented calculus are not
necessarily finite. The problem is caused by an interaction of
unfulfilled eventualities and the unrestricted blocking mecha-
nism used in METTEL2. In fact, while the left branches of
the (ub)-decision points are closed if there are unfulfilled
eventualities, the right branches can be infinite. In order to
solve this problem we use the AHB strategy which stops
expansion of a branch after it reaches some threshold. There
are two potential improvements here. One is to calculate a
more precise bound for this threshold and the other is to adopt
standard loop-checking mechanisms.

This paper uses the same logic, TLC, as defined in [8].
That paper considered the complexity of TLC but checked
the satisfiability of TLC formulae using an explicit model
construction algorithm. In [9] we defined a resolution calculus
for a related logic, called TLX, where the constraints are of
the form: “exactly one” of a set of literals must hold, and no
literal (or its negation) can appear in more than one set of
constraints. Hence TLX is more restrictive than TLC.

VII. CONCLUSIONS

In this paper we have introduced a tableau calculus for
reasoning in the logic TLC, which is propositional linear
time temporal logic with additional constraints. The calculus
is shown to be sound, complete and terminating. A pro-
totype implementation of the calculus has been developed
using METTEL2, an automated tableau prover generator. As
METTEL2 currently does not support connectives with varying
arity, the length of the constraints has been fixed as at most 4.
We have experimented with the implementation comparing
randomly generated problems in the TLC calculus with the
same problems where the constraints are translated into PTL
formulae in two different ways. The results show that the
generated LTLC prover outperforms the translated problems
where the number of constraints is three or above in all the
cases we have tried. The work also provides a useful case study
for extending the tableau synthesis technologies to handle
temporal logics.

We would like to extend this work as follows. First, we need
to extend METTEL2 to deal with constraints in a better way,
for example, by allowing constraint rules with arbitrary arity.
Additionally, rather than using the cut rules (cut+) and (cut−)
we could replace these by a local satisfiability check of the
propositional formulae within some label which could be
performed by some external, fast, propositional solver such
as a SAT solver. We could also explore whether a state-less,
one pass-style implementation of the temporal part (like that
in [20]) would speed up the temporal part of the prover.

Finally, the tableau rules can potentially be modified to
allow for dynamic changes of the set of constraints. This
allows us to accommodate constraints into the language as
a logical connective. So as well as stating that the constraints
hold at all moments one would be able to express constraints

stating, for example, that “eventually exactly (or at most) l
literals will be satisfied”.

Acknowledgements. The authors were partially supported
by EPSRC grants EP/D060451 (Dixon), EP/H043594/1
(Konev) and EP/H043748/1 (Schmidt, Tishkovsky).

REFERENCES

[1] P. Abate and R. Gore. The tableaux work bench. In Tableaux’03, vol.
2796 of LNAI, pp. 230–236. Springer, 2003.

[2] O. Bailleux and Y. Boufkhad. Efficient CNF encoding of boolean
cardinality constraints. In CP 2003, vol. 2833 of LNCS, pp. 108–122.
Springer, 2003.

[3] P. Balsiger, A. Heuerding, and S. Schwendimann. The Logics Work-
bench 1.0. In Tableaux’98, vol. 1397 of LNCS, pp. 35–37. Springer,
1998.

[4] H. Barringer, M. Fisher, D. Gabbay, and G. Gough, editors. Advances
in Temporal Logic, vol. 16 of Applied Logic Series. Kluwer, 2000.

[5] B. Benhamou, L. Sais, and P. Siegel. Two proof procedures for a
cardinality based language in propositional calculus. In STACS’94, vol.
775 of LNCS, pp. 71–82. Springer, 1994.

[6] G. De Giacomo and F. Massacci. Combining deduction and model
checking into tableaux and algorithms for Converse-PDL. Information
and Computation, 162:117–137, 2000.

[7] S. Demri and P. Schnoebelen. The complexity of propositional lin-
ear temporal logics in simple cases. Information and Computation,
174(1):84–103, 2002.

[8] C. Dixon, M. Fisher, and B. Konev. Temporal logic with capacity
constraints. In FroCoS’07, vol. 4720 of LNCS, pp. 163–177. Springer,
2007.

[9] C. Dixon, M. Fisher, and B. Konev. Tractable temporal reasoning. In
IJCAI’07, pp. 318–323, 2007.

[10] C. Dixon, B. Konev, R. A. Schmidt, and D. Tishkovsky. Labelled
tableaux for temporal logic with cardinality constraints. Available at
www.mettel-prover.org/papers/dkst12.pdf.

[11] L. Fariñas del Cerro, D. Fauthoux, O. Gasquet, A. Herzig, D. Longin,
and F. Massacci. Lotrec: the generic tableau prover for modal and
description logics. In IJCAR’01, vol. 2083 of LNAI, pp. 453–458.
Springer, 2001.

[12] M. Fisher, D. Gabbay, and L. Vila, editors. Handbook of Temporal
Reasoning in Artificial Intelligence. Elsevier, 2005.

[13] J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, and F. Orejas. Dual
Systems of Tableaux and Sequents for PLTL. Journal of Logic and
Algebraic Programming, 78:701–722, 2009.

[14] V. Goranko, A. Kyrilov, and D. Shkatov. Tableau tool for testing satis-
fiability in LTL: Implementation and experimental analysis. Electronic
Notes in Theoretical Computer Science, 262:113–125, 2010.

[15] G. L. J. M. Janssen. Logics for digital circuit verification—theory,
algorithms, and applications. PhD thesis, Univ. Eindhoven, 1999.

[16] D. Kozen. Results on propositional µ-calculus. Theoretical Computer
Science., 27(3):333–354, 1983.

[17] R. A. Schmidt and D. Tishkovsky. Using tableau to decide expressive
description logics with role negation. In ISWC’07 + ASWC’07, vol.
4825 of LNCS, pp. 438–451. Springer, 2007.

[18] R. A. Schmidt and D. Tishkovsky. Automated synthesis of tableau
calculi. Logical Methods in Computer Science, 7(2):1–32, 2011.

[19] R. A. Schmidt and D. Tishkovsky. Using tableau to decide description
logics with full role negation and identity, 2011. Manuscript, available
at http://www.mettel-prover.org/papers/ALBOid.pdf.

[20] S. Schwendimann. A new one-pass tableau calculus for PLTL. In
Tableaux’98, vol. 1397 of LNAI, pp. 277–291. Springer, 1998.

[21] C. Sinz. Towards an optimal CNF encoding of Boolean cardinality
constraints. In CP 2005, vol. 3709 of LNCS, pp. 827–831. Springer,
2005.

[22] A. P. Sistla and E. M. Clarke. Complexity of propositional linear
temporal logics. J. ACM, 32(3):733–749, 1985.

[23] D. Tishkovsky, R. A. Schmidt, and M. Khodadadi. Mettel2: Towards a
tableau prover generation platform. In Proc. PAAR’12, 2012.

[24] P. Wolper. The tableau method for temporal logic: An overview. Logique
et Analyse, (110-111):119-136, 1985.

