Hyperresolution (cont’d)

- There are many variants of resolution. (Refer to Bachmair and Ganzinger (2001), “Resolution Theorem Proving”, for further reading.)
- One well-known example is hyperresolution (Robinson 1965):
 - Assume that several negative literals are selected in a clause D.
 - If we perform an inference with D, then one of the selected literals is eliminated.
 - Suppose that the remaining selected literals of D are again selected in the conclusion.
 - Then we will eliminate the remaining selected literals one by one by further resolution steps.

Craig-Interpolation (cont’d)

Proof of Property [17]
Transform F and $\neg G$ into CNF.
Let N and M, resp., denote the resulting clause sets.
Choose any atom ordering \succ for which the prop. variables that occur in F but not in G are maximal.
Saturate N wrt. Res_S^{-} (with empty selection function S) to get N^{*}. Let
$N' = N^{*} \setminus \{C \mid C \text{ contains a symbol in } F \text{ but not in } G\}$.
I.e. $C \in N'$ iff $C \in N^{*}$ and C contains only symbols in G.
Let $H = \land N'$. Then, clearly $F \models H$. (Why?)
To see that $H \models G$, take $N^{*} \cup M$ and saturate wrt. Res_S^{-}.
This derives \bot, but no inferences are performed on clauses in $N^{*} \setminus N'$.
This implies $N' \cup M \models \bot$ and therefore $H \models G$.

Hyperresolution (cont’d)

- Hyperresolution replaces these successive steps by a single inference.
- As for Res_S^{-}, the calculus is parameterised by an atom ordering \succ and a selection function S.
- But S is the ‘maximal’ selection function, i.e. selects all negative literals in a clause.

Hyperresolution

- Hyperresolution calculus HRes

\[
\begin{array}{c}
C_1 \lor A_1 \ldots \lor C_n \lor A_n \lor \neg B_1 \lor \ldots \lor \neg B_n \lor D \\
\hline
(C_1 \lor \ldots \lor C_n \lor D)\sigma
\end{array}
\]

provided σ is the mgu s.t. $A_1\sigma = B_1\sigma$, \ldots, $A_n\sigma = B_n\sigma$, and
(i) $A_i\sigma$ strictly maximal in $C_i\sigma$, $1 \leq i \leq n$;
(ii) nothing is selected in C_i (i.e. C_i is positive);
(iii) the indicated $\neg B_i$ are exactly the ones selected by S, and D is positive.

- Similarly as for resolution, hyperresolution has to be complemented by a factoring rule. I.e. the ordered positive factoring rule from before.