MSc COMP6012
Automated Reasoning
Who, What, When, Where, Why?

Renate Schmidt
(email: schmidt@cs.man.ac.uk)

Alan Williams
(email: alanw@cs.man.ac.uk)

September 2007
Why?

System Design:

- The Pentium Bug
Why?

System Design:

- The Pentium Bug
- The Pentium II Bug
Why?

System Design:

- The Pentium Bug
- The Pentium II Bug
- Arriane 5 Failure, 4 June 1996
Why?

System Design:

- The Pentium Bug
- The Pentium II Bug
- Arriane 5 Failure, 4 June 1996
- software + hardware specification and design errors . . .
Why?

System Design:

- The Pentium Bug
- The Pentium II Bug
- Arriane 5 Failure, 4 June 1996
- software + hardware specification and design errors . . .
- increasing design complexity . . .
Why?

System Design:

- The Pentium Bug
- The Pentium II Bug
- Arriane 5 Failure, 4 June 1996
- software + hardware specification and design errors . . .
- increasing design complexity . . .
- Future: Internet encryption bug???. . .
Why?

System Design:

- The Pentium Bug
- The Pentium II Bug
- Arriane 5 Failure, 4 June 1996
- software + hardware specification and design errors . . .
- increasing design complexity . . .
- Future: Internet encryption bug??? . . . hasn’t been found . . . yet

Or . . .

- Mathematical Logical Foundations
http://www.dutchspace.nl/
http://micro.magnet.fsu.edu
Why You May Wish To Take COMP6012

- Inform/support other MSc course units (but not pre/co-requisites):
 - COMP6016: Knowledge Representation and Reasoning
 - COMP6039: Computer Security
 - COMP6046: The Semantic Web: Ontologies and OWL
- Mathematical Logic
- System Design: hardware, software, GRID, secure, biological...
- Design tool development: CAD, IDEs
What?

- (System property or component description via formal logic)
What?

- (System property or component description via formal logic)
- Logical reasoning
What?

- (System property or component description via formal logic)
- Logical reasoning
- Automation: decision procedures
What?

- (System property or component description via formal logic)
- Logical reasoning
- Automation: decision procedures
- Advanced techniques for efficiency
What?

- (System property or component description via formal logic)
- Logical reasoning
- Automation: decision procedures
- Advanced techniques for efficiency
- Associated theoretical concepts, e.g. soundness and completeness
Course Outline

When?
Period 1, Semester 1
Mondays

Where?
Lectures: 2.15
Labs: 2.25a

A Course of Two Halves:
1. Formal Logic and Automated Reasoning (AJW)
2. Advanced Automated Reasoning (RenS)

Pre-requisites: Familiarity with Propositional Logic
Part I: Formal Logic and Automated Reasoning

• Classical Propositional Logic
• First-order Predicate Logic
• Automated Reasoning: Methods and Tools, including
 – resolution
 – logic programming
Reasoning Example

Assumptions:
Reasoning Example

Assumptions:

IF I live in MANCHESTER THEN it is SUNNY
Reasoning Example

Assumptions:

IF I live in MANCHESTER THEN it is SUNNY

IF it is SUNNY THEN I need a PARASOL
Reasoning Example

Assumptions:

IF I live in MANCHESTER THEN it is SUNNY

IF it is SUNNY THEN I need a PARASOL

Conclusion:

IF I live in MANCHESTER THEN I need an PARASOL
The Resolution Principle
The Resolution Principle

Assumptions: \((A \lor B)\) \((C \lor \neg B)\)
The Resolution Principle

Assumptions: \((A \lor B) \land (C \lor \neg B)\)

Conclusion: \((A \lor C)\)
The Resolution Principle

Assumptions: \((A \lor B) \land (C \lor \neg B)\)

Conclusion: \((A \lor C)\)

The basis of

- Automated Theorem-proving: e.g. Vampire (Andrei Voronkov)
- Logic Programming: e.g. Prolog
Logic Programming and Prolog

Prolog Program — rules and facts:

\[
\text{ancestor}(X,Y) :- \text{parent}(X,Y).
\]

\[
\text{ancestor}(X,Y) :- \text{parent}(X,Z), \text{ancestor}(Z,Y).
\]

\[
\text{parent}(\text{sue}, \text{toby}).
\]

\[
\text{parent}(\text{roy}, \text{sue}).
\]
Logic Programming and Prolog

Prolog Program — rules and facts:

```
ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z),
                ancestor(Z,Y).

parent(sue,toby).
parent(roy,sue).
```

Run program:

```
?- ancestor(roy,X).
X = sue;
X = toby;
```
Part II: Advanced Techniques

Why:

- The basic resolution calculus is very simple
 - Just two rules
 - Extremely prolific at generating new conclusions
 - Inefficient, impracticable
Part II: Advanced Techniques

Why:

- The basic resolution calculus is very simple
 - Just two rules
 - Extremely prolific at generating new conclusions
 - Inefficient, impracticable
- Advanced techniques are available
- Part II is devoted to Advanced Automated Reasoning
Emphasis in Part II

• Introduction to advanced theorem proving

• Fundamentals of first-order resolution
 ─ Selection of important topics
 ─ Many examples and exercises
Emphasis in Part II

- Introduction to advanced theorem proving
- Fundamentals of first-order resolution
 - Selection of important topics
 - Many examples and exercises
- Important basic properties of inference systems
 - Soundness \Rightarrow no false conclusions are drawn
 - Completeness \Rightarrow all true conclusions are drawn
 - Efficiency \Rightarrow avoid unnecessary inferences
Modern Resolution Framework

- Best provers use resolution
Modern Resolution Framework

- Best provers use resolution
- Modern resolution framework = an extension of basic resolution calculus with:
 - Powerful search control mechanisms
 - ordering and selection refinements
 - General notion of redundancy
 - simplification and optimisation techniques
 - optimised transformations into clausal form
Modern Resolution Framework

- Best provers use resolution
- Modern resolution framework = an extension of basic resolution calculus with:
 - Powerful search control mechanisms
 - ordering and selection refinements
 - General notion of redundancy
 - simplification and optimisation techniques
 - optimised transformations into clausal form
- Has many uses and applications
 - This course: verification of Neuman-Stubblebine key exchange protocol
- Fast implementations: Vampire, (M)SPASS
Topics of Current Research

- Developing practical decision procedures
- Handling specific theories (equality, transitive relations, ...) or logics (description logics, modal logics, ...)
- Implementing fast automated theorem provers
- Relationship between different proof methods (resolution, tableau, ND, ...)
- Combining different proof methods and different provers
- Specific applications:
 - Software engineering
 - Ontologies and the semantic web
 - Multi-agent systems
Lectures:
• include Examples Classes
• paper-based Exercises (some assessed)

Labs:
• Approximately 35% of Teaching Time is lab
• Prolog
 • build a resolution theorem-prover
 • extend with advanced techniques
• try out MSPASS, Vampire
Reading List

• ‘Course Text’:

• Recommended:
Assessment

- Examination (40%)
 - CLOSED book
- Exercises and labs (60%)