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Abstract

We introduce a tense logic, called Kt(H,R), arising from logics for spatial reasoning.
Kt(H,R) is a multi-modal logic with two modalities and their converses defined with
respect to a pre-order and a relation stable over this pre-order. We show Kt(H,R)
is decidable, it has the effective finite model property and reasoning in Kt(H,R) is
PSPACE-complete. Two complete Hilbert-style axiomatisations are given. The main
focus of the paper is tableau-based reasoning. Our aim is to gain insight into the
numerous possibilities of defining tableau calculi and their properties. We present
several labelled tableau calculi for Kt(H,R) in which the theory rules range from
accommodating correspondence properties closely, to accommodating Hilbert axioms
closely. The calculi provide the basis for decision procedures that have been imple-
mented and tested on modal and intuitionistic problems.

1 Introduction

In this paper we consider a variety of different deduction approaches in the
spectrum between the purely axiomatic approach and the explicitly seman-
tic approach. Our investigation is focussed on a tense logic, called Kt(H,R).
Kt(H,R) has forward and backward looking modal operators defined by two
accessibility relations H and R. The frame conditions are reflexivity and tran-
sitivity of H, and stability of R with respect to H. The stability condition is

1 Much of the work was conducted while visiting the Max-Planck-Institut für Informatik,
Saarbrücken. Partial support from UK EPSRC research grant EP/H043748/1 is gratefully
acknowledged.
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defined as H ;R ;H ⊆ R, where ; denotes relational composition. This means in
a Kripke frame, for any two states u and v, whenever there is an H-transition
from u, followed by an R-transition and an H-transition, to v, then there is
also an R-transition from u to v.

The logic Kt(H,R) originates with recent work on a bi-intuitionistic tense
logic, called BISKT, which is studied with the motivation to develop a the-
ory of relations on graphs and applications to spatial reasoning [23]. Given
an undirected graph G, we can consider Kripke frames where the set of states
is the set of all edges and all nodes in G. On these states we make an H-
transition from u to v when either u = v or when u is an edge which is incident
with the node v. The significance of relations R, which are stable with respect
to H is that they correspond exactly to the union-preserving functions on the
lattice of subgraphs of G. This justifies viewing these stable relations as ‘rela-
tions on G’. One motivation for investigating relations on graphs comes from
mathematical morphology as used in image processing [4]. In its basic form
this uses relations on sets of pixels to generate operations that approximate
images. These approximations are designed to emphasise significant features
and to reduce other features (such as noise). Mathematical morphology on
graphs is currently being developed in image processing [6], although without
explicitly using relations on graphs. In a Kripke frame for BISKT, constructed
from a graph, formulae are interpreted as subgraphs and the box and diamond
modal operators arising from R are operations on subgraphs providing forms of
the erosion and dilation operations in mathematical morphology. The precise
relationship between these modal operators and the morphological operators
described in [6] is still under investigation. Using the standard embedding of
intuitionistic logics into modal logic, the logic BISKT can be embedded into
Kt(H,R) and properties such as decidability, the finite model property and
complexity of Kt(H,R) carry over to BISKT. Moreover, deduction methods
for Kt(H,R) and implementations can be used for BISKT.

Kt(H,R) is of independent interest because the modal axiom(s) correspond-
ing to the stability condition can be used to ascribe levels of awareness to agents
in a multi-agent setting. The standard model for formalising knowledge and
actions performed by agents, or events happening in an agent environment,
uses the S5 -modality as knowledge operator and K modalities as action op-
erators. In Kt(H,R), the [H]-modality and the [R]-modality can be seen as
modelling knowledge and action operators. 2 [H]φ is read to mean ‘the agent
knows φ’ and [R]φ is read to mean ‘always after executing action R, φ holds’.
The Axiom S = [R]φ → [H][R][H]φ corresponding to the stability condition
H ; R ; H ⊆ R, can then be viewed as saying ‘the agent knows that, after
performing an action R, it knows the effects of the action’. Thus, it states the
agent has (strong) awareness of performing action R and its effects.

2 The formalisation is slightly more general, because the negative introspection axiom is not
assumed for the [H]-modality but this is not critical because it can be easily added to the
logic. Also, allowing multiple knowledge operators and multiple action operators does not
pose any technical difficulties.
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The logic Kt(H,R) has an alternative axiomatisation in which the stability
axiom S is equivalent to the two axioms A = [R]φ→ [H][R]φ and P = [R]φ→
[R][H]φ. From an agent perspective, Axiom A says ‘the agent knows, when
action R is performed, then φ necessarily holds’; in other words, the agent is
aware of action R. Axiom P says ‘after performing action R the agent knows
φ holds’, i.e., it knows the post-condition has been realised. In some sense,
Axioms A and P can be viewed as weak forms of no learning and perfect recall.
No learning is typically formalised as [R][H]φ→ [H][R]φ, and perfect recall as
[H][R]φ→ [R][H]φ [26].

A contribution of this paper is a series of labelled semantic tableau calculi,
also referred as explicit tableau systems [11], for the logic Kt(H,R). Labelled
semantic tableau systems are widely studied, cf. [13,8,5,7,22], and are related
to labelled sequent and natural deduction systems, cf. [14,17,27]. Labelled se-
mantic tableau systems are proof confluent, which means committing to an
inference step never requires backtracking over the proof search for an unsatis-
fiable formula. Proof-confluent calculi provide more flexibility in designing and
experimenting with search strategies, and they are easier to implement while
preserving soundness and completeness. For the purposes of our theoretical
and practical analyses and comparisons in this paper this is useful.

Labelled semantic tableau calculi of the pure semantic kind explicitly and
directly construct Kripke models during the inference process. They use struc-
tural rules which are direct reflections of the background theory given by a set of
characterising frame conditions. For example, for Axiom 4 = [H]φ→ [H][H]φ
the structural rule is H(s, t), H(t, u) / H(s, u) and ensures H will be a transi-
tive relation. For logics with semantic characterisations, labelled tableau cal-
culi using structural rules may be developed by systematic methods. A general
method is described in [22,24].

Alternatively, the background theory can be accommodated as propagation
rules [5]. The propagation rule for Axiom 4 is s : [H]φ, H(s, t) / t : [H]φ.
Propagation rules accommodate the background theory not by representations
of the correspondence properties, but by representations of inferences with the
Hilbert axioms [18]. Propagation rules can be seen to attempt to speed up the
inference process by not returning complete concrete models but only skeleton
models and performing just enough inferences to determine both satisfiability
and unsatisfiability.

In this paper we also explore the extreme case of basing the tableau rules of
the background theory on direct representations of Hilbert axioms, e.g., using
the rule s : [H]φ / s : [H][H]φ for Axiom 4. This is an example of what we
call an axiomatic rule. Calculi with such rules are seldom seen in the literature
(but [14] is an exception), and some authors have suggested completeness and
termination cannot be guaranteed with such rules. We show however complete
and terminating tableau calculi based on such rules can be obtained.

After formally defining Kt(H,R) in Section 2, we give two Hilbert-style
axiomatisations in Section 3, which will form the basis for deriving various se-
mantic labelled tableau calculi. Section 4 recalls standard notions of labelled
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tableau reasoning and presents a tableau calculus with structural rules, derived
from the semantics of Kt(H,R). With one of the Hilbert axiomatisations as a
basis, a tableau calculus TabpropA,P using propagation rules is presented in Sec-
tion 5. The underlying proof idea of the completeness of the calculus is the
same as for the completeness of the axiomatic translation principle in [18]. A
reduction of satisfiability problems in Kt(H,R) to the guarded fragment, de-
fined as a partial evaluation of the calculus TabpropA,P , is presented in Section 6.
This enables us to give decidability and complexity results for Kt(H,R) and
implies the effective finite model property. The various possibilities of mixing
structural and propagation rules yield more sound, complete and terminating
tableau calculi in Section 7. We also present sound, complete and terminat-
ing tableau calculi using axiomatic rules, including s : [H]φ / s : [H][H]φ.
Implementations of the presented tableau calculi and experimental results are
discussed in Section 8. The proofs may be found in the long version [19] of this
paper.

2 The modal logic Kt(H,R)

Kt(H,R) is an extension of a normal bi-modal logic with two pairs of tense
operators. The connectives of Kt(H,R) are those of propositional logic, we take
as primitives the operators ⊥, ∧, ¬, as well as the four box operators [H], [R],
[H̆] and [R̆]. These are standard box operators interpreted over two relations H
andR and their converses H̆ and R̆. Other Boolean operators including>, ∨,→
and the respective diamond operators can be defined as expected: > = ¬⊥,
φ ∨ ψ = ¬(¬φ ∧ ¬ψ), φ → ψ = ¬(φ ∧ ¬ψ) and 3φ = ¬2¬φ for each 3 ∈
{〈H〉, 〈R〉, 〈H̆〉, 〈R̆〉} and the corresponding 2 ∈ {[H], [R], [H̆], [R̆]}.

The semantics of Kt(H,R) is defined over Kripke models of the form
M = (W,H,R,V), where W is any non-empty set (the set of worlds), H and R
are binary relations overW , and V is a valuation mapping defining where propo-
sitional variables hold. The semantics of formulae in Kt(H,R) is inductively
defined as follows.

M, w  p iff w ∈ V(p)

M, w 6 ⊥
M, w  ¬φ iff M, w 6 φ

M, w  φ ∧ ψ iff M, w  φ and M, w  ψ

M, w  [H]φ iff M, v  φ for all H-successors v of w

M, w  [R]φ iff M, v  φ for all R-successors v of w

M, w  [H̆]φ iff M, v  φ for all H-predecessors v of w

M, w  [R̆]φ iff M, v  φ for all R-predecessors v of w

We further impose that

(i) H is reflexive and transitive, and

(ii) R is stable with respect to H, i.e., H ;R ;H ⊆ R, where ; denotes relational
composition.
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K axiomatisation of propositional logic, modus ponens, axioms K
and necessitation for all four modalities, and substitutivity

H̆ ¬[H]¬[H̆]φ→ φ
˘̆
H ¬[H̆]¬[H]φ→ φ

R̆ ¬[R]¬[R̆]φ→ φ
˘̆
R ¬[R̆]¬[R]φ→ φ

T [H]φ→ φ T̆ [H̆]φ→ φ

4 [H]φ→ [H][H]φ 4̆ [H̆]φ→ [H̆][H̆]φ

S [R]φ→ [H][R][H]φ S̆ [R̆]φ→ [H̆][R̆][H̆]φ

Table 1
Axiomatisation HS of Kt(H,R).

Ax A Frame conditions

T H is reflexive ∀xH(x, x)
4 H is transitive ∀xyz (H(x, y) ∧H(y, z)→ H(x, z))
S R is stable wrt. H ∀xyzu (H(x, y) ∧R(y, z) ∧H(z, u)→ R(x, u))
A R is ante-stable wrt. H ∀xyz (H(x, y) ∧R(y, z)→ R(x, z))
P R is post-stable wrt. H ∀xyz (R(x, y) ∧H(y, z)→ R(x, z))

Table 2
Axioms and frame conditions.

As usual, F = (W,H,R) is referred to as the Kripke frame of M. Any
Kripke frame (W,H,R) for which (i) and (ii) hold is called a Kt(H,R)-frame
and any model (W,H,R,V) for which (i) and (ii) hold is called a Kt(H,R)-
model. We refer to Kripke models (frames) defined over relations and their
converses as tense Kripke models (frames).

It follows from results in Section 6 below that:

Theorem 2.1 (i) Kt(H,R) is decidable and has the effective finite model
property.

(ii) Satisfiability in Kt(H,R) is PSPACE-complete.

3 Axiomatisation and alternative characterisation

Table 1 presents an axiomatisationHS ofKt(H,R). HS is given as an extension

of basic multi-modal logic with four modal operators. The axioms H̆,
˘̆
H, R̆

and
˘̆
R define the pairs of tense operators. Axioms T and 4 define [H] as an S4 -

modality. Similarly, [H̆] is defined as an S4 -modality. S and S̆ are the stability
axioms. This means Kt(H,R) is an extension of the basic tense logic Kt with
two pairs of modalities: an S4 -modality and a modality stable with respect to
the S4 -modality.

Kt(H,R) is first-order definable, because the extra axioms are expressible

by first-order conditions on tense Kripke frames: in particular, H̆,
˘̆
H, R̆ and

˘̆
R

by tautologies, and the remaining axioms have first-order correspondence prop-
erties, as given in Table 2. T and 4 means that H is a reflexive, transitive
relation and the frame condition for S is (H,R)-stability, i.e., H ; R ; H ⊆ R.
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K axiomatisation of propositional logic, modus ponens, axioms K
and necessitation for all four modalities, substitutivity

H̆ ¬[H]¬[H̆]φ→ φ
˘̆
H ¬[H̆]¬[H]φ→ φ

R̆ ¬[R]¬[R̆]φ→ φ
˘̆
R ¬[R̆]¬[R]φ→ φ

T [H]φ→ φ T̆ [H̆]φ→ φ

4 [H]φ→ [H][H]φ 4̆ [H̆]φ→ [H̆][H̆]φ

A [R]φ→ [H][R]φ Ă [R̆]φ→ [H̆][R̆]φ

P [R]φ→ [R][H]φ P̆ [R̆]φ→ [R̆][H̆]φ

Table 3
Axiomatisation HA,P of Kt(H,R).

(The frame conditions for the converse versions should be clear.)
Generalisations of Sahlqvist’s correspondence and completeness results [25]

give us:

Theorem 3.1 The axiomatisation HS of Kt(H,R) is sound and complete with
respect to the class of Kt(H,R)-frames.

The following properties provide the basis for an alternative characterisation
of Kt(H,R)-frames and models.

Lemma 3.2 Let (W,H,R) be any relational structure where H is reflexive.

(i) The following are equivalent:
a. R is stable with respect to H, i.e., H ;R ;H ⊆ R.
b. R is ante- and post-stable with respect to H, i.e., H ; R ⊆ R and
R ;H ⊆ R.

(ii) If R is H-stable, then [R] is monotone with respect to H, i.e., for any
w, v ∈W , if M, w  [R]φ and H(w, v), then M, v  [R]φ.

Lemma 3.3 In any Kt(H,R)-frame R̆ has the same properties with respect
to H̆, as R has with respect to H. For example:

(i) H̆ is reflexive and transitive.

(ii) R̆ is stable with respect to H̆, i.e., H̆ ; R̆ ; H̆ ⊆ R̆.

(iii) R̆ is ante- and post-stable with respect to H̆, i.e., H̆ ; R̆ ⊆ R̆. and R̆ ; H̆ ⊆
R̆.

(iv) [R̆] is monotone with respect to H̆, i.e., for any w, v ∈W , ifM, w  [R̆]φ
and H(v, w), then M, v  [R̆]φ.

These results imply Kt(H,R)-frames, in which (H,R)-stability holds, and tense
(W,H,R)-frames, in which H is a pre-order and (H,R)-ante and post-stability
hold, are equivalent.

Since ante- and post-stability of (H,R) are correspondence properties of
the Axioms A = [R]φ → [H][R]φ and P = [R]φ → [R][H]φ, an alternative
axiomatisation of Kt(H,R) is HA,P as given in Table 3. In HA,P the stability
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axioms S and S̆ have been replaced by the axioms A, Ă, P and P̆ .

Theorem 3.4 (i) The axiomatisation HA,P is sound and complete with re-
spect to the class of tense (H,R)-frames, where H is a pre-order, and
ante- and post-stability of (H,R) hold (cf. Table 2).

(ii) HA,P is equivalent to HS.

The axiomatisation HA,P is the basis for the tableau calculus presented in
Section 5 and the axiomatic translation presented in Section 6.

4 A semantic tableau calculus for Kt(H,R)

Tableau formulae in our calculi have one of the forms ⊥, s : φ, H(s, t), R(s, t),
s ≈ t or s 6≈ t. s and t denote labels which are terms of a freely generated
term algebra over a finite set of constants (denoted by a, b, . . .) and four unary
function symbols f¬2φ, one for each modality 2 ∈ {[H], [R], [H̆], [R̆]}. ≈ is the
equality symbol.

The semantics of tableau formulae is an appropriately defined extension of
the semantics of modal formulae. The extension (M, ι) of a Kt(H,R)-modelM
with an assignment ι mapping labels to worlds in W is called an extended
Kt(H,R)-model. Satisfiability of tableau formulae in (M, ι) is defined by:

M, ι 6 ⊥ M, ι  s : φ iff M, ι(s)  φ

M, ι  H(s, t) iff (ι(s), ι(t)) ∈ H M, ι  R(s, t) iff (ι(s), ι(t)) ∈ R
M, ι  s ≈ t iff ι(s) = ι(t) M, ι  s 6≈ t iff ι(s) 6= ι(t)

Let TabstrS be the tableau calculus consisting of the basic rules and the
theory rules given respectively in Figures 1 and 2. The basic rules are the
standard decomposition rules for labelled modal formulae; as usual, there is
one pair of rules for each primitive logical operator, plus the closure rule (cl).
In the rules for negated box formulae we see how the function symbols are used
to create new successors represented by Skolem terms. (Instead, new constants
could be created, but an advantage of using Skolem terms is that no inference
steps need to be recomputed when blocking occurs.) The theory rules are the
reflexivity rule forH, the transitivity rule forH and the stability rule for (H,R).
Since they are direct reflections of the frame conditions, following [5], they are
referred to as structural rules.

A general form of blocking is provided by the unrestricted blocking mech-
anism [20,21], which is based on the use of the (ub) rule and an appropriate
form of equality reasoning, for example, the equality rules in Figure 3. Adding
the unrestricted blocking mechanism to a sound and complete labelled tableau
calculus forces termination, when the logic has the (effective) finite model prop-
erty. We denote the calculus extended with the unrestricted blocking mecha-
nism by TabstrS (ub).

The tableau inference process constructs derivation trees. Starting with a
set of tableau formulae, the rules are applied in a top-down manner. This leads
to the formulae being decomposed into smaller formulae. The application of
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(cl)
s : φ, s : ¬φ

⊥ (⊥) s : ⊥
⊥ (¬¬) s : ¬¬φ

s : φ

(∧) s : φ ∧ ψ
s : φ, s : ψ

(¬∧) s : (¬φ ∧ ψ)

s : ¬φ | s : ¬ψ

([H])
s : [H]φ, H(s, t)

t : φ
(¬[H])

s : ¬[H]φ

H(s, f¬[H]φ(s), f¬[H]φ(s) : ¬φ

([H̆])
s : [H̆]φ, H(t, s)

t : φ
(¬[H̆])

s : ¬[H̆]φ

H(f¬[H̆]φ(s), s), f¬[H̆]φ(s) : ¬φ

([R])
s : [R]φ, R(s, t)

t : φ
(¬[R])

s : ¬[R]φ

R(s, f¬[R]φ(s)), f¬[R]φ(s) : ¬φ

([R̆])
s : [R̆]φ, R(t, s)

t : φ
(¬[R̆])

s : ¬[R̆]φ

R(f¬[R̆]φ(s), s), f¬[R̆]φ(s) : φ

Fig. 1. The basic tableau rules.

(Tc)
H(s, s)

(4c)
H(s, t), H(t, u)

H(s, u)
(Sc)

H(s, t), R(t, u), H(u, v)

R(s, v)

Fig. 2. Structural theory rules of TabstrS .

(ub)
s ≈ t | s 6≈ tUnrestricted blocking rule:

s 6≈ s
⊥

s ≈ t
t ≈ s

s ≈ t, G[s]λ
G[λ/t]

Paramodulation equality rules:

Fig. 3. Unrestricted blocking and equality rules. G denotes any tableau formula.
G[s]λ means s occurs as a subterm at position λ in G, and G[λ/t] denotes the formula
obtained by replacing s at position λ with t.

the (¬∧)-rule splits the current tableau branch into two branches. As soon as ⊥
is derived in a branch, the branch is regarded as closed and the expansion of
this branch stops. The inference process continues with the extension of a not
yet closed or not yet fully expanded branch. A branch is open when it is not
closed. When, in an open branch, no more rules are applicable, the derivation
stops because a model can be read off from the branch.

A tableau calculus is sound when for a satisfiable set of tableau formu-
lae any fully expanded tableau derivation has an open branch. (A tableau
derivation is fully expanded if all branches are either closed, or open and fully
expanded.) A tableau calculus is (refutationally) complete if for any unsatis-
fiable set of tableau formulae there is a closed tableau derivation. Though we
do not emphasise it or show it explicitly, the tableau calculi we present are in
fact constructively complete, by which we mean for every fully expanded open
branch a model of the input set exists (that can either be read off from the
branch, or, for the tableau calculi using propagation rules, constructed from
it). A tableau calculus is terminating, if any fully expanded tableau derivation
has a finite open branch if the input set is satisfiable.

Theorem 4.1 (i) The tableau calculus TabstrS is sound and complete.
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(T )
s : [H]φ

s : φ
(T̆ )

s : [H̆]φ

s : φ

(4)
s : [H]φ, H(s, t)

t : [H]φ
(4̆)

s : [H̆]φ, H(t, s)

t : [H̆]φ)

(A)
s : [R]φ, H(s, t)

t : [R]φ
(Ă)

s : [R̆]φ, H(t, s)

t : [R̆]φ

(P )
s : [R]φ, R(s, t)

t : [H]φ
(P̆ )

s : [R̆]φ, R(t, s)

t : [H̆]φ

Fig. 4. Propagation theory rules of TabpropA,P .

(ii) So is the extension TabstrS (ub) with unrestricted blocking. Moreover:

(iii) TabstrS (ub) is terminating and provides a decision procedure for Kt(H,R).

The calculus TabstrS provides the baseline for the completeness proofs of the
tableau calculi defined in the next two sections.

5 Using propagation rules

Applying the ideas of the axiomatic translation principle [18] to the axiomatisa-
tion HA,P , based on the ante- and post-stability axioms, produces the calculus
TabpropA,P consisting of the basic rules in Figure 1 and the theory rules in Figure 4.
The basic rules are the same as for the calculus in the previous section. They
form the core also for the calculi defined in the next section. Only the theory
rules are varied. In TabpropA,P the theory rules are propagation rules. Box for-

mulae defined over H are propagated by the rules (4) and (4̆) to H-successors
and predecessors, while box formulae defined over R are propagated by the
rules (A) and (Ă) to H-successors and predecessors, and the rules (P ) and (P̆ )
propagate them over R-links but turn them into box formulae defined over H.

Proving soundness of the calculus is routine. The creative and more difficult
part is proving completeness. Our proof uses a simulation argument in which
we show every refutation in TabstrS can be mapped to a refutation in TabpropA,P .
For lack of space the proof appears only in the long version [19], but we note
the proof gives useful insight into what the essential inference steps are, and
has inspired the definition of the calculi in the next section.

Theorem 5.1 The tableau calculus TabpropA,P is sound and complete.

We refer to the left-most premises of any rule as the main premises. With
two exceptions the modal formulae in the conclusions of all rules of TabpropA,P

are subformulae of the main premise, or are negations of subformulae of the
main premise. The exceptions are the rules (P ) and (P̆ ), which produce new
[H]ψ and [H̆]ψ formulae, but where ψ occurs in the input formula immediately
below [R] and [R̆] operators. This means indefinite formula growth does not
occur. This observation is exploited in the proof of Theorem 6.1.

Because the unrestricted blocking rule is sound we can add the unrestricted
blocking mechanism to the calculus while preserving soundness and complete-
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A Axiom Schema formulae AxA(p) XA
T [H]p→ p ∀x(¬Q[H]p(x) ∨Qp(x)) Xε[H],ϕ ∪ Xε[R],ϕ

T̆ [H̆]p→ p ∀x(¬Q[H̆]p(x) ∨Qp(x)) Xε[H],ϕ ∪ Xε[R],ϕ

4 [H]p→ [H][H]p ∀x∀y (¬Q[H]p(x) ∨ ¬H(x, y) ∨Q[H]p(y)) Xε[H],ϕ ∪ Xε[R],ϕ

4̆ [H̆]p→ [H̆][H̆]p ∀x∀y (¬Q[H̆]p(x) ∨ ¬H(y, x) ∨Q[H̆]p(y)) Xε
[H̆],ϕ

∪ Xε
[R̆],ϕ

A [R]p→ [H][R]p ∀x∀y (¬Q[R]p(x) ∨ ¬H(x, y) ∨Q[R]p(y)) Xε[R],ϕ

Ă [R̆]p→ [H̆][R̆]p ∀x∀y (¬Q[R̆]p(x) ∨ ¬H(y, x) ∨Q[R̆]p(y)) Xε
[R̆],ϕ

P [R]p→ [R][H]p ∀x∀y (¬Q[R]p(x) ∨ ¬R(x, y) ∨Q[H]p(y)) Xε[R],ϕ

P̆ [R̆]p→ [R̆][H̆]p ∀x∀y (¬Q[R̆]p(x) ∨ ¬R(y, x) ∨Q[H̆]p(y)) Xε
[R̆],ϕ

Table 4
Schema formulae.

ness. Termination is a consequence of the effective finite model property of
Kt(H,R) (shown below) and results in [21] (cf. also [22]).

Theorem 5.2 (i) The extension TabpropA,P (ub) with unrestricted blocking is
sound and complete.

(ii) TabpropA,P (ub) is terminating and provides a decision procedure for
Kt(H,R).

6 Axiomatic translation

In this section we show the tableau calculus TabpropA,P of the previous section can
serve as a basis for translating problems in Kt(H,R) to the guarded fragment
from which decidability and the finite model property of Kt(H,R) then follow.

Let ϕ be any Kt(H,R)-formula. We assume ϕ is in a normal form us-
ing only the primitive operators of the logic. We define a mapping Π∆

X from
Kt(H,R)-formulae to first-order formulae, called the axiomatic translation of
Kt(H,R). The definition follows the axiomatic translation principle in [18] and
is in accordance with the tableau rules of TabpropA,P modulo one small variation.
The variation is that the rule of double negation is worked into the definition.

The definition of Π∆
X is based on the axiomatisation HA,P , so we let ∆,

which is the set of extra axioms, be the set of the axioms T , T̆ , 4, 4̆, A, Ă,
P and P̆ . X is the set of instantiation sets for each extra axiom. Formally,
X = {XA}A∈∆, where XA is defined in the right-most column of Table 4. By
definition, X[α],ϕ = {ψ | [α]ψ ∈ Sf(ϕ)}, where α ∈ {H,R}, and Sf(ϕ) denotes
the set of all subformulae of ϕ. This means that X[α],ϕ is the set of subformulae
occurring immediately below [α] in ϕ.

Now, let Π∆
X (ϕ) be the conjunction of (1)–(3).

∃xQϕ(x) ∧
∧
{Def(ψ) |ψ ∈ Sf(ϕ)}(1) ∧

{AxA(ψ) | A ∈ ∆, ψ ∈ XA}(2) ∧
{Def(ψ) |ψ ∈ Sf(X)}(3)
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π(⊥, x) = ⊥ π(p, x) = > π(¬p, x) = ¬Qp(x)

π(ψ ∧ φ, x) = Qψ(x) ∧Qφ(x) π(¬(ψ ∧ φ), x) = Q∼ψ(x) ∨Q∼φ(x)

π([H]ψ, x) = ∀y (H(x, y)→ Qψ(y)) π(¬[H]ψ, x) = ∃y (H(x, y) ∧Q∼ψ(y))

π([H̆]ψ, x) = ∀y (H(y, x)→ Qψ(y)) π(¬[H̆]ψ, x) = ∃y (H(y, x) ∧Q∼ψ(y))

π([R]ψ, x) = ∀y (R(x, y)→ Qψ(y)) π(¬[R]ψ, x) = ∃y (R(x, y) ∧Q∼ψ(y))

π([R̆]ψ, x) = ∀y (R(y, x)→ Qψ(y)) π(¬[R̆]ψ, x) = ∃y (R(y, x) ∧Q∼ψ(y))

Table 5
Definition of the basic translation mapping π.

Def(ψ) is defined by:

Def(ψ) = ∀x (Qψ(x)→ π(ψ, x)) ∧ ∀x (Qψ(x)→ ¬Q∼ψ(x))

∧ ∀x (Q∼ψ(x)→ π(∼ψ, x)).

π is the basic translation mapping inductively defined in Table 5. Each unary
predicate symbol Qψ represents the translation of modal formula ψ indicated
in the index. Their purpose is to make the translation more effective through
structure sharing (it is clear that further optimisations are possible). ∼ denotes
complementation, i.e., ∼ψ = φ if ψ = ¬φ, and ∼ψ = ¬ψ, otherwise. AxA(ψ)
in (2) is the conjunction of instances of all schema formulae F{p/ψ} associated
with each axiom A. The schema formulae for Kt(H,R) and the instantiation
sets XA for each axiom A are given in Figure 4. X in (3) is the set {[H]ψ |ψ ∈
Xε[R],ϕ} ∪ {[H̆]ψ |ψ ∈ Xε

[R̆],ϕ
}. This concludes the definition of Π∆

X (ϕ).

Intuitively, Π∆
X (ϕ) is an encoding of the calculus TabpropA,P for a given for-

mula ϕ. (1) and (3) are partial evaluations of applications of the basic rules,
and (2) is the partial evaluation of applications of the theory propagation rules
with respect to the instantiation sets for each axiom.

Theorem 6.1 Let ϕ be any Kt(H,R)-formula. Then:

(i) ϕ is satisfiable in Kt(H,R) iff Π∆
X (ϕ) is first-order satisfiable.

(ii) Π∆
X (ϕ) can be computed in linear time and the size of Π∆

X (ϕ) is linear in
the size of ϕ.

(iii) Π∆
X (ϕ) is equivalent to a guarded formula.

Thus, Π∆
X defines an effective translation of any Kt(H,R)-formula into the

guarded fragment [1,12]. It defines, in fact, a mapping to the subfragment
GF1− of the guarded fragment, which has been shown to be PSPACE-complete
if the arity of predicates is finitely bounded [16]. Therefore, carrying over
properties of the guarded fragment and GF1− give us decidability, the effective
finite model property and complexity results for Kt(H,R), as summarised in
Theorem 2.1.

The guarded fragment can be decided by ordered resolution [10]; therefore,
one further consequence is:

Theorem 6.2 Both ordered resolution and ordered resolution with selection of
binary literals as defined in [10] (see also [18]) decide the axiomatic translation
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(Ac)
H(s, t), R(t, u)

R(s, u)
(Pc)

R(s, t), H(t, u)

R(s, u)

Fig. 5. Structural theory rules for ante- and post-stability.

of satisfiability problems in Kt(H,R).

Because the definition incorporates the needed number of modal formula
instantiations of the propagation rules, the axiomatic translation can be viewed
and reformulated as an encoding in basic tense logic Kt with global satisfiabil-
ity (and two tense operators) of the Kt(H,R)-satisfiability of a formula ϕ. This
encoding can be viewed as a global reduction function in the sense of [15] for
Kt(H,R), however a crucial variation is the signature extension with proposi-
tional symbols corresponding to the Qψ symbols. This makes further manipu-
lation more efficient [18].

The calculus TabstrS of Section 4 based on structural rules also provides a
basis for a translation to first-order logic, namely, the standard (relational)
translation of Kt(H,R) with structural transformation. However, it is not a
mapping to the guarded fragment or any other known solvable fragment of
first-order logic.

7 Other terminating tableau calculi

As is already apparent from Sections 3–5 there are several quite different de-
duction approaches for the logic Kt(H,R). Further possibilities involve tableau
systems based on a mixture of structural and propagation rules. Replacing the
propagation rules for the axioms T and T̆ in TabpropA,P by the reflexivity rule (Tc)
preserves soundness and completeness. The proof is a small adaptation of the
proof of Theorem 5.1.

Theorem 7.1 The calculus TabmixA,P consisting of the basic tableau rules of Fig-

ure 1, the reflexivity rule (Tc) for H and the propagation rules (4), (4̆), (A),
(Ă), (P ) and (P̆ ) for 4, A and P is sound and complete.

Basing the rules on the frame conditions of the semantics of the alternative
axiomatisation HA,P is another (obvious) possibility:

Theorem 7.2 The calculus TabstrA,P consisting of the basic tableau rules, the
reflexivity and transitivity rules as well as the structural rules (Ac) and (Pc)
for ante- and post-stability (see Figure 5) is sound and complete.

Propagation rules can be viewed as partial expansions of the corresponding
axioms, and the results of the previous two sections show these partial expan-
sions are sufficient for completeness. It also means the way the axioms are used
can be accordingly restricted. This is the idea underlying the next result.

Theorem 7.3 The calculi TabaxA,P and TabaxS consisting of the basic tableau

rules, the rules (T ) and (T̆ ), and the rules (4∗), (4̆∗), (A∗), (Ă∗), (P ∗) and
(P̆ ∗), respectively (4∗), (4̆∗), (S∗) and (S̆∗) (as in Figure 6), are sound and
complete.
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(4∗)
s : [H]φ

s : [H]∗[H]φ
(4̆∗)

s : [H̆]φ

s : [H̆]∗[H̆]φ)

(A∗)
s : [R]φ

s : [H]∗[R]φ
(Ă∗)

s : [R̆]φ

s : [H̆]∗[R̆]φ

(P ∗)
s : [R]φ

s : [R]∗[H]φ
(P̆ ∗)

s : [R̆]φ

s : [R̆]∗[H̆]φ

(S∗)
s : [R]φ

s : [H][R]∗[H]φ
(S̆∗)

s : [R̆]φ

s : [H̆][R̆]∗[H̆]φ

Fig. 6. Axiomatic theory rules. ∗ binds with the box operator preceding it.

The meaning of the marker ∗ is that box formulae annotated with it are not
expanded with any theory rules, only with the standard expansion rules, namely
the standard box rules and the closure rule. Though the starred rules cause
formulae to grow in size, the formula growth is only temporary because of the
restriction. The restriction defines a refinement, which is immediate from the
remark before the theorem and is explicit in the completeness proof (cf. [19]).

TabaxA,P and TabaxS can be flexibly varied by using the structural rules or
propagation rules for subsets of the axioms. When using propagation rules for
stability some care is needed. We can show:

(i) The calculus consisting of the basic tableau rules and the following
rules is sound and complete, where Y = {[H][R][H]ψ | [R]ψ ∈ Sf(ϕ)} ∪
{[H̆][R̆][H̆]ψ | [R̆]ψ ∈ Sf(ϕ)}.

(cut)
s : φ | s : ¬φ φ ∈ Y (Tc)

H(s, s)

(4)
s : [H]φ, H(s, t)

t : [H]φ
(4̆)

s : [H̆]φ, H(t, s)

t : [H̆]φ)

(S)
s : [R]φ, H(s, t), R(t, u)

u : [H]φ
(S̆)

s : [R̆]φ, H(t, s), R(u, t)

u : [H̆]φ

(ii) The calculus as in (i) but with propagation rules for T is sound and
complete.

In both cases omitting the cut rule leads to incompleteness. There is a connec-
tion between these calculi and the calculus TabaxS of Theorem 7.3, from which it
is clear that the [R] and [R̆]-formulae occurring in the cut formulae do not need
to be expanded with the (S) or (S̆)-rules. For completeness, in fact, the rule
s : [R]ψ / s : [H][R]∗[H]ψ | s : ¬[H][R]∗[H]ψ and the converse version, with
the same restrictions for the starred boxes, are sufficient. However, the right
branch can always be almost immediately closed, so that no gain is apparent
over the calculus TabaxS . This was confirmed in experiments.

Each of the calculi in this section is terminating when endowed with the
unrestricted blocking mechanism. Even the calculus TabaxS (ub) without the
restrictions to starred box formulae can be shown to be sound, complete and
terminating. An important assumption is that the rules are applied fairly, i.e.,
no non-redundant application of a rule is postponed indefinitely.
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Finally we note that each of the presented tableau calculi provides the basis
for a reduction to first-order logic and their soundness and completeness is a
consequence of the soundness and completeness of the calculi, and the fact that
derivations are defined over a bounded number of modal formulae. Then, in
the case of the propagation and axiomatic rules corresponding, effective partial
evaluations as in the axiomatic translation in Section 6 can be defined and
proved sound and complete. The reductions for structural rules involve, as
expected, the corresponding frame conditions.

8 Implementation and experiments

We implemented the tableau calculi by encoding them into first-order logic and
using the Spass-yarralumla system. Spass-yarralumla is a bottom-up
model generator based on the Spass theorem prover (Version 3.8d) [28]. Spass-
yarralumla emulates the behaviour of semantic labelled tableau provers [2,3].
The resolution refinement used is ordered resolution and selection of at least
one negative literal in every clause. The inference loop of Spass was slightly
modified so that it always takes the least complex clause as the given clause,
ground clauses with positive equality literals are eagerly split, and a branch with
a positive equality literal is always explored first. Equality reasoning is realised
by ordered forward and backward rewriting. Spass-yarralumla implements
several blocking techniques. We used four forms: (i) sound ancestor blocking
(i.e., blocking is applied to distinct terms s and t if one is a subterm of the other,
flag -bld); (ii) unrestricted blocking as defined in Figure 3 (flag -bld -ubl);
(iii) sound ancestor blocking on non-disjoint worlds (i.e., blocking is restricted
to subterms on unary predicates, flag -blu); and (iv) sound anywhere blocking
on non-disjoint worlds (flag -blu -ubl).

The encodings of the tableau calculi are implemented as an extension of the
ml2dfg tool used for the empirical evaluation of the axiomatic translation prin-
ciple in [18]. Because this earlier work was limited to the evaluation of exten-
sions of basic modal logic K, we extended the implementation to handle multiple
modalities and backward looking modalities, and we implemented the encod-
ings of the structural, propagation and axiomatic tableau rules for Axioms S,
A and P , and extended the implementation of the encodings for T and 4. Thir-
teen encodings were evaluated. These include encodings of TabstrA,P and TabstrS
based correspondence properties (named KtAcPcTc4c and KtScTc4c in the re-
sults tables), the encoding of the tableau calculus TabpropA,P using propagation
rules which was implemented via the axiomatic translation as defined in Sec-
tion 6 (KtAPT4), the encodings of TabaxA,P and TabaxS (KtA*P*T4* and KtS*T4*)
as well as mixes of encodings of correspondence properties, the axiomatic trans-
lation, and almost purely axiomatic encodings. All tested encodings are sound
and complete.

Evaluations were performed on problems created for the investigation of
the logic BISKT in [23], and modal logic problems consisting predominantly
of problems used in the experiments of [18]. The BISKT problems include
intuitionistic propositional logic and intuitionistic modal logic problems. The
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Spass-yarralumla.
Blocking (i) -bld (ii) -bld -ubl (iii) -blu (iv) -blu -ubl

Encoding S U S/U S U S/U S U S/U S U S/U
KtA*P*T4* 9.1 8.7 17.8 15.1 76.7 91.8 18.8 16.9 35.6 15.0 12.2 27.2
KtA*PT4* 8.3 9.2 17.5 17.7 97.7 115.4 15.5 16.6 32.1 12.3 12.6 24.9
KtAP*T4* 8.0 8.5 16.5 16.7 75.0 91.7 15.8 15.9 31.8 11.3 12.4 23.8
KtA*P*T4 7.4 6.7 14.1 14.7 44.5 59.2 14.1 11.9 25.9 11.2 9.6 20.9
KtA*PT4 6.7 6.4 13.2 13.9 42.0 55.9 11.6 11.0 22.6 10.4 9.8 20.2
KtAP*T4 6.5 6.6 13.0 12.4 42.6 55.1 12.1 11.4 23.6 9.7 9.6 19.3
KtAPT4 6.2 6.2 12.4 11.7 40.6 52.3 9.8 10.5 20.3 9.9 9.4 19.3
KtAPTc4 6.3 7.2 13.6 10.2 58.5 68.7 10.1 11.1 21.2 10.2 11.8 21.9
KtAcPcTc4c 6.4 28.4 34.7 14.9 220.3 235.2 9.5 60.9 70.4 9.5 32.8 42.3
KtS*T4* 10.6 9.2 19.8 16.2 80.0 96.2 24.6 18.3 42.9 14.9 12.5 27.4
KtS*T4 7.9 6.7 14.6 13.1 45.1 58.2 16.1 11.6 27.7 10.2 9.7 19.9
KtS*Tc4 8.2 7.7 15.8 11.2 61.8 73.0 15.7 12.1 27.8 11.7 12.3 23.9
KtScTc4c 6.5 34.7 41.1 14.3 180.1 194.4 9.8 76.5 86.4 9.8 34.8 44.6

Table 6
Average running times in 10 ms. S = satisfiable, U = unsatisfiable,

S/U = satisfiable or unsatisfiable.

average size of the Spass files generated by ml2dfg varied between 5.4 KB and
5.5 KB for KtScTc4c and KtAcPcTc4c to 12.9 KB and 16.1 KB for KtA*P*T4*
and KtS*T4*. This range is plausible because for structural rules the encoding
is smallest and for the rules closest to axiom form the partial evaluation results
in larger encodings. The input files were the same for the tests done with Spass-
yarralumla and Spass in auto mode. In total there were 240 satisfiable and
150 unsatisfiable problems.

The tests were run on a Linux PC with a 3.30GHz Intel Core i3-2120 CPU
and 10 GB RAM. Each problem was run with a timeout of 600 seconds. The
problems and detailed results are available at http://staff.cs.manchester.
ac.uk/~schmidt/publications/kthr14/.

Table 6 summarises the results obtained for runs with Spass-yarralumla.
The best results in each column are highlighted in bold dark grey. To ac-
count for variability in measurement, results within 10% of the best values are
highlighted in light grey. Looking at the table for Spass-yarralumla, on
the whole, the encoding KtAPT4 of propagation rules fared best for all forms
of blocking tested. Similarly good results were obtained for the encodings
KtA*P*T4, KtA*PT4, KtAP*T4, KtAPTc4, and to some extent KtS*T4. For sat-
isfiable problems the encodings based on correspondence properties fared well,
too, in two cases giving best results for KtAcPcTc4c. For unsatisfiable prob-
lems the performance was always significantly worse, especially for unrestricted
blocking. In terms of blocking, for all encodings unrestricted blocking was most
expensive on unsatisfiable problems. In contrast to other blocking techniques,
unrestricted blocking generates models with domains of minimal size, which is a
much harder problem than determining if models exist. Sound ancestor block-
ing produced best results for all encodings on both satisfiable and unsatisfiable
problems.

Table 7 gives the results of Spass (Version 3.8d) [28] in auto mode. In auto

http://staff.cs.manchester.ac.uk/~schmidt/publications/kthr14/
http://staff.cs.manchester.ac.uk/~schmidt/publications/kthr14/
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Spass in auto mode.
Encoding S U S/U M
KtA*P*T4* 75.4(2) 5.3 80.7(2) 12.9
KtA*PT4* 120.8(2) 5.4 126.3(2) 12.6
KtAP*T4* 69.9(2) 5.3 75.2(2) 11.7
KtA*P*T4 102.5(1) 4.8 107.3(1) 9.8
KtA*PT4 82.2 4.8 87.0 9.6
KtAP*T4 32.2(2) 4.7 36.9(2) 8.6
KtAPT4 80.3 4.9 85.2 8.4
KtAPTc4 33.2(2) 4.9 38.1(2) 7.8
KtAcPcTc4c 4.6(131) 685.1(11) 689.7(142) 5.5
KtS*T4* 754.2(12) 5.8 760.1(12) 16.1
KtS*T4 669.3(6) 4.9 674.3(6) 11.6
KtS*Tc4 353.3(12) 5.0 358.4(12) 10.8
KtScTc4c 4.6(131) 54.7 59.3(142) 5.4

Table 7
Average running times in 10 ms. S = satisfiable, U = unsatisfiable,

S/U = satisfiable or unsatisfiable, M = average size in KB of input files.

mode Spass used a form of ordered resolution with dynamic selection. The
number of timeouts or unclean exits is indicated in brackets. For two encodings
there were no timeouts: KA*PT4 and KAPT4, and their performances were very
close. Since Spass in auto mode is not a decision procedure for problems with
chaining laws such as transitivity or the stability properties, the many timeouts
for the encodings KAcPcTc4c and KScTc4c are no surprise. For all encodings,
apart from these two, the performances were very close for unsatisfiable prob-
lems, with KAP*T4 performing best. It is interesting how much faster these
performances were than the best performances for Spass-yarralumla, but
not unexpected. For unsatisfiable problems, tableau-like approaches need to
construct a complete derivation tree in which every formula is grounded, and
this is generally larger than the non-ground clause set derived with ordered
resolution. For satisfiable problems, tableau approaches have an advantage
because there is no need to explore the entire search space. Spass computes
clause set completions, which are compact representations of all possible mod-
els, not just one model. With the axiomatic translation, back-translation is not
a big obstacle [18], and the ability to compute entailments is useful.

The problems used in the evaluation can be divided into three groups. One
group are problems of the logic BISKT from the investigation in [23]. Essen-
tially these are intuitionistic propositional logic and intuitionistic modal logic
problems that have been translated to Kt(H,R). We also used the problems
from the investigation of [18]. Because these are predominantly uni-modal
problems we have used them as problems for the modality [R] and the modal-
ity [H] in separate runs.

Table 8 presents the experimental results differentiated by problem group.
For the BISKT problems, results in very close proximity were shown for the
encodings KtA*P*T4, KtA*PT4, KtAP*T4, KtAPT4, KtAPTc4 and KtS*T4. Most
best times were observed for KtAPT4. Sound ancestor blocking and unrestricted
blocking produced best and worst results respectively. Interestingly we see
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BISKT problems. Number of problems: 43 S, 103 U, 146 S/U.
Blocking (i) -bld (ii) -bld -ubl (iii) -blu (iv) -blu -ubl

Encoding S U S/U S U S/U S U S/U S U S/U
KtA*P*T4* 4.2 10.1 14.3 4.1 84.4 88.6 5.8 19.9 25.7 4.2 13.2 17.4
KtA*PT4* 4.1 10.5 14.5 4.1 119.4 123.5 5.8 20.4 26.2 4.2 14.0 18.2
KtAP*T4* 4.0 9.3 13.3 4.2 84.0 88.2 5.7 19.2 24.9 4.2 13.0 17.2
KtA*P*T4 3.5 7.0 10.5 3.8 61.5 65.3 4.6 12.8 17.4 3.8 10.9 14.7
KtA*PT4 3.7 7.0 10.6 3.9 59.9 63.8 4.5 12.2 16.6 3.7 11.2 14.9
KtAP*T4 3.4 6.9 10.3 3.7 58.6 62.3 4.4 12.0 16.4 4.0 10.8 14.8
KtAPT4 3.5 6.6 10.1 3.8 57.0 60.8 4.4 11.2 15.6 3.7 10.4 14.1
KtAPTc4 3.6 8.0 11.6 3.8 85.6 89.4 4.4 12.1 16.5 3.8 14.1 17.9
KtAcPcTc4c 3.6 19.1 22.7 4.2 323.1 327.3 4.3 43.1 47.3 3.7 34.7 38.4
KtS*T4* 4.3 10.1 14.4 4.1 90.6 94.7 6.0 22.1 28.1 4.3 13.8 18.0
KtS*T4 3.7 7.2 10.9 4.0 62.4 66.4 4.9 13.0 17.8 4.0 11.1 15.1
KtS*Tc4 3.7 8.6 12.3 4.0 89.3 93.3 4.6 14.6 19.2 3.8 15.3 19.1
KtScTc4c 3.5 28.3 31.9 4.3 261.3 265.6 4.4 64.9 69.3 4.0 37.6 41.6

Modal [R] problems. Number of problems: 118 S, 4 U, 122 S/U.
Blocking (i) -bld (ii) -bld -ubl (iii) -blu (iv) -blu -ubl

Encoding S U S/U S U S/U S U S/U S U S/U
KtA*P*T4* 11.4 4.8 16.1 15.9 5.0 20.9 28.3 10.0 38.3 19.7 5.8 25.4
KtA*PT4* 10.1 6.0 16.1 20.2 4.8 25.0 21.0 9.8 30.7 13.9 5.5 19.4
KtA*P*T4 9.5 4.5 14.0 18.7 5.0 23.7 21.7 10.0 31.7 14.6 5.8 20.3
KtAP*T4* 9.2 5.2 14.5 18.1 5.0 23.1 22.4 10.0 32.4 11.5 5.8 17.3
KtA*PT4 8.4 4.5 12.9 17.5 4.8 22.3 16.3 9.2 25.6 12.4 5.8 18.1
KtAP*T4 7.8 4.5 12.3 14.9 4.8 19.7 17.1 9.2 26.3 10.7 5.5 16.2
KtAPT4 7.3 4.2 11.5 12.8 4.5 17.3 12.8 9.2 22.1 11.4 5.8 17.1
KtAPTc4 7.8 4.5 12.3 11.1 4.5 15.6 13.0 9.0 22.0 11.0 5.5 16.5
KtAcPcTc4c 5.6 4.5 10.1 15.8 4.8 20.5 8.5 9.0 17.5 9.6 6.2 15.9
KtS*T4* 14.9 5.0 19.9 18.1 5.5 23.6 39.7 10.5 50.2 19.7 7.2 27.0
KtS*T4 10.8 4.8 15.5 14.7 5.0 19.7 25.5 9.8 35.3 11.8 6.2 18.1
KtS*Tc4 11.1 4.5 15.6 14.2 5.0 19.2 24.7 10.8 35.4 14.5 6.2 20.8
KtScTc4c 5.7 4.5 10.2 14.1 4.8 18.9 8.6 9.5 18.1 10.9 5.8 16.7

Modal [H] problems. Number of problems: 79 S, 43 U, 122 S/U.
Blocking (i) -bld (ii) -bld -ubl (iii) -blu (iv) -blu -ubl

Encoding S U S/U S U S/U S U S/U S U S/U
KtA*P*T4* 9.5 8.7 18.3 22.1 81.0 103.1 14.5 12.8 27.4 16.8 13.2 30.0
KtA*PT4* 9.6 9.0 18.5 22.0 80.7 102.7 14.7 12.5 27.2 17.6 13.0 30.6
KtAP*T4* 9.8 8.9 18.6 23.5 81.6 105.0 14.6 12.7 27.4 17.0 12.9 29.9
KtA*P*T4 7.2 6.9 14.1 16.7 15.9 32.6 10.5 11.5 22.0 13.4 10.1 23.4
KtA*PT4 7.0 7.0 14.0 15.7 15.8 31.5 10.3 11.7 22.0 13.3 9.5 22.9
KtAP*T4 7.1 6.9 14.0 15.6 16.2 31.9 10.2 11.4 21.6 13.2 9.5 22.7
KtAPT4 7.0 6.8 13.9 15.6 15.8 31.3 10.2 11.5 21.8 13.2 9.7 22.8
KtAPTc4 7.0 7.1 14.1 13.4 16.7 30.1 10.0 11.7 21.7 15.3 10.0 25.3
KtAcPcTc4c 9.8 58.1 67.9 21.5 47.4 68.9 16.4 121.4 137.8 14.2 38.6 52.8
KtS*T4* 9.5 8.7 18.3 22.1 81.2 103.3 14.6 13.0 27.6 17.1 13.0 30.2
KtS*T4 7.2 6.8 13.9 16.3 17.1 33.5 10.2 11.9 22.1 13.2 9.7 22.9
KtS*Tc4 7.2 7.4 14.6 13.2 16.9 30.1 10.2 11.5 21.6 14.3 10.0 24.3
KtScTc4c 10.4 61.6 71.9 21.7 50.8 72.5 17.0 128.9 145.9 13.3 42.9 56.2

Table 8
Average running times in 10 ms for the different problem sets. S = satisfiable,

U = unsatisfiable, S/U = satisfiable or unsatisfiable.

that for satisfiable problems the performances were very close for all blocking
techniques.
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For the modal problems with mainly one modality, the [R] modality, the
sample of unsatisfiable problems is very small so we focus just on the results
for satisfiable problems. Here, the standard translation or structural rules
gave best results, except for the case of -bld -ubl and -blu -ubl. That the
structural rules showed better performance is explained by the fact that the
problems contain no [H] modalities, only [R] modalities. This means while
especially the starred rules are applicable, the rules (Ac), (Pc) and (Sc) are
not. Investigation of the results for unrestricted blocking has revealed that for
KtAcPcTc4c the results are typically better than for KtAPTc4, except for one
particular large and difficult problem where KtAcPcTc4c was about two times
slower than KtAPTc4 (1378 ms as opposed to 711 ms), which has affected the
average results.

The results for the modal [H] problems are interesting because although
good performances are again obtained for KtA*P*T4, KtA*PT4, KtAP*T4,
KtAPT4 and KtS*T4, good performances in the same range were also obtained
for KtAPTc4 and KtS*Tc4. Here the systems based on the starred rules for A,
P and S fared very well. Since the problems contain no [R] modalities, these
rules are not applicable resulting in fewer inference steps.

Overall, the results confirm that different performances should be expected
for different methods on problem classes with different characteristics.

The reasons for implementing the tableau calculi as described were twofold.
First, to get insight into the relative performances of different approaches and
the properties of different techniques, we wanted a fair comparison. Second,
using the ml2dfg tool and Spass-yarralumla was an easy way to test dif-
ferent sets of tableau rules and different rule refinements. That models can be
read off from the output, aided quick discovery of less effective rule sets and
counter-examples for incomplete rule sets, which was extremely useful during
the development process. Spass allowed us to confirm answers with a com-
pletely different approach.

9 Conclusion

We have introduced a tense logic Kt(H,R) with two modalities interacting in
a non-trivial way. We defined a range of different tableau calculi emerging in
a systematic way from axiomatisations and the semantics of the logic. Via
effective encodings these calculi can be mapped in various ways to the guarded
fragment. This means any decision procedure for the guarded fragment can be
used as decision procedure for Kt(H,R). The results of the experiments with
implementations of the tableau calculi with Spass-yarralumla, and Spass
using ordered resolution, give useful insights into the practical properties and
relative efficiency of the different deduction approaches.

A more comprehensive empirical investigation needs to be done, but already
several observations can be made. First, there are many more ways of deciding
modal logics than is usually assumed. Second, we have gained useful insight
into how and to what extent different approaches fit together and map to each
other. Third, the behaviour of procedures depends a lot on the inference rules
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(or the transformations in the encodings), rule refinements, termination tech-
niques, and what kind of deduction approaches are used. Fourth, a detailed
analysis of the results revealed different performances can be observed for dif-
ferent approaches on problems with different properties (e.g., problems that
are predominantly satisfiable, or are predominantly unsatisfiable, or have one
of modalities dominate).

Though the focus has been on Kt(H,R), the techniques and ideas pre-
sented in this paper are of general nature and provide a useful methodology
for developing practical decision procedures for modal logics. Some aspects are
completely routine. In particular, the structural rules can be obtained from the
Hilbert axioms using methods of automated correspondence theory (cf. [9]) and
tableau synthesis [22,24], and soundness and completeness of the calculi TabstrS ,
TabstrS (ub), TabstrA,P and TabstrA,P (ub) are easily obtained. The main aspect for
which creativity is required and is specific to Kt(H,R) is the development of
the tableau calculi based on propagation or axiomatic rules and the axiomatic
translation to the guarded fragment. Here the contribution of the paper has
been to extend the ideas of the axiomatic translation principle from [18]. Key is
finding effective refinements and showing completeness and termination, which
is in general non-trivial and will not always be possible. This gave us also
the effective finite model property and termination of the presented tableau
systems via the results in [21] and unrestricted blocking.

All in all, because of the ubiquity of modal logics, we believe this kind
of systematic research of decidability, proof theory, refinements and relative
efficiency is widely applicable and useful, and should be extended to more
logics, more types of tableau approaches, other deduction approaches, different
provers and more problem sets.
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[11] Goré, R., Tableau methods for modal and temporal logics, in: M. D’Agostino, D. Gabbay,
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