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Abstract

We present the general theory of the method of glueing and associated technique of
orthogonality for constructing categorical models of all the structure of linear logic: in
particular we treat the exponentials in detail. We indicate simple applications of the
methods and show that they cover familiar examples.

1 Introduction

This paper is a contribution to the model theory of linear logic. We give a concrete account
of some central techniques for constructing categorical models. To some extent these are
implicit in the literature. However we give here a proper abstract formulation of glueing and
orthogonality and so make clear the wide range of possible applications. We have focussed in
particular on the exponentials of linear logic and demonstrate how even this structure may
be handled quite generally.

The techniques we exhibit have a variety of applications, for example to proof theoretic
questions. However we shall not discuss those in detail at this time. Rather we concentrate
on showing how more or less familiar models arise by applications of these techniques. We
are particularly interested in applications to the theory of Abstract Games. That will be the
subject of a companion paper. For a general outline see [37].

We are aware of more abstract formulations and extensions of some of our results, but we
do not strive for maximal generality. Rather we hope to convey the scope and flavour of the
techniques.

The paper is organised as follows. In Section 2, we explain the notions of static categorical
models for linear logic, and give a range of examples. Classical linear logic is self-dual, and we
give a brief account of how corresponding categories arise in Section 3. With this background
in place we turn to the main topics of the paper. Our first central technique is that of glueing.
We give a number of versions in Section 4, and briefly discuss applications. As a technique
for constructing models, glueing becomes truly effective when extended by our second central
technique. In Section 5 we identify a notion of orthogonality for maps in a glued category,
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and show how it can be used to construct various subcategories. When the glued category is
a model for linear logic so usually are our orthogonality categories. We close with a discussion
of examples.

2 Models of linear logic

In this section we make precise the notion of model for linear logic with which we shall be
concerned. We discuss maps between models, survey some examples and close by giving a
simple construction on models.

2.1 Categorical models

In this paper we are concerned with static models for intuitionistic and more particularly
classical linear logic.

Definition 1 A categorical model of intuitionistic linear logic consists of a category which

• is symmetric monoidal closed;

• has finite products;

• is equipped with a linear exponential comonad.

To model the classical calculus we additionally require a strong duality. So a model for
classical linear logic consists of a category which

• is ∗-autonomous;

• has finite products and (so) finite coproducts;

• is equipped with a linear exponential comonad and (so) a linear exponential monad.

Note that in each case there are three components to the categorical structure corre-
sponding to the multiplicative, additive and exponential structure of linear logic. We use this
pattern when presenting models and constructions of models throughout the paper. Some-
times a model of intuitionistic linear logic has coproducts. We allow for this possibility in our
treatment but we do not consider other possibilities such as full intuitionistic linear logic.

A model of intuitionistic linear logic is affine when I - 1 is an isomorphism. We say
that a model of classical linear logic is validates MIX when it supports the mix rule in the
sense of Cockett and Seely [19]: then we have a sensible map mix : ⊥ - I and so coherent
maps A⊗B - A

.................................................
...........
................................... B.

A model of classical linear logic is a model of intuitionistic logic with a strong duality;
the duality implies the existence of dual structures: coproducts where before we had only
products, a second tensor to model par, and a monad such that every free coalgebra comes
with a (natural) commutative monoid structure (with respect to par) modelling ?, or ‘why
not’; but we do not need to dwell on these aspects.

The only part of the structure which perhaps needs explanation is that of a linear ex-
ponential comonad. This is a monoidal comonad (!, ε, δ) such that each free coalgebra is
equipped with the structure of (co)commutative comonoid (e, d), naturally with respect to
maps of coalgebras. Another way of expressing the condition is to say that the image of the
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free functor ! in the category of coalgebras consists of commutative comonoids and comonoid
maps. In fact, it follows that the category of all coalgebras is a category of comonoids and
comonoid morphisms. For the intuitionistic case, the structures involved are given in [11, 12],
or see the corresponding extended exercise in [35]. For a detailed step-by-step development
and all diagrams required to commute, see [15, 16]. The most concise definition (but one not
usually found in the literature) is the following.

Definition 2 We say that a symmetric monoidal category has a linear exponential comonad
if it has a monoidal comonad equipped so that the category of coalgebras is a category of
commutative comonoids (with respect to ⊗).

It should be noted that if a symmetric monoidal closed (or ∗-autonomous) category admits
free commutative comonoids then it certainly has a linear exponential comonad.

In our treatment we shall not bother to distinguish between what is the ‘same’ structure
in different categories; for example we shall use I for the unit and ⊗ for the tensor product
both in C and in models constructed from C.

2.2 Degenerate models

A crucial role in the theory of categorical models is played by the class of degenerate models.
In these the tensor (⊗) and par (

.................................................
...........
................................... ) of linear logic are identified; further the additives ‘with’

(&) and ‘or’ (⊕) are identified, and so are finally the two exponentials ‘of course’ (!) and ‘why
not’ (?). We make this precise as follows.

Definition 3 A degenerate model for classical linear logic consists of a category which

• is compact closed;

• has finite biproducts;

• has a bi-exponential.

The notion of compact closed category (see Kelley and Laplaza [39]) and of biproducts
(see MacLane [45]) are well-known, so we just indicate what is our notion of bi-exponential.
By this we mean a self-dual functor on a compact closed category equipped with the structure
of a linear exponential comonad and so dually with that of a linear exponential monad.

2.3 Maps of models

We need to consider functors between models of linear logic in order to make precise connec-
tions between the various models which we consider. Sometimes we encounter functors which
preserve structure. (While this is not unproblematic in principle it will be for us as structure
is preserved on the nose in the few cases where it is preserved at all. So we do not need the
general analysis of (Blackwell, Kelly and Power [17, 40]). We shall however find very many
more instances of a weaker notion. We shall have functors which are monoidal in the usual
sense and also linearly distributive with respect to the linear exponential comonads.
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Definition 4 Let C, D be models for linear logic. The functor F : C - D is linearly
distributive1 if and only if F is monoidal (with structure mI,mC,C′) and is equipped with a
distributive law in the sense of Beck [9] (see also [48]) κ : !F - F ! respecting the comonoid
structure, in the sense that

I � eF (C)
!F (C)

dF (C)- !F (C)⊗!F (C)

F (I)

mI

?
�
F (eC)

F (!C)

κC

?

F (dC)
- F (!C⊗!C)

m!C,!C ·(κC⊗κC)

?

commutes.

2.4 Examples

Examples derived from basic set theory

Sup lattices. Let
∨

-Lat denote the category of sup lattices. It may be most familiar as
a basic tool in topos theory (see Joyal and Tierney [38]). Concretely it is the category of
complete lattices and

∨

-preserving maps; abstractly it can be identified with the Eilenberg-
Moore category of algebras for the power set monad.

∨

-Lat is a model of classical linear
logic.

Multiplicative structure. The category
∨

-Lat was identified as ∗-autonomous by
Barr [6]. The tensor product A ⊗ B classifies maps A×B - C preserving suprema in
each component; and the linear function space B−◦C is the lattice of all

∨

-preserving maps
from B to C with the pointwise order. Barr notes explicitly that

∨

-Lat is not compact closed.
Note, however, that I = ⊥, so the model is affine.

Additive structure.
∨

-Lat has biproducts so the additive structure is degenerate. In
fact

∨

-Lat has infinite biproducts. (Note moreover that if a category is enriched in
∨

-Lat
and has products (or coproducts) then these are biproducts.)

Exponential structure. We draw attention to the warning contained in Section 11 of
Barr [8]. This should certainly make one doubt whether free comonoids exist in a category
like

∨

-Lat. However the infinite biproducts come to the rescue. Most simply we can define
a free

.................................................
............
.................................. -monoid by the natural formula

⊥ ⊕A⊕ (A
.................................................

...........
................................... A) ⊕ · · ·

and as the infinite ⊕ is a product we get an easy multiplication. Equalizing the actions
of the symmetric groups on the factors gives commutativity. The dual to this is the free
commutative comonoid constructed exactly via the illegitimate formula of Barr [8].

Sets and relations. The category Rel of sets and relations is the Kleisli category of free
algebras for the power set monad. Hence it can be identified with a full subcategory of

∨

-Lat.
All the linear logic structure restricts from

∨

-Lat to Rel, which is a degenerate model for
linear logic. It is presented as such in Barr [8].

1Note that in the presence of products a linearly distributive functor lifts to a functor between the cartesian
closed Kleisli categories of (co)free coalgebras.
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Posets and relations. The category RPos of posets and relations, that is ‘relational
profunctors’, has posets as objects; and maps from a poset A to a poset B are relations
R : A +- B such that

a′ ≥ a R b ≥ b′ implies a′ R b′.

RPos is a degenerate model for linear logic. Again we can identify RPos with a full subcat-
egory of

∨

-Lat and it inherits the structure of a (degenerate) model for linear logic.

Linear logical predicates and totality spaces. The categories LLP of linear logical
predicates and Tot of totality spaces were first considered by Loader (see [43, 44]). Loader
gave full completeness results for his categories and these were reconsidered by Tan [51].

The objects of LLP are sets A equipped with a pair U , X of collections of subsets of A;
that is, U,X ⊆ P(A). A map from (A,U,X) to (B, V, Y ) is a relation R : A +- B such that

R · u ∈ V for all u ∈ U and

Rop · y ∈ X for all y ∈ Y.

Tot is the full subcategory of LLP on objects of (A;U,X) with A =
⋃

U =
⋃

X and
satisfying

u ∈ U if and only if u ∩ x is a singleton for all x ∈ X;

x ∈ X if and only if u ∩ x is a singleton for all u ∈ U.

We shall show that LLP and Tot arise as examples of our general constructions. Hence they
are automatically models of classical linear logic and we omit the concrete details.

Examples derived from linear algebra

Vector spaces. Let Vec be the category of vector spaces and linear maps (over an arbitrary
field). Vec is a model for intuitionistic linear logic.

Multiplicative structure. Vec is symmetric monoidal closed with the standard tensor
product and linear function space.

Additive structure. The direct sum of vector spaces is a biproduct. (This slight degen-
eracy is typical of linear algebra.)

Exponential structure. The existence of the free commutative coalgebra (that is como-
noid) !V on a vector space V is not quite obvious. It follows readily enough by an adjoint
functor argument, but the standard construction [49] is more elementary. First for any coal-
gebra H, the dual H∗ is automatically an algebra; and one has either directly ([49]) or by an
easy adjoint functor argument an adjoint (−)◦ : Alg - CoAlgop so that

Alg(A,H∗) ∼= CoAlg(H,A◦)

naturally in A and H. Now the symmetric algebra S(V ) gives the free commutative algebra
(that is monoid) on a vector space V , and it follows at once that S(V ∗)◦ is the free commu-
tative coalgebra on the double dual V ∗∗. Then the free commutative coalgebra !V on V is
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universal in the following diagram

!V - S(V ∗)◦

V
?

- V ∗∗ ,
?

where !V - S(V ∗)◦ is a map of coalgebras. (So in this instance it is the union of the
subcoalgebras of S(V ∗)◦ which factor through V .)

We can extend these ideas in a couple of different directions. First we can consider
categories of modules over general commutative rings. Secondly we can consider more general
linear categories: for example categories of superspaces and of graded vector spaces.

Finite dimensional vector spaces. Let FdVec be the category of finite dimensional
vector space and linear maps. If K is of characteristic 2 then FdVecK is a degenerate
model of linear logic. The multiplicative and additive structure is inherited from FdVec.
The commutative comonoid comonad on Vec takes one outside FdVec. There is a way to
retrieve the situation in characteristic 2. Observe that the exterior algebra

∧

(V ) is generally
skew-commutative (so that the product a ∧ b of homogeneous elements a and b satisfies
a ∧ b = (−1)deg a deg b(b ∧ a)); but as a result in characteristic 2 this product is commutative.
So

∧

is a linear exponential monad. But
∧

is self-dual so
∧

is also a linear exponential
comonad.

Examples from domain theory

Scott domains and linear maps. Let LinDom be the category defined as follows. The
objects are Scott domains, that is, bounded complete algebraic dcpos with bottom. If A is a
Scott domain we write Ao for its poset of finite elements; A is obtained from Ao by adding
directed limits. The maps are linear maps, that is, functions which preserve all existing
suprema (that is all suprema bounded above, including

∨

∅ = ⊥). LinDom is an affine
model for intuitionistic linear logic.

Multiplicative structure. The tensor product A⊗B classifies maps A×B - C linear
in each argument; the linear function space B −◦ C consists of all linear maps from B to C
under the pointwise order. This gives a symmetric monoidal closed structure.

Additive structure. The product of domains is the usual product.

Exponential structure. We can describe the linear exponential comonad in terms of
finite elements. Given A we let (!A)o be the poset obtained by freely adding bounded finite
suprema to Ao. We complete (!A)o with respect to directed limits to give !A.

The Kleisli category for the comonad is the usual category of Scott domains and continuous
maps. Other cartesian closed categories of domains and continuous maps can be treated in
the same way.

Scott domains and strict maps. The familiar example of Scott domains and (continuous
but) strict maps, StrictDom, is a simpler version of the previous one. Again we have an
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affine model for intuitionistic linear logic. The tensor product A ⊗ B is the smash product
A ∧ B, the linear function space B −◦ C consists of all strict maps from B to C under the
pointwise order, the product of domains is the usual product, the linear exponential comonad
is given by lifting. The Kleisli category for the comonad is again the usual category of Scott
domains and continuous maps.

Examples from stable domain theory

dI domains and linear maps. Let dIDom be the category of dI domains (see [13, 14])
and stable linear maps: stability is the familiar condition

f(a ∧ b) = f(a) ∧ f(b)

for all compatible a and b. dIDom is a model for intuitionistic linear logic.

Multiplicative structure. The tensor productA⊗B classifies maps A×B - C stable
and linear in each argument; the linear function space B−◦C consists of all stable linear maps
from B to C under the stable order. This gives a symmetric monoidal closed structure.

Additive structure. The product of dI domains is the usual product of domains.

Exponential structure. A dI domainA is generated by the subposetAp of prime algebraic
elements. We construct !A so that (!A)p = Ao, but with the discrete order. Then !A consists
of all subsets of Ao whose join in A exists, ordered by subset inclusion.

The Kleisli category for the comonad is the usual category of dI domains and stable
continuous maps.

Qualitative domains. A qualitative domain (see [28]) (R,U) is a set R equipped with a
collection U of subsets of R satisfying

• ∅ ∈ U and {r} ∈ U for all r ∈ R;

• u′ ⊆ u ∈ U implies u′ ∈ U ;

• U is closed under directed unions.

Thus U is a dI domain with prime elements {r} for r ∈ R. Let QDom be the full subcategory
of dIDom consisting of qualitative domains. QDom inherits the structure of a model of
intuitionistic linear logic from dIDom. (Note that the exponential of any dI domain is in
fact a qualitative domain.)

Coherence spaces. A coherence space (see [29, 30]) is a graph (that is a reflexive relation
_
^) on a set R. Given (R,_^) let U be the collection of cliques in R. Then (R,U) is a
qualitative domain. Let Coh be the full subcategory of QDom on the coherence spaces.
This category inherits the structure of a model of intuitionistic linear logic, but now more
is true: The graph (R,^_) dual to (R,_^) gives a qualitative domain (R,X) where X is the
collection of co-cliques in (R,_^). This induces a duality on Coh so that Coh is in fact a
model of classical linear logic. Its structure can, of course, be given entirely based in terms
of sets (with coherence structure) and relations, which is the format usually found in the
literature. We will identify the structure in yet another way in Section 5.
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Categories of games

Simple games. Let Gam be the category whose objects are games in which Opponent
starts and whose maps are (partial deterministic) strategies for Player in the linear function
space. (This simple category is described in detail in [35], see also [2].) Gam is an affine
model for intuitionistic linear logic.

Multiplicative structure. The tensor product A ⊗ B is the game obtained by playing
A and B in parallel; the linear function space B −◦ C is the game obtained by playing the
cogame B⊥ (interchanging Opponent and Player) in parallel with C.

Additive structure. In the product A ×B, Opponent chooses to play in one or other of
A and B and then the game continues in that component.

Exponential structure. Play in !A is in effect play in an infinite sequence of copies of A.
At any stage Opponent can play in any game already begun or can choose to start the next
version of A in the sequence.

Sequential algorithms. Filiform concrete data structures [21] can be regarded as games.
Let FCDS be the category of games Gam but equipped with a more sophisticated structure
making it a model of intuitionistic linear logic. We take the same multiplicative and additive
structure as before but change the exponential to the following.

Curien exponential. This exponential is obtained by allowing Opponent to play many
strands of the game A. At any point Opponent may return to an earlier Player move and
play a fresh response to it; Player must always respond to the last Opponent move (and
therefore cannot change strands). The Kleisli category for this comonad is the category of
filiform concrete data structures and sequential algorithms.

Games with protocols. The extreme case is a category InnGam of games and innocent
strategies. This can be formulated to give an affine model for intuitionistic logic, though
what is published does not quite do this. The corresponding Kleisli category is the basis
for a semantics for PCF [33, 46] . Innocence involved two distinct protocols, visibility and
bracketing (a stack discipline). Each on its own leads to a model for intuitionistic linear logic.

History-free games. A particularly interesting example is a category HFGam of games
and history-free strategies [3, 4, 5]. This gives a model for intuitionistic linear logic, but
without products. The corresponding co-Kleisli category again is a basis for a semantics
for PCF. (The lack of products leads to an interesting point. The simple dualization (see
Section 3) HFGamd is not a model for classical linear logic (even disregarding the problem
of the additives). But there is a category apparently very like it [3] which is.)

Graph games. Recently we have discovered a category GGam of graph games, that is
games played on directed graphs rather than simply trees of positions. This produces yet
another affine model for intuitionistic linear logic. There is a close relation between this and
categories of abstract games which model classical linear logic [37].
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2.5 Comonoid indexing

For completeness we mention one simple technique for constructing models which we have
found useful in the theory of abstract games [37].

Assume that K is a comonoid in a monoidal category C, so that we have maps

I �e
K

d- K ⊗K

satisfying the usual identity and associativity equations. Given such a comonoid, tensoring
with K induces a comonad on C in the standard way. We consider the (Kleisli) category
CK of free coalgebras for this comonad: objects of CK are objects of C, maps from C to D
in CK are given by maps K ⊗ C - D in C. We are are interested in finding conditions
on C which make the Kleisli category CK a model of linear logic. Since the (co)free functor
C - CK , the right adjoint of the standard adjunction between C and CK , is the identity
on objects and takes f : C - D in C to e⊗ f : K ⊗ C - I⊗D ∼= D in CK , most of
structure automatically lifts from C to CK .

Multiplicative structure. The basic results are straightforward. The proof of the follow-
ing is routine.

Proposition 2.1 Let K be a commutative comonoid in a symmetric monoidal category C.

(i) CK is a symmetric monoidal category, and CK
- C preserves the structure.

(ii) If C is also closed, then so is CK, and CK
- C preserves the structure.

(iii) If C is ∗-autonomous then so is C and CK
- C preserves the structure.

Additive structure. The existence of products on C is enough to ensure the same for CK

as the functor C - CK is a right adjoint, and surjective on objects. Coproducts, on the
other hand, are slightly more complicated. To obtain a natural isomorphism

CK(C +D,E) ∼= CK(C,E) ×CK(D,E),

we need a natural isomorphism C(K⊗ (C+D), E) ∼= C(K⊗C,E)×C(K⊗D,E). So we ask
that tensor distributes over sum—which is true for symmetric monoidal closed categories. It
is not difficult to show that with this assumption we do indeed get the desired coproducts.

Proposition 2.2 Let K be a commutative comonoid in a symmetric monoidal category C.
If C has products then so has CK, and C - CK preserves them.
If C has coproducts over which tensor distributes (so in particular if C has coproducts and is
closed) then CK has coproducts and C - CK preserves them.

Exponential structure. Assume that C is a symmetric monoidal category with a linear
exponential comonad.

Definition 5 Let C be a model for intuitionistic linear logic, and K a commutative comonoid
in C. We say that K is an exponential comonoid if K is a coalgebra for ! and the comonoid
structure on K is the one canonically derived from that on !K.
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Then CK inherits the linear exponential from C via the functor C - CK . By functo-
riality, the only equations still to be checked are the ones involving generic morphisms in CK ,
in other words we just check that all the transformations are natural with respect to maps
in CK .

Proposition 2.3 Let C be a model for intuitionistic linear logic and let K be an exponential
comonoid in C. Then CK has a linear exponential comonad.

Theorem 2.4 Let C be a model for classical (intuitionistic) linear logic and K an exponential
comonoid in C. Then CK is a model for classical (intuitionistic) linear logic.

3 Dualization

In models for classical linear logic negation is interpreted by a self-duality. In this section
we give a brief survey of some methods for creating self-dual categories; and we identify
conditions ensuring that they give models for linear logic.

3.1 Simple self-dualization

Suppose that we are given a category C. There is a natural way of creating a category with
duality: we consider Cd := C×Cop. This category is self-dual under ‘swapping components’:
we have a functor (−)⊥ : Cd - (Cd)

op
with (U,X)⊥ = (X,U), and with the obvious action

on morphisms. The functor (−)⊥ clearly is a self duality.
In general the duality on Cd is not particularly noteworthy. However it is an important

fact that if C carries enough structure then Cd will be a model of classical linear logic.
Since (in the presence of a terminal object) one can regard Cd as a degenerate form of Chu’s
construction [6], the result for the multiplicatives and additives should be well known. It
still seems worth pointing out just how little is needed to make this work. In particular this
construction can be used in situations where the general Chu construction does not have good
structure, such as for the category Rel. The exponentials are in any case quite subtle.

Multiplicative structure. We start with the multiplicatives.

Proposition 3.1 If C is a symmetric monoidal closed category with finite products, then Cd

is ∗-autonomous. The structure is given as follows.

(i) The duality (negation) is defined as above by (U,X)⊥ = (X,U).

(ii) The tensor product of A = (U,X) and B = (V, Y ) is given by

A⊗B = (U ⊗ V,U −◦ Y × V −◦X) ;

the unit for the tensor product is I = (I,1).

From negation and tensor product we get the linear function space. If A = (U,X) and
B = (V, Y ) then it is given by

A−◦ B = (A⊗B⊥)
⊥

= (U −◦ V × Y −◦X,U ⊗ Y ).
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Additive structure. We next cover the additives.

Proposition 3.2 If C has finite products and coproducts, then so does Cd. The products are
given as follows.

(U,X) × (V, Y ) = (U × V,X + Y ) ;

the unit for the product is 1 = (1,0). Coproducts are given by the obvious dual process or
equivalently by applying (−)⊥. So

(U,X) + (V, Y ) = (U + V,X × Y ) ;

the unit for the product is 0 = (0,1).

This result is really a triviality. In fact, if C has limits of shape J and colimits of shape Jop

then Cd has limits of shape J (and colimits of shape Jop).

Exponential structure. Finally we consider the exponentials. Some special cases of this
are known, but the structure on C we assume to give the general case is quite subtle. Of
course we shall assume that C has a linear exponential comonad; this handles the structure in
the first coordinate of Cd straightforwardly. It is the structure in the second coordinate which
presents the challenge. We assume that C is equipped with a monad (M,η, µ), whose (free)
algebras are naturally commutative monoids with respect to product as monoidal structure,
and which has a generalized tensorial strength τ : M(−)⊗! − - M(−⊗!(−)) satisfying
conditions ensuring that !-coalgebras act on M -algebras. We say in this case that C has
well-adapted monoids. The details will be made available in a companion paper [34].

Proposition 3.3 Let C be a model for intuitionistic linear logic with well-adapted monoids.
Then C×Cop has a linear exponential comonad !(U,X) = (!U, !U −◦M(X)).

Putting the above propositions together we have the following.

Theorem 3.4 Let C be a model for intuitionistic linear logic with finite coproducts and well-
adapted monoids. Then Cd is a model for classical linear logic.

Examples 3.5 (1) Abramsky and Jagadeesan use this construction in [3]. Their underlying
category of games is of the form G×Gop, where G is a simple category of games and where
they restrict morphisms to winning strategies. Note however that we cannot give the same
simple abstract account of their category of games and history-free (winning) strategies.

(2) More recently, Bellin has made use of this construction in his analysis of the meaning
of the long trip condition. In [10] he considers Cd where C is the free symmetric monoidal
category with finite products.

(3) In our work on categories of abstract games (see [37] for an outline) we apply the con-
struction to Rel. Of course Rel is a degenerate model of classical linear logic and so it is in
any case self-dual. However, the resulting Reld is definitely non-degenerate.

(4) Interesting models can be obtained by iterating the construction (−)d. Even as simple

a category as (Setd)
d

admits a reading as a category of abstract games in which the four
component sets making up an object are strategies for Player/Opponent, playing first/second.
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Note that if C is an affine model for intuitionistic linear logic (with finite coproducts)
then Cd is a model for classical linear logic that validates MIX.

3.2 Dialectica categories

Simple self-dualization can be regarded as a special case of the Dialectica-style categories
suggested by Girard and developed by de Paiva in her thesis [24] and elsewhere [23]. We
briefly indicate the general set-up.

Suppose that C is a symmetric monoidal category, and suppose that it is equipped with
a self-dual poset fibration P - C (or a functor Cop - Poset). This means that each
P(C), C ∈ C, is a poset P(C) = (P(C),`) equipped with a self-duality (−)⊥, and that this
structure is preserved by re-indexing. We use the obvious set theoretic notation to indicate
reindexing. We define the Girard category G = G(P - C) as follows:

• Objects. The objects of G are pairs (U,X) of objects of C equipped with α ∈ P(U⊗X).

We write such an object as (U �
α

+ X).

• Maps. The maps of G from (U �
α

+ X) to (V �
β

+ Y ) are pairs of maps f : U - V

and F : Y - X in C such that

α(u⊗ F (y)) ` β(f(u) ⊗ y) in P(U ⊗ Y ).

It is easy to see that G is a category and that it is equipped with a self-duality

(U �
α

+ X)⊥ = (X �
α⊥

+ U).

Multiplicative structure. We start with the multiplicatives.

Proposition 3.6 Suppose that C is a symmetric monoidal closed category with finite products
and suppose that P is a ∗-autonomous poset fibration. (P already has a self-duality so it
suffices that it have a suitable binary tensor product.) Then G is ∗-autonomous. The structure
is given as follows.

(i) The duality (negation) is defined as above by (U �
α

+ X)⊥ = X �
α⊥

+ U .

(ii) The tensor product of A = U �
α

+ X and B = V �
β

+ Y is given by

A⊗B = (U ⊗ V �
ϑ

+ U −◦ Y × V −◦X) ;

where ϑ(u⊗ v ⊗ (φ, ψ)) is α(u⊗ ψ(v)) ⊗ β(v ⊗ φ(u)) ∈ P(U ⊗ V ⊗ (U −◦ Y × V −◦X)). The
unit for the tensor product is I = (I,1) in the natural internal logic.

From negation and tensor product we get the linear function space. If A = U �
α

+ X and

B = V �
β

+ Y then it is given by

A−◦B = (A⊗B⊥)
⊥

= (U −◦ V × Y −◦X �
ω

+ U ⊗ Y )

where ω((f, F )⊗ u⊗ y) = α(u⊗F (y)) −◦ β(f(u)⊗ y) again in the internal logic. (Here −◦ is
the linear function space in the ∗-autonomous poset P((U −◦ V × Y −◦X) ⊗ U ⊗ Y ).)
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Additive structure. We next deal with the additives. Here we must require substantially
more basic structure than in the case of simple dualization.

Proposition 3.7 Suppose that C is monoidal and has finite products and coproducts where
the tensor distributes over coproducts. Suppose also that the poset fibration P has finite meets
and joins and that we have poset isomorphisms

P(0) ∼= 1 and P(C +D) ∼= P(C) ×P(D)

natural in C and D. Then the category G has finite products and coproducts. The products
are given as

(U �
α

+ X) × (V �
β

+ Y ) = (U × V
ϑ

+- X + Y )

where ϑ ∈ P((U ×V )⊗ (X +Y )) ∼= P((U ×V )⊗X)×P((U ×V )⊗Y ) is α(u⊗x)∧β(v⊗ y).
The unit for product is (1 �+ 0) with unique choice of relation in P(0 ⊗ 1) ∼= P(0) ∼= 1.

Coproducts are given by the obvious dual process or equivalently by applying (−)⊥. So

(U �
α

+ X) + (V �
β

+ Y ) = (U + V �
ω

+ X × Y )

where ω ∈ P((U+V )⊗(X×Y )) ∼= P(U⊗(X×Y ))×P(V ⊗(X×Y )) is α(u⊗x)∨β(v⊗y). The
unit for the coproduct is (0 �+ 1) with unique choice of relation in P(0 ⊗ 1) ∼= P(0) ∼= 1.

Exponential structure. The situation is similar to that for simple dualization. We assume
again that C has well-adapted monoids and we assume that the action of the comonad M

extends in a natural way to P. We say then that the poset fibration P - C has well-
adapted monoids. We shall give details in a companion paper [34].

Proposition 3.8 Let C be a model for intuitionistic linear logic and let P - C be a
∗-autonomous poset fibration with well-adapted monoids. Then G has a linear exponential
comonad.

Putting the above propositions together we have the following.

Theorem 3.9 Let C be a model for intuitionistic linear logic with finite coproducts and well-
adapted monoids. Then G is a model for classical linear logic.

Example. The simplest example of the situation we describe is the subset fibration over
the category of sets. This has well-adapted monoids via the finite multiset monad (whose
algebras are exactly the commutative monoids). The resulting model of classical linear logic
has particular interest as if one applies the Girard translation to it one gets the Diller-Nahm
variant of Gödel’s Dialectica interpretation [27, 26].

3.3 Chu’s construction

Simple self-dualization can also be thought of as a special case of Chu’s construction [18, 8].
We briefly recall the essentials. Suppose that K ∈ C is an object in a symmetric monoidal
category C. The category Chu(C,K) is defined as follows.

• Objects of Chu(C,K) are pairs (U,X) of objects of C with a map U ⊗X
α- K.

13



• Maps from U ⊗X
α- K to V ⊗ Y

β- K in Chu(C,K) are given by pairs of maps
f : U - V , F : Y - X in C such that

α · (id ⊗ F ) = β · (f ⊗ id).

(Often one writes this condition suggestively as α(u, F (y)) = β(f(u), y) or even (omit-
ting the names of the structure maps) 〈u, F (y)〉 = 〈f(u), y〉.)

It is easy to see that Chu(C,K) is a category and that it is equipped with a self-duality

(U ⊗X
α- K)

⊥

= (X ⊗ U
α·σ- K)

using the twist σ : X ⊗ U - U ⊗X .

Multiplicative structure. We start with the multiplicatives.

Proposition 3.10 Suppose that C is a symmetric monoidal closed category with finite limits.
Then Chu(C,K) is ∗-autonomous. The structure is given as follows.

(i) The duality (negation) is defined as above by (U ⊗X
α- K)

⊥

= (X ⊗ U
α·σ- K).

(ii) The tensor product of A = (U ⊗X
α- K) and B = (V ⊗ Y

β- K) is given by

A⊗B = ((U ⊗ V ) ⊗ P
ϑ- K) ;

where P lies in a pullback diagram

P - V −◦X

U −◦ Y
?

- U ⊗ V −◦K
?

where the map U −◦ Y - U ⊗ V −◦K, for example, is the transpose of β combined with the
evaluation map. The map ϑ is the transpose of the map P - U ⊗ V −◦K in the pullback

diagram. The unit for the tensor product is I⊗K
λ- K given by the left identity for tensor.

As for the Dialectica categories it is routine to define the linear function space and check
the required adjunctions.

Additive structure. We next deal with the additives.

Proposition 3.11 If C has finite products and coproducts then so does Chu(C,K). The
products are given as

(U ⊗X
α- K) × (V ⊗ Y

β- K) = ((U × V ) ⊗ (X + Y )
α×β- K),

where since (U × V ) ⊗ (X + Y ) ∼= (U × V ) ⊗X + (U × V ) ⊗ Y , we can define α × β to
correspond to the map (U × V ) ⊗X + (U × V ) ⊗ Y - K having components α · (π1 ⊗ id)
and β · (π2 ⊗ id). The unit for the product is the unique map 1 × 0 ∼= 0 - K.
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Coproducts are given by the obvious dual process or equivalently by applying (−)⊥. So

(U ⊗X
α- K) + (V ⊗ Y

β- K) = ((U + V ) ⊗ (X × Y )
α+β- K),

where α+β corresponds to the map U ⊗ (X × Y ) + V ⊗ (X × Y ) - K having components
α · (id ⊗ π1) and β · (id ⊗ π2). The unit for the coproduct is the unique map 0⊗ 1 - K.

Exponential structure. As we observed in Section 2, if a symmetric monoidal closed or
∗-autonomous category admits free commutative comonoids then it certainly has a linear
exponential comonad. In a couple of papers Barr ([8, 7]) has investigated the existence of
exponentials of this form. In the most general setting the result is rather special.

Proposition 3.12 (Barr) Let C be a complete and cocomplete cartesian closed category
and K an internal cogenerator. Then the category of separated object in Chu(C,K) has free
commutative comonoids.

In the context of accessible categories one has a much more general result.

Proposition 3.13 (Barr) Let C be a locally presentable symmetric monoidal closed category
and K an internal cogenerator. Then Chu(C,K) has free commutative comonoids.

(The notion of an internal cogenerator depends on a suitable factorization system, but we do
not go into that.)

Both Barr’s results lead to models of full classical linear logic; and the second result applies
very widely. However there are important cases which it does not cover. One natural example
is the category Rel of sets and relations with K set equal to 0. Chu(Rel,0) is Rel×Relop

and our Section 3.1 applies to give a model of full classical linear logic. But of course Rel is
not complete and 0 is not an internal cogenerator.

The methods we have used earlier in this section are algebraic in nature, and they can also
be applied in the case of Chu constructions. The structure needed in addition to well-adapted
monoids is that of a strength (with respect to product) for the monad functor M which is
well-behaved with respect to the monoid operations. The details will be given in a companion
paper [34].

Proposition 3.14 Let C be a model for intuitionistic linear logic with well-adapted monoids
and a suitable strength. Then Chu(C,K) has a linear exponential comonad.

Putting the above propositions together we have the following.

Theorem 3.15 Let C be a model for intuitionistic linear logic with finite limits, finite co-
products and well-adapted monoids as well as a suitable strength. Then Chu(C,K) is a model
for classical linear logic.

4 Glueing

4.1 Glueing for intuitionistic linear logic

Before starting our treatment of double glueing we recall some basic facts about the standard
form of glueing for models of intuitionistic linear logic. With the possible exception of the
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material on the exponentials this is pretty much folklore; anyone familiar with glueing in
categorical logic generally and for toposes in particular will find no surprises.

Suppose L : C - E is a functor. The category G = G(L) obtained by glueing along L
is the comma category obtained from

E
id- E �L

C.

(So MacLane [45] would write this category (id ↓ L).)
The G lies in a lax pullback diagram

G - E

⇓

C
?

L
- E.

id

?

G can be described explicitly as follows.

• Objects (R,U, (U - L(R))) = (U - L(R)) of G consist of an object R ∈ C, an
object U ∈ E and a map U - L(R) of E.

• Maps from (U - L(R)) to (V - L(S)) in G are given by commuting diagrams
in E

U - L(R)

V

φ

?
- L(S),

L(f)

?

where f : R - S in C and φ : U - V in E.

Often we consider full subcategories of G which are obtained by restricting the structure
maps U - L(R) which occur. Typically we ask that U - L(R) be a monomorphism
(or regular monomorphism—there are many possible variations). We shall not introduce any
special notation for such subcategories: we shall just refer to the glued category G and the
context should make it clear which glued category is meant.

We start by supposing that C and E are symmetric monoidal and that L is a monoidal
functor in the usual lax sense. We write the monoidal structure as

I
mI- L(I) and L(R) ⊗ L(S)

mR,S- L(R⊗ S).

Proposition 4.1 G is a symmetric monoidal category where the unit is (I
mI- L(I)) and

the tensor of (U - L(R)) and (V - L(S)) is given by

U ⊗ V - L(R) ⊗ L(S)
mR,S- L(R⊗ S).

The forgetful functors G - C and G - E are strict monoidal functors.

We get the basic facts about models for linear logic by adding to this structure.
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Multiplicative structure. We first add linear function spaces. Note that if C and E are
symmetric monoidal closed then from m we obtain a natural transformation

L(S −◦ T ) - L(S) −◦ L(T ),

and we use m to denote this, too.

Proposition 4.2 Suppose C and E are symmetric monoidal closed and E has pullbacks.
Then G is symmetric monoidal closed and G - C is a strict map of symmetric monoidal
closed categories.

Proof. The function space (V - L(S))−◦ (W - L(T )) is the map (Q - L(S −◦ T ))
from the pullback

Q - V −◦W

L(S −◦ T )
?

m
- L(S) −◦ L(T ) - V −◦ L(T ).

?

The general verifications are routine. 2

Additive structure. It turns out that there is no reason to treat products and coproducts
separately, even though we are treating the intuitionistic case here.

Proposition 4.3 (i) Suppose C has finite products and E has pullbacks. Then G has finite
products and G - C preserves them strictly.

(ii) Suppose C and E have finite coproducts. Then G has finite coproducts and both functors
G - C and G - E preserve them strictly.

Proof. (i) The terminal object is L(1)
id- L(1); and the product of (U - L(R)) and

(V - L(S)) is the map P - L(R× S) in the double pullback diagram

U � P - V

L(R)
?

�
L(π1)

L(R× S)
?

L(π2)
- L(S).

?

Again the verifications are routine.

(ii) The initial object is the unique (0 - L(0)); the coproduct of (U - L(R)) and
(V - L(S)) is the obvious composite (U + V - L(R) + L(S)

[L(inl),L(inr)]
- L(R+ S). 2
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Exponential structure. We finally turn to the linear exponentials.

Proposition 4.4 Suppose C and E have linear exponential comonads and L : C - E is
linearly distributive. Then G has a linear exponential comonad and G - C preserves it
strictly.

Proof. In addition to the monoidal structure we have κ : !L - L! satisfying the conditions
of Definition 4. We set !(U - L(R)) to be

!U - !L(R)
κR- L(!R).

The rest of the structure falls easily into place and the verifications are routine. 2

Examples and applications.

Examples 4.5 (1) Logical relations. Glueing is the abstract mathematical counterpart
of the technique of logical relations. For example we may take C to be Set × Set, E to be
Set and L : C - E given by L(A,B) = A× B. Then the monomorphisms version of the
glued category G is the simplest category of logical relations: its objects are relations between
sets. Note in passing that the category Chu(G, 2) (where 2 is the identity relation on the two
element set) is the category of Chu logical relations of [25]. We give another identification of
their category later.

(2) Indecomposability. Glueing was first introduced by Freyd to give neat proofs of pro-
jectivity and indecomposability results for toposes. One can readily adapt this argument. Let
C be the free symmetric monoidal closed category with coproducts on a collection of objects.
Let G be obtained by glueing along C(I,−) : C - Set. As C is free we have a structure

preserving functor C - G given by taking generators A to (C(I, A)
id- C(I, A)); and

the composite C - G - C is the identity. A map I - R+ S in C thus maps to

({idI} - C(I, I)) - (U + V - C(I, R+ S))

in G; idI maps to either U or V , and so I maps to one of R and S. Thus

C(I, R+ S) ∼= C(I, R) + C(I, S),

and I is indecomposable. This argument scales up to the free model for intuitionistic linear
logic with coproducts.

(3) Conservativity. Lafont found a neat way to use glueing to give conservative exten-
sion results. His ideas apply here. Suppose M is a symmetric monoidal category and
Φ: M - C is obtained by freely adding closed structure. Let E be [Mop,Set] which
is symmetric monoidal closed with the Day tensor product, and let L : C - E be given
by L(R) = C(Φ(−), R). Let G be the glued category. There is an obvious map M - G

taking A to (M(−, A)
Φ- C(Φ(−),Φ(A))) which extends by freeness to one C - G. The

composite C - G - C is the identity. If A,B ∈ M, a map Φ(A) - Φ(B) in C gives
a map (M(−, A) - C(Φ(−),Φ(A))) - (M(−, B) - C(Φ(−),Φ(B))) in G and then
by a Yoneda argument we see that Φ is full and faithful. This principle scales up to a number
of other free extensions.
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4.2 Double glueing for intuitionistic linear logic

The general case

In this section we give a brief outline of a general construction without pausing to take care
of detailed proofs.

Suppose first that L : C - E and K : C - E∗ are functors from C to two categories
E and E∗. The double glued category G = G(L,K) is the universal object lying in the lax
limit diagram

G

⇒ ⇒

E �
L

�
C
?

K
- E∗.

-

(Note that the direction of the two cells means that we cannot write G as a comma category.)
G can be described explicitly as follows.

• Objects (R,U,X, (U - L(R)), (K(R) - X)) = (U - L(R), K(R) - X)
of G consist of object R ∈ C, U ∈ E, X ∈ E∗ and maps U - L(R) in E as well as
K(R) - X in E∗.

• Maps from (U - L(R), K(R) - X) to (V - L(S), K(S) - Y ) in G are
given by pairs of commuting diagrams

U - L(R)

V

φ

?
- L(S)

L(f)

?

K(R) - X

K(S)

K(f)

?
- Y

ψ

?

in E and E∗ respectively.

Again we are often interested in full subcategories obtained by restricting the structure
maps U - L(R) andK(R) - X which occur. (Typically we require U - L(R) monic
and K(R) - X epic.) Again we introduce no special notation for such full subcategories.

With a view to applications to linear logic we specialize by taking E∗ to be the opposite
E∗ = Eop of the category E. Thus the double glued category can be taken to consist of
objects R ∈ C, U,X ∈ E and maps U - L(R), X - K(R) in E. (In our restricted
categories we shall typically take both structure maps to be monic.)

In this situation there is not much difference between the structure required to make G
symmetric monoidal and that to make it symmetric monoidal closed. So we turn at once to
describing the multiplicative structure.

Multiplicative structure. We assume without further comment that L : C - E is
monoidal with structure mI : I - L(I) and mR,S : L(R) ⊗ L(S) - L(R⊗ S). We de-
scribe what further we need to make G a model of the multiplicative fragment of intuitionistic
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linear logic. We shall certainly need the conditions from Propositions 4.2. In addition we need
structure linking L : C - E and K : C - Eop. We assume that we have a contraction

kR,S : L(R) ⊗K(R⊗ S) - K(S)

which is natural in S, dinatural in R and such that the following diagrams commute

I⊗K(S)
λS - K(S)

L(I) ⊗K(I⊗ S)

mI⊗K(λ−1
S

)

?

kI,S

- K(S)

id

?

L(R) ⊗ L(S) ⊗K(R⊗ S ⊗ T )
σR⊗S⊗id- L(S) ⊗ L(R) ⊗K(R⊗ S ⊗ T )

L(S) ⊗K(S ⊗ T )

id⊗kR,S⊗T

?

L(R⊗ S) ⊗K(R⊗ S ⊗ T )

mR,S⊗id

?

kR⊗S,T

- K(T ).

kS,T

?

We note that using the closed structure in E we obtain from k two natural transformations

K(R⊗ S) - L(R) −◦K(S)

L(R) - K(R⊗ S) −◦K(S).

We can combine these with the closed structure in C to obtain natural transformations

K(T ) - L(S −◦ T ) −◦K(S)

L(S −◦ T ) - K(T ) −◦K(S)

respectively; and treating the original k similarly we obtain the natural transformation

L(S) ⊗K(T ) - K(S −◦ T ).

For our purposes these are all manifestations of the same structure and we let k denote any
of these versions.

Proposition 4.6 Suppose C and E are symmetric monoidal closed, E with pullbacks, and
L, K equipped with a contraction. Then G is symmetric monoidal closed and G - C is a
strict map of symmetric monoidal closed categories.
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Proof. Take A = (U - L(R), X - K(R)), B = (V - L(S), Y - K(S)) and
C = (W - L(T ), Z - K(T )) in G. The tensor of A and B is

A⊗B = (U ⊗ V - L(R) ⊗ L(S)
mR,S- L(R⊗ S), P - K(R⊗ S))

where P - K(R⊗ S) lies in the double pullback diagram

U −◦ Y � P - V −◦X

U −◦K(S)
?

� L(R) −◦K(S) �
k
K(R⊗ S)

?

k
- L(S) −◦K(R) - V −◦K(R).

?

The unit for the tensor is

I = (I
mI- L(I), K(I)

id- K(I)).

The linear function space B −◦ C is

B −◦ C = (Q - L(S −◦ T ), V ⊗ Z - L(S) ⊗K(T )
kS,T- K(S −◦ T )),

where Q - L(S −◦ T ) lies in the double pullback diagram

V −◦W � Q - Z −◦ Y

V −◦ L(T )
?

� L(S) −◦ L(T ) �
m

L(S −◦ T )
?

k
- K(T ) −◦K(S) - Z −◦K(S).

?

One can check that indeed G(R ⊗ S, T ) ∼= G(R,S −◦ T ) naturally in R, S, and T . 2

Remark. The tensor in G does not require the closed structure in C.

Additive structure. The conditions giving additive structure are simple but maybe not
completely obvious. Again there is no reason to treat products and coproducts separately.

Proposition 4.7 Suppose E has pullbacks and finite coproducts.

(i) If C has finite products then so has G and G - C preserves them strictly.

(ii) If C has finite coproducts then so has G and G - C preserves them strictly.

Proof. (i) The terminal object is

(L(1)
id
- L(1), 0 - K(1));

the product of A = (U - L(R), X - K(R)) and B = (V - L(S), Y - K(S)) is

A×B = (P - L(R× S), X + Y - K(R) +K(S)
K[π1,π2]

- K(R× S)),
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where P - L(R× S) lies in the double pullback

U � P - V

L(R)
?

� L(R× S)
?

- L(S).
?

(ii) The initial object is

(0 - L(0), K(0)
id- K(0));

the coproduct of A = (U - L(R), X - K(R)) and B = (V - L(S), Y - K(S))
is

A+B = (U + V - L(R) + L(S) - L(R+ S), Q - K(R+ S))

where Q - K(R+ S) lies in the double pullback

X � Q - Y

K(R)
?

� K(R+ S)
?

- K(S).
?

2

Exponential structure. To obtain additive structure for double glueing we took that for
simple glueing and sorted out what happens in the second component. There is a very simple
way to do this for the exponentials, and that is basically to ignore the second component.
There are more general possibilities, but it does not seem worth describing an abstract frame-
work: that just amounts to analysing the requirements. We give an example in the more
concrete setting of the next section, and for the moment restrict ourselves to the crude expo-
nential. We assume as background enough structure to ensure that G is symmetric monoidal;
with that in place we have the following.

Proposition 4.8 Suppose C and E have linear exponential comonads and L : C - E is
linearly distributive. Then G has a linear exponential comonad and G - C preserves it
strictly.

Proof. We define the exponential of A = (U - L(R), X - K(R)) to be

!A = (!U - !L(R)
κR- L(!R), K(!R)

id- K!(R)).

The rest of the structure is easy to construct: the first component works as in the proof of
Proposition 4.4 and there is only one sensible choice for the second. 2

Theorem 4.9 Suppose that C is a model for intuitionistic linear logic and that E is sym-
metric monoidal closed, has pullbacks and finite coproducts as well as a linear exponential
comonad. Further suppose that L is linearly distributive and that L and K are linked via a con-
traction. Then G is a model for intuitionistic linear logic. The forgetful functor G(C) - C
is a strict functor of such models.
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Double glueing along hom-functors

In this section we describe in greater detail a useful simple special case of the double glueing
construction, namely that of glueing along hom-functors to the category of sets. We specialize
further by considering only the case where the structure maps are monomorphisms (that is,
injections).

Suppose that C is a symmetric monoidal closed category, and let J be any object in C.
We consider glueing for the functors C(I,−) : C - Set and C(−, J) : C - Setop. We
describe the glued category GJ(C) explicitly as follows:

• Objects A = (R,U,X) of GJ(C) are given by an object R of C together with sets

U ⊆ C(I, R) and X ⊆ C(R, J).

• Maps in GJ(C) from (R,U,X) to (S, V, Y ) are given by maps f : R - S in C such
that:

– for all I
u- R in U , I

u- R
f- S is in V and

– for all S
y- J in Y , R

f- S
y- J is in X.

We need a notation for generalized composition. Given h : R⊗ S - J and v : I - S,
we define 〈v|h〉S : R - J to be

R ∼= R⊗ I
idR⊗v- R⊗ S

h- J.

We can think of this as the result of cutting on the formula S. Provided with some u : I - R

we can similarly define 〈u|h〉R : S - J , this time cutting on R. (If h : R⊗R - J , then
this notation is ambiguous; there are two composites which have the same name. We shall
draw attention to the only occasion where this case arises.)

Multiplicative structure. We give rather more detail than we did for the general case
described in Proposition 4.6.

Proposition 4.10 If C is a symmetric monoidal closed category then so is GJ(C), and the
forgetful functor GJ (C) - C preserves the structure. The structure is defined as follows.

• The tensor unit is I = (I, {idI},C(I, J)).

• The tensor product of A = (R,U,X) and B = (S, V, Y ) is

A⊗B = (R⊗ S,U ⊗ V,Z)

where U ⊗ V = {I ∼= I⊗ I
u⊗v- R⊗ S | u ∈ U, v ∈ V }

and Z = {R⊗ S
z- J | ∀I

u- R in U. 〈u|z〉R : S - J ∈ Y

∀I
v- S in V. 〈v|z〉S : R - J ∈ X}.
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• The linear function space

A−◦B = (R−◦ S,W,U −◦ Y )

where W = {I
w- R−◦ S | ∀I

u- R in U. I
u- R

ŵ- S ∈ V

∀S
y- J in Y. R

ŵ- S
y- J ∈ X}

represents the hom-set GJ(C)(A,B) and

U −◦ Y = {u−◦ y : R−◦ S - I−◦ J ∼= J | u ∈ U, y ∈ Y }.

(In the definition of W , ŵ : R - S is the transpose of w : I - R−◦ S.)

Proof. Let us show first of all that if f : A - A′ and g : B - B′ are two morphisms in
G(C), then their tensor product, taken in C, is a morphism A⊗A′ - B ⊗B′ in G(C).
Obviously, f ⊗ g provides a function U ⊗ V - U ′ ⊗ V ′ as desired. So let us assume we
have z′ : R′ ⊗ S′ - J such that for all u′ ∈ U ′, 〈u′|z′〉R′ ∈ Y ′ and such that for all v′ ∈ V ′,
〈v′|z′〉′S ∈ X ′. Then for all u ∈ U ,

〈u|z′ · (f ⊗ g)〉R = 〈f · u|z′〉R′ · g.

Since f · u ∈ U ′, 〈f · u|z′〉R′ ∈ Y ′, and so 〈f · u|z′〉R′ · g ∈ Y as g is a morphism in G(C).
Similarly we can show that for all v ∈ V , 〈v|z ′ · (f ⊗ g)) ∈ X. Thus z′ · (f ⊗ g) is in Z as
desired. As ⊗ is lifted from C, it is a symmetric and associative monoidal product; it is not
difficult to see that I lifts from C to the unit given. The main issue is to show that the given
linear function space is a closed structure for this tensor product. Morphisms

(R,U,X) ⊗ (S, V, Y ) - (T,W,Z)

are maps f : R⊗ S - T in C such that

• for all u : I - R and all v : I - S,

I ∼= I⊗ I
u⊗v- R⊗ S

f- T in W and

• for all z : T - Z, R⊗ S
f- T

z- J satisfies

– for all u : I - R, z · 〈u|f〉R = 〈u|z · f〉R ∈ Y and

– for all v : I - S, z · 〈v|f〉S = 〈v|z · f〉S ∈ X.

This is equivalent to satisfying the more symmetric conditions

• for all u : I - R in U and all v : I - S in V ,

I
v- S ∼= I⊗ S

u⊗idS- R⊗ S
f- T in W and

• for all u : I - R in U and all z : T - J in Z,

S ∼= I⊗ S
u⊗idS- R⊗ S

f- T
z- J in Y and
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• for all v : I - S in V and all z : T - J in Z,

R ∼= R⊗ I
idR⊗v- R⊗ S

f- T
z- J in X.

It is a simple matter to wrap these up differently and show that they are equivalent to the
transpose R - S −◦ T being a morphism

(R,U,X) - (S, V, Y ) −◦ (T,W,Z).

2

Additive structure. Products and coproducts lift readily from C to GJ(C). The only
point to note is that since our structure maps are injections, a union replaces the coproduct
of Proposition 4.7.

Proposition 4.11 (i) If C has finite products then so has GJ(C), and GJ(C) - C
preserves them. They are given by

A×B = (R × S,U × V,X ⊕ Y )

where U × V = {〈u, v〉 : I - R× S | u ∈ U, v ∈ V }

and X ⊕ Y = {R × S
π1- R

x- J | x ∈ X} ∪ {R× S
π2- S

y- J | y ∈ Y }.

The terminal object is (1,C(I,1), ∅).

(ii) If C has finite coproducts then so has GJ(C), and GJ(C) - C preserves them. They
are given by

A+B = (R+ S,U ⊕ V,X + Y )

where X + Y = {[x, y] : R+ S - J | x ∈ X, y ∈ Y }

and U ⊕ V = {I
u- R

inl- R+ S | u ∈ U} ∪ {I
v- S

inr- R+ S | v ∈ V }

The unit for the coproduct is (0, ∅,C(0, J)).

Proof. The projections in C are morphisms in GJ (C); and pairing two GJ(C) morphisms
in C results in a morphism in GJ(C). Coproducts behave dually. 2

Exponential structure. Let C be symmetric monoidal as well as equipped with a lin-
ear exponential comonad (!, ε, δ) with associated natural transformations e : ! - I and
d : !(−) - !(−)⊗!(−). The functor C(I,−) : C - Set is monoidal; and as the category
Set trivially is a model for intuitionistic linear logic (with the identity comonad as the expo-
nential), we can ask for a natural transformation κ : C(I,−) - C(I, !(−)) making C(I,−)
linearly distributive. This amounts to the following:
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• κ is well-behaved with respect to the comonad structure:

C(I, R)
κR - C(I, !R)

C(I, R) �
C(I,εR)

�

idC
(I

,R
)

C(I, !R)

κR

?

C(I,δR)
- C(I, !!R).

κ!R

?

• κR respects the comonoid structure:

1 � C(I, R)
∆C(I,R)- C(I, R) ×C(I, R)

κR×κR- C(I, !R) ×C(I, !R)

C(I, I)

pidIq

?
�
C(I,eR)

C(I, !R)

κR

?

C(I,dR)
- C(I, !R⊗!R).

⊗

?

• κ is monoidal

C(I, I)
κI - C(I, !I)

=

C(I, I)
C(I,mI)- C(I, !I)

C(I, R) ×C(I, S)
⊗ - C(I, R⊗ S)

C(I, !R) ×C(I, !S)

κR×κS

?

⊗
- C(I, !R⊗!S)

C(I,mR,S)
- C(I, !(R ⊗ S)).

κR⊗S

?

Given such a structure we observed in Section 4.1 that we can define a crude exponential
on GJ(C). Now, however, we can also do something more subtle.

Proposition 4.12 Let C be a model for intuitionistic linear logic with a linear distribution
κ as above. Set κR[U ] = {κR(u) | u ∈ U}.

(i) We can define a linear exponential comonad on GJ(C) by

!(R,U,X) = (!R, κR[U ],C(!R, J)),

and GJ(C) - C preserves the structure.

(ii) We can define a linear exponential comonad on GJ(C) by

!(R,U,X) = (!R, κR[U ], ?X),

where ?X is the smallest subset of C(!R, J)

• containing {x · εR | x ∈ X},

• containing {χ · eR | χ : I - J},

• and such that whenever for some h : !R⊗!R - J , for all u ∈ U both composites
〈κR(u)|h〉!R are in ?X, then h · dR : !R - J is in ?X.
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Again GJ(C) - C preserves the structure.

Proof. See Appendix A. 2

Theorem 4.13 Let C be a model for intuitionistic linear logic equipped with a linear distri-
bution κ as above. Then GJ(C) is a model for intuitionistic linear logic, and GJ(C) - C
preserves all the structure.

Application

Coindecomposability. We can turn Freyd’s argument (see (2) in Examples 4.5) around
in the double glueing context. Let C be the free symmetric monoidal closed category
with products. Set J = I and let G be the result of glueing along C(I,−) : C - Set,
C(−, I) : C - Setop. For this argument we do not restrict to monomorphisms. Once
again we have C - G - C the identity. Now Freyd’s considerations applied to the last
component of the structure in G gives

C(R× S, I) ∼= C(R, I) + C(S, I)

and I is coindecomposable.

4.3 Double glueing for classical linear logic

The general case

In this section we take a symmetric form of the general construction of Section 4.2 and
apply it to get models for classical linear logic. We take as ever L : C - E a monoidal
functor, but now we assume that C has a self-duality (−)⊥ : C - Cop and we set K to be
K = Lop · (−)⊥ : C - Eop: that is, K is the composite

C
(−)⊥- Cop Lop

- Eop.

It follows at once that G has a self-duality

(U - L(R), X - L(Rop))⊥ = (X - L(Rop), U - L(R)).

Multiplicative structure. Suppose that C is ∗-autonomous. Then there is an obvious
choice of contraction linking L and K. We take the composite

L(R) ⊗K(R⊗ S) ∼= L(R) ⊗ L(R−◦ S⊥)
m- L(R⊗ (R−◦ S⊥))

L(ev)- L(S⊥) = K(S).

Proposition 4.14 Suppose C is ∗-autonomous and E symmetric monoidal closed with pull-
backs. Then G is ∗-autonomous and G - C is a strict map of ∗-autonomous categories.

Proof. By Proposition 4.6 one has only to check that A−◦B ∼= (A⊗B⊥)
⊥
. naturally. This

is routine. 2
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Additive structure. The results do not depend on the symmetric situation as we have
seen in Proposition 4.7. We restate the results here for completeness’ sake.

Proposition 4.15 Suppose E has pullbacks and finite coproducts. If C has finite products
then so does G and G - C preserves them strictly. If C has finite coproducts then so
does G and the forgetful functor G - C preserves them strictly.

Exponential structure. As things stand we cannot do better than we did in the intuition-
istic case, Proposition 4.8.

Theorem 4.16 Assume that C is a model for classical linear logic and that E is symmetric
monoidal closed, has pullbacks, coproducts, and a linear exponential comonad. Further assume
that L is linearly distributive. Then G is a model for classical linear logic and the forgetful
functor G(C) - C preserves all the structure.

Double glueing along hom-functors—the classical case

Now we give details for the case of double glueing along hom-functors. Again we specialize
by considering only the case when the structure maps are monomorphisms (injections).

Take C to be a category with an involution (−)⊥. (A self-duality whose square is iso-
morphic to the identity functor will do—there is less book-keeping if we assume the square
is the identity.) To get the symmetry from the beginning of Section 4.3 we are forced to set
J = I⊥ = ⊥. So objects of the glued category G(C) are given by objects R of C together
with U ⊆ C(I, R) and X ⊆ C(R,⊥) ∼= C(I, R⊥). Making the identification of C(R,⊥) with
C(I, R⊥) enables us to write the involution as

(R,U,X)⊥ = (R⊥, X, U).

We make such identifications without further comment below.

Multiplicative structure. We expand slightly on the treatment in the previous section.

Proposition 4.17 If C is ∗-autonomous then so is G(C), and the forgetful functor to C
preserves the ∗-autonomous structure, which is as follows.

• The involution (R,U,X)⊥ = (R⊥, X, U).

• The tensor unit I = (I, {idI},C(I,⊥)).

• the tensor product of A = (R,U,X) and B = (S, V, Y ) is

A⊗B = (R ⊗ S,U ⊗ V,G(C)(A,B⊥))

where U ⊗ V = {I ∼= I⊗ I
u⊗v- R⊗ S | u ∈ U, v ∈ V }

and G(C)(A,B⊥) = {R⊗ S
z- ⊥ | ∀I

u- R ∈ U. 〈u|z〉R : S - ⊥ ∈ Y

∀I
v- S ∈ V. 〈v|z〉S : R - ⊥ ∈ X}.

Up to natural identification the last component is the set of maps in G(C) from (R,U,X)
to (S, V, Y )⊥, hence the notation.
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Proof. All we need to show is that A−◦B ∼= (A⊗B⊥)
⊥
. But the last component of A⊗B⊥

is obviously G(C)(A,B), and

{R−◦ S
u−◦y- I−◦ ⊥ ∼= ⊥ | u ∈ U, y ∈ Y }

can clearly be identified with

{⊥⊥ ∼= I ∼= I⊗ I
(u−◦y⊥)

⊥
=u⊗y- (R ⊗ S⊥)

⊥ ∼= R⊗ S | u ∈ U, y ∈ Y }.

2

Additive structure. We have already seen that products and coproducts lift readily from
C to GJ(C). We restate the result from Proposition 4.11 for G(C) for completeness’ sake.

Proposition 4.18 If C has finite products, then so has G(C), and G(C) - C preserves
them. If C has finite coproducts then so has G(C) and G(C) - C preseves them.

Exponential structure. The extensive discussion in Section 4.2 needs no modification to
deal with the symmetric structure.

Theorem 4.19 If C is a model for classical linear logic, equipped with a linear distribution
κ then so is G(C), and the forgetful functor G(C) - C preserves all the structure.

Examples and applications

Examples 4.20 (1) Logical relations. Double glueing provides an appropriate form of
logical relations for ∗-autonomous categories (compare (1) in Examples 4.5). For example
we may take C to be Rel and consider L : Rel - Set given by L(R) = Rel(I, R), or
equivalently L is the power set functor. Then (with the monomorphism restriction) the
double glued category G is Loader’s category LLP [43, 44] of linear logical predicates (see
the examples in Section 2). Loader gives an account of two exponential structures in [44]
but these do not constitute linear exponential comonads in our sense. Our Proposition 4.12
does provide linear exponential comonads. We could ‘cut down’ the first to give a substitute
for Loader’s ‘continuous exponential’; we have not considered a substitute for his ‘stable
exponential’.

(2) Pre-phase semantics. A commutative monoid M can be regarded as a symmetric
monoidal closed (indeed compact closed) category M on a single object, say I: one sets
M(I, I) = M and composition is multiplication. We consider the glued category G(M). By
Proposition 4.17 it is ∗-autonomous. As it stands there are no additives or exponentials. For
phase semantics we shall in any case restrict to maps in the fibre over I of G(M) - M
(that is, maps whose image is the identity e). That gives us the poset P (M)×P (M)op which
has additive as well as multiplicative structure: The only exponential is trivial. We can view
this category as a precursor to Girard’s phase spaces; sensible exponentials arise for the tight
orthogonality category (see Examples 5.15 (1)).
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(3) Process realizability. Double glueing is behind this formulation by Abramsky [1]. Let
C be the category whose objects are sets (of names) and whose maps from A to B are suitable
equivalence classes of suitable processes with names from A + B. This is compact closed
(duality is given by interchanging names and conames) and the corresponding double glued
category is a category of process realizability. This accounts for multiplicative structure, but
(weak) additive and exponential structure is derived from enrichment of C which we do not
consider. (To get the final category indicated by Abramsky one also takes partial equivalence
relations to enforce good structure.) Abramsky has his data coded in one object and we
have not investigated the resulting superficial mismatches between what he gives and what
we sketch here.

(4) Conservativity. Lafont’s argument (see Example (3) in 4.5) adapts easily to the double
glueing context. Suppose M is a symmetric monoidal closed category and Φ: M - C the
result of freely adding ∗-autonomous structure on top of that. Let E be [Mop,Set] and G the
result of double glueing along the map L : C - E with L(R) = C(Φ(−), R). Then arguing
as before we can deduce that Φ: M - C is full and faithful. (This argument was noticed
independently by Hasegawa.) There are a number of related versions.

5 Orthogonality categories

In the previous section we showed how to obtain models for linear logic by means of double
glueing. A number of interesting models for linear logic are subcategories of glued categories
and we now describe a general technique for carving out such subcategories. We shall treat
the cases of categories for intuitionistic and classical linear logic in parallel.

5.1 Orthogonality of maps

We concentrate attention on categories obtained by glueing along hom-functors. We assume
that we start with a symmetric monoidal category C: for J ∈ C we have the glued category
GJ(C). An orthogonality on C is then an indexed family of relations ⊥R between maps
u : I - R and maps x : R - J

I
u- R ⊥R R

x- J

satisfying the conditions in the following definition.

Definition 6 Let C be a symmetric monoidal closed category. An orthogonality on C is a
family of relations ⊥R between maps I - R and R - J satisfying the following:

(i) (Isomorphism) If f : R - S is an isomorphism, then for all u : I - R and all
x : R - J , we have

u ⊥R x if and only if f · u ⊥S x · f−1;

that is, orthogonality is invariant under isomorphism.

(ii) (Tensor) Given I
u- R, I

v- S and R⊗ S
h- J , then

u ⊥R 〈v|h〉S and v ⊥S 〈u|h〉R imply u⊗ v ⊥R⊗S h.
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(iii) (Implication) Given I
u- R, S

y- J and R
f- S, then

u ⊥R y · f and f · u ⊥S y imply f̌ ⊥R−◦S u−◦ y,

where f̌ : I - R−◦ S is the transpose of f and u−◦ y : R−◦ S - I−◦ J ∼= J .

(iv) (Identity) For all I
u- R and all R

x- J ,

u ⊥R x implies idI ⊥I x · u = 〈u|x〉I.

Given an orthogonality ⊥, we define for U ⊆ C(I, R) its orthogonal U ◦ ⊆ C(R, J) by

U◦ = {x : R - J | ∀u ∈ U. u ⊥R x}.

Similarly for X ⊆ C(R, J) we define its orthogonal X ◦ ⊆ C(I, R) by

X◦ = {u : I - R | ∀x ∈ X.u ⊥R x}.

Obviously this gives rise to a Galois connection. Hence, for example, if U = X ◦ then U◦◦ =
X◦◦◦ = X◦ = U . We call sets U , X with U = U ◦◦, X = X◦◦ closed.

We shall also make use of the following natural notation. If U ⊆ C(I, R), V ⊆ C(I, S),
Y ⊆ C(S, J) then we set

U ⊗ V = {u⊗ v | u ∈ U, v ∈ V } ⊆ C(I, R⊗ S)

U −◦ Y = {u−◦ y | u ∈ U, y ∈ Y } ⊆ C(R−◦ S, J).

When we deal with classical linear logic we glue along the pair of dual functors C(I,−)
and C(−,⊥). Then to get good behaviour of our orthogonality categories we shall need a
further condition on the orthogonality.

Definition 7 An orthogonality on a ∗-autonomous category is symmetric just when it satis-
fies the following condition:

(v) (Symmetry) For all I
u- R and all R

x- ⊥,

u ⊥R x if and only if x⊥ ⊥
R⊥ u⊥.

Remark. (a) The symmetry condition (v) together with the tensor condition (ii) implies
the implication condition (iii).

(b) Symmetry enables us to regard the orthogonality ⊥ in lots of different ways. For example,
we can consider u : I - R orthogonal to x⊥ : I - R⊥ without ambiguity.

(c) Together conditions (ii) and (v) mean that u ⊥R x implies u ⊗ x⊥ ⊥
R⊗R⊥ evR. (Here

evR : R⊗R⊥ - ⊥ corresponds to the evaluation map R⊗ (R−◦ ⊥) - ⊥.)

An orthogonality naturally gives rise to the following two full subcategories of the glued
category.
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Definition 8 The slack (orthogonality) category SJ(C) is the full subcategory of GJ(C) on
those objects (R,U,X) such that for all u ∈ U and for all x ∈ X we have u ⊥R x; in other
words, such that U ⊆ X◦ and X ⊆ U ◦. We use S(C) to denote S⊥(C).

The tight (orthogonality) subcategory TJ(C) is the full subcategory of GJ (C) on those
(R,U,X) for which U = X◦ and X = U ◦. We use T(C) to denote T⊥(C).

For any object (R,U,X) of the slack category, (R,U ◦◦, X) and (R,U,X◦◦) are further ob-
jects of SJ(C). If U ⊆ C(I, R) is closed, then (R,U,U ◦) is an object of the tight subcategory;
and if X ⊆ C(R, J) is closed then (U,X◦, X) is an object of the tight subcategory.

Examples 5.1 (1) Trivial orthogonalities. The full orthogonality is defined by

u ⊥R x for all u : I - R, x : R - J.

The empty orthogonality is defined by

u ⊥R x for no u : I - R, x : R - J.

We call these the trivial orthogonalities: they are of rather limited interest.

(2) Focussed orthogonalities. Suppose that F ⊆ C(I, J) is any set. Then

I
u- R ⊥R R

x- J if and only if x · u ∈ F

defines an orthogonality on C. The conditions are automatic and easy to check. Moreover in
case C is ∗-autonomous and J is ⊥, such an orthogonality is automatically symmetric. We
say that an orthogonality determined by an F ⊆ C(I, J) is focussed with focus F . Note that
the focus is automatically

F = {f : I - J | idI ⊥I f}.

We give a few representative examples.

(i) If we take F = C(I, J) we get the full orthogonality; and if we take F = ∅ ⊆ C(I, J) we
get the empty orthogonality. So the trivial orthogonalities are focussed.

(ii) Recall from Examples 4.20 (2) the compact closed category M corresponding to a
monoid M . Any F ⊆ M then gives rise to an orthogonality on M. We briefly ex-
plain how this gives rise to the phase semantics of [29, 30] in Examples 5.15 (1).

(iii) Scott domains and linear maps. Consider the category LinDom of Scott domains
and linear maps. The tensor unit I is the two element lattice, and LinDom(I, I) has two
elements, λx.x and λx.⊥. Hence there are two non-trivial subsets {λx.⊥} and {λx.x} of
LinDom(I, I). For any domain A, LinDom(I, A) can be identified with the elements
a ∈ A, while LinDom(A, I) can be identified with the linear open subsets x ⊆ A. Then
our two non-trivial focussed orthogonalities are

a ⊥A x if and only if a ∈ x

and
a ⊥A x if and only if a 6∈ x,

respectively.
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(iv) Sets and relations. Consider the category Rel of sets and relations. The tensor
unit I is the one point set and Rel(I, I) has two members, the true and false relations
I +- I. So again there are two non-trivial subsets {true} and {false} of Rel(I, I). For
any set R, Rel(I, R) and Rel(R, I) can both be identified with the powerset P(R). We
again get two non-trivial focussed orthogonalities

u ⊥R x if and only if u ∩ x 6= ∅

and
u ⊥R x if and only if u ∩ x = ∅,

respectively.

(v) Orthogonalities on product categories. Suppose D is a symmetric monoidal
closed category. Let C = D2 be its square. Fix an object of form (J, J) ∈ C. Then for
(R,S) ∈ C we have maps (u, v) : (I, I) - (R,S), (x, y) : (R,S) - (J, J). We can
define the equality orthogonality by

(u, v) ⊥(R,S) (x, y) if and only if x · u = y · v.

This is a focussed orthogonality whose focus is the equality relation in the hom-set
C((I, I)(J, J)) = D(I, J)2. Of course other relations on maps also give orthogonalities.

(3) Orthogonalities in compact closed categories. Suppose ⊥ is a precise symmetric or-
thogonality on a ∗-autonomous category C in the sense of Definition 10 (given in Section 5.3).
Take u : I - R, x : R - ⊥ and consider ev : R⊗R⊥ - ⊥. We have

u⊗ x⊥ ⊥
R⊗R⊥ ev if and only if u ⊥R 〈x⊥|ev〉R⊥ and x⊥ ⊥

R⊥ 〈u|ev〉R

if and only if x⊥ ⊥
R⊥ u⊥ and u ⊥R x

if and only if u ⊥R x.

So ⊥ is determined by the sets {f : I - R⊗R⊥ | f ⊥
R⊗R⊥ ev}. Now suppose C is compact

closed. We write (−)∗ for (−)⊥ to emphasize this assumption. Then f : I - R⊗R∗

corresponds to f̃ : R - R. So a precise symmetric orthogonality on a compact closed
category C is determined by a family FR ⊆ EndC(R). The natural conditions on FR are

• invariance under isomorphism;

• f ∈ FR⊗S if and only if trS(f) ∈ FR and trR(f) ∈ FS ;

• f ∈ FR implies trR(f) ∈ FI

where tr is the usual trace operator on a compact closed category. (The orthogonality is
focussed just when the last is an equivalence.)

We give two instructive examples in case of the compact closed category Rel. (Note that for
R ∈ Rel we can identify End(R) with P()(R×R), the subsets of R×R.) We write |a| for the
cardinality of a set a.

(i) The partial orthogonality is

u ⊥R x if and only if |u ∩ x| ≤ 1.

Here FR = {f ⊆ R×R | |f ∩ ∆R| ≤ 1}.
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(ii) The total orthogonality is

u ⊥R x if and only if |u ∩ x| = 1.

Here FR = {f ⊆ R×R | |f ∩ ∆R| = 1}.

We observe that neither of these two orthogonalities is focussed.

Note that a precise symmetric orthogonality on a compact closed category gives for each R,
S a relation ⊥ between maps f : R - S and g : S - R. We set

f ⊥ g if and only if (f̌ : I - R∗ ⊗ S) ⊥R∗⊗S (ĝ : R∗ ⊗ S - ⊥)

if and only if σ · (f ⊗ g) : R⊗ S - R⊗ S ∈ FR⊗S .

(4) Orthogonalities on traced monoidal categories. Let D be a traced symmetric
monoidal category and C the compact closed category it generates. (The situation is the
basis of approaches to the Geometry of Interaction.) Objects of C are pairs (U,X) of D
and maps (U,X) - (V, Y ) in C are maps U ⊗ Y - V ⊗X in D. Composition is given
by tensor and trace. Now maps (I, I) - (U,X) and (U,X) - (I, I) in C correspond to
maps X - U and U - X in D. A precise symmetric orthogonality (again in the sense
of Definition 10 in Section 5.3) on C corresponds to a precise orthogonality on the traced
monoidal category D in the obvious sense. This is given either by a family FU ⊆ EndD(U)
satisfying the conditions of example (3) above, or else by a suitable relation between maps
f : U - V and g : V - U in D.

We give some examples from the Geometry of Interaction, though we do not analyse the
categories they give rise to in this paper.

(i) Take for D the free symmetric monoidal category on an object: D is equivalent to the
direct sum of the symmetric groups and to the category of finite sets and bijections. For
φ, ψ in Sn, the cyclic group on n symbols, Girard’s orthogonality is

φ ⊥ ψ if and only if φ · ψ is an n-cycle.

(ii) Take for D the category whose objects are finite sets with maps A - B being par-
titions of A + B. (D is equivalent to the free symmetric monoidal category generated
by a relational Frobenius object (see [36]). D is in fact already compact closed. For
maps p : A - B and q : B - A in D, that is partitions p and q of A + B, the
Danos-Regnier orthogonality [22] is

p ⊥ q if and only if the graph induced by p and q is connected and acyclic.

(iii) Let D be the traced monoidal category of finite sets and relations with + as tensor
product. Given relations u : A - B and x : B - A we can set

u ⊥ x if and only if u · x is nilpotent

if and only if x · u is nilpotent

if and only if

(

0 u

x 0

)

is nilpotent.
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5.2 Slack orthogonality subcategories

The basic facts about the structure of the slack orthogonality categories are unproblematic.

Multiplicative structure. We first consider the case of intuitionistic linear logic.

Proposition 5.2 If C is symmetric monoidal closed with an orthogonality then SJ(C) is
also symmetric monoidal closed: it is closed under linear function space and tensor in SJ(C)
and has the tensor unit (I, {idI}, {idI}

◦).

Proof. We refer to the tensor and linear function spaces for GJ(C) (see Proposition 4.10).
A map f : R - S is a morphism from (R,U,X) to (S, V, Y ) in SJ(C) if and only if for all
u ∈ U , f · u ∈ V ⊆ Y ◦ and for all y ∈ Y , y · f ∈ X ⊆ U ◦. This implies f̌ ⊥R−◦S u −◦ y for
all u ∈ U, y ∈ Y . Therefore f̌ ∈ (U −◦ Y )◦. This shows closure under linear function space.
Closure under tensor product works similarly: A morphism z : R⊗ S - J is an element of
the last component of (R,U,X)⊗ (S, V, Y ) if and only if for all u ∈ U , 〈u|z〉R ∈ Y ⊆ V ◦, and
for all v ∈ V , 〈v|z〉S ∈ X ⊆ U◦ which implies that u ⊗ v ⊥R⊗S z for all u ∈ U, v ∈ V . It is
straightforward to check that (I, {idI}, {idI}

◦) is the tensor unit. 2

The corresponding result for classical linear logic is now easy.

Proposition 5.3 If C is ∗-autonomous with a symmetric orthogonality then the slack cat-
egory S(C) is ∗-autonomous; it is closed under negation and tensor in G(C) and has the
tensor unit (I, {idI}, {idI}

◦).

To get additive and exponential structure on SJ(C) and S(C) we need to know something
about the relevant structure maps in C.

Definition 9 Suppose that R,S ∈ C and that U ⊆ C(I, R) and Y ⊆ C(S, J). We say that
f : R - S is positive (with respect to U and Y ) just when

f · u ⊥S y implies u ⊥R y · f for all u ∈ U, y ∈ Y,

and negative (with respect to U and Y ) just when

u ⊥R y · f implies f · u ⊥S y for all u ∈ U, y ∈ Y.

If f : R - S is positive and negative (with respect to U and Y ) we say that it is focussed
(with respect to U and Y ).

We use these properties in two cases.

(i) In case U = C(I, R) and Y = C(S, J), when we say that f : R - S is positive or
negative outright.

(ii) In case f : !R - S, U = κR[U ], Y = C(S, J) when we say that f is positive for κ.
(We shall not use negative in this context.)

Note that if ⊥ is a focussed orthogonality then all maps are positive and negative. Indeed
we have

f · u ⊥S y if and only if y · f · u ∈ F if and only if u ⊥R y · f.

35



Additive structure. There is no virtue in treating the intuitionistic and classical cases
separately.

Proposition 5.4 (i) Suppose C has finite products and the projections are positive. Then
SJ(C) is closed under products in GJ (C); so in particular SJ(C) has finite products and
SJ(C) - C preserves them strictly.

(ii) Suppose C has finite coproducts and inclusions are negative. Then SJ(C) is closed un-
der coproducts in GJ(C); so in particular SJ(C) has finite coproducts and SJ(C) - C
preserves them strictly.

Proof. Recall the description of products and coproducts in Proposition 4.11. To show
that SJ(C) is closed under products we have to establish that if u ∈ U , v ∈ V and x ∈ X

then 〈u, v〉 ⊥R×S x · π1 (and symmetrically for y ∈ Y ). This follows immediately from
π1〈u, v〉 = u ⊥R x since π1 is positive. The remainder of the proof is similar in style. 2

Exponential structure. Again there is no difference between the intuitionistic and the
classical cases. But because the unit of SJ(C) is not that of GJ(C) there is a little more to
do.

Proposition 5.5 Suppose that the structure maps ε, e and d are positive for κ. We can
define an exponential comonad on SJ(C) by

!(R,U,X) = (!R, κR[U ], ?X),

where ?X is defined as in Proposition 4.12, but the second clause is replaced by

{χ · eR | idI ⊥I χ} ⊆?X.

Proof. For the proposed !(R,U,X) to be an object in this subcategory, we have to show that
all elements of κR[U ] are perpendicular to all elements of ?X. We run through the inductive
argument. Let u ∈ U .

• For all x ∈ X, κR(u) is orthogonal to x · εR since u = εR · κR(u) is perpendicular to x
and εR is positive for κ.

• Let χ : I - J be orthogonal to idI. That implies that for all u ∈ U , χ is perpendicular
to idI = eR ·κR(u), and since eR is positive for κ, that implies κR(u) orthogonal to χ ·eR.

• Finally, assume that we have h : !R⊗!R - J such that all for all u ∈ U , κR(u) is
perpendicular to both composites 〈κR(u)|h〉. But then dR · κR(u) = κR(u) ⊗ κR(u)
is perpendicular to h by condition (ii). Since dR is positive for κ, that implies κR(u)
orthogonal to h · dR, and we are done.

The functoriality of ! and the structure maps for the linear exponential comonad are dealt
with just as in Proposition 4.12. (The minor change to the definition of ?X makes no serious
difference.) 2
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Theorem 5.6 (i) Assume that GJ(C) is obtained from a model for intuitionistic linear logic
C as in Theorem 4.13. If C has an orthogonality such that the projection maps are positive
and the structure maps ε, d and e are positive for κ then SJ(C) is a model for intuitionistic
logic.

(ii) Suppose G(C) is obtained from a ∗-autonomous C as in Theorem 4.19. If the projections
are positive, injections are negative, and the structure maps ε, d and e are positive for κ then
the S(C) is a model for classical linear logic.

Examples 5.7 (1) We just remark on SJ(C) for the trivial orthogonalities. For the full
orthogonality, SJ(C) is simply GJ(C). For the empty orthogonality SJ(C) consists of objects
of the form (R,U, ∅) and (R, ∅, U): oddly enough this does give models for linear logic.

(2) We consider the category S(Rel) for the partial orthogonality on Rel: the objects are
sets R such that if u ∈ U , x ∈ X then |u ∩ x| ≤ 1. One can check that the conditions of
Theorem 5.6 (ii) are valid so that S(Rel) is a model of classical linear logic. We can embed
the category QDom of qualitative domains in S(Rel) as follows: Recall (see the examples
on stable domain theory in Section 2) that a qualitative domain is a set R equipped with a
suitable domain U of subsets of R. We map (R,U) ∈ QDom to (R,U,U ◦) in S(Rel). This
gives rise to a full and faithful functor QDom - S(Rel) preserving tensor. However we
can consider the full subcategory of S(Rel) on objects of the form (R,U,U ◦). This is a model
for intuitionistic linear logic and the embedding of QDom in it preserves multiplicative and
additive structure. For an indication of the complexity of the situation for exponentials see
the discussion for coherence spaces in Examples 5.15 (3).

(3) We consider the category S(Chu2) for the equality orthogonality (see Examples 5.1
(2)(v)) on Chu2. The orthogonality is focussed so the conditions of Theorem 5.6 (ii) au-
tomatically apply so that S(Chu2) is a model of classical linear logic. We identify S(Chu2)
with the category of Chu logical relations (see [25]) as follows. Take a pair of objects
α : U ×X - K, β : V × Y - K in Chu = Chu(Set,K). Then Chu2((I, I), (α, β)) ∼=
U × V and Chu2((α, β), (⊥,⊥)) ∼= X × Y and Chu2((I, I), (⊥,⊥)) ∼= K × K. Under this
identification (x · u, y · v) = (α(u, x), β(v, y)) ∈ K ×K. So an object of S(Chu2) is a pair of
objects (α, β) ∈ Chu2 equipped with relations ∼0⊆ U × V , ∼1⊆ X × Y such that u ∼0 v

and x ∼1 y implies α(u, x) = β(v, y); so it is just a Chu logical relation. The rest of the
identification is routine. (Note that in Examples 4.5 (1) we already identified Chu logical
relations with the result of performing the Chu construction on a simple category of logical
relations. The equivalence of these two approaches can be described more generally.)

5.3 Tight orthogonality categories

It seems that in general the tight categories TJ(C) and T(C) do not have good multiplicative
structure. However in naturally occurring orthogonalities the (Tensor) and (Implication)
conditions from Definition 6 are in fact equivalences. In these circumstances there is something
to be said at once about the tight categories.

Definition 10 Let C be a symmetric monoidal closed category. An orthogonality ⊥ is precise
just when the following hold.
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• (Precise tensor) Given u : I - R, v : I - S and h : R⊗ S - J then

u ⊥R 〈v|h〉S and v ⊥S 〈u|h〉R if and only if u⊗ v ⊥R⊗S h.

• (Precise implication) Given u : I - R, y : S - J and f : R - S then

u ⊥R y · f and f · u ⊥S y if and only if f̌ ⊥R−◦S u−◦ y.

Note that if ⊥ is a symmetric orthogonality on a ∗-autonomous category C then the two
conditions are equivalent.

All our examples of orthogonalities are precise. Observe in particular that any focussed
orthogonality is automatically precise.

For the remainder of this section assume that all orthogonalities are precise. Suppose
that A = (R,U,X) and B = (S, V, Y ) are objects of the tight category. Then f : R - S

is a map from A to B if and only if f̌ ⊥R−◦S u−◦ y for all u ∈ U and y ∈ Y , that is
f̌ ∈ (U −◦ Y )◦. We can generalize from this observation in the following way. In case C is
symmetric monoidal closed (respectively ∗-autonomous) we define collections of multimaps
(respectively polymaps) thus.

• Suppose C is symmetric monoidal closed; let A1 = (R1, U1, X1), . . . , An = (Rn, Un, Xn)
and B = (S, V, Y ) be objects of TJ = TJ(C). Then the collection TJ(A1, . . . , An, B)
of multimaps from A1, . . . , An to B is

TJ(A1, . . . , An) = {f : R1 ⊗ · · · ⊗Rn - S | f̌ ∈ (U1 ⊗ · · · ⊗ Un −◦ Y )◦}.

• Suppose C is ∗-autonomous and that ⊥ is symmetric. Now let A1 = (R1, U1, X1),
. . . , An = (Rn, Un, Xn) and B1 = (S1, V1, Y1), . . . , Bm = (Sm, Vm, Ym) be in T =
T(C). Then the collection T(A1, . . . , An;B1, . . . , Bm) of polymaps from A1, . . . , An to
B1, . . . , Bm is

T(A1, . . . , An;B1, . . . , Bm)

= {f : R1 ⊗ · · · ⊗Rn - S1
.................................................

...........
................................... · · ·

.................................................
...........
................................... Sn | f ∈ (U1 ⊗ · · · ⊗ Un ⊗ Y1 ⊗ · · · ⊗ Yn)

◦}.

(Here we exploit the flexible meaning of ⊥ in the symmetric case.)

Now the value of a precise orthogonality is just this: that in each case we can define a
good composition using exactly the generalized composition for which we have a standard
notation. Thus for example if f ∈ T(A1, A2;B,C) and g ∈ T(C,D;E1, E2) then

〈f |g〉C ∈ T(A1, A2, D;B,E1, E2).

Obviously we have identities for this associative composition and so we get the following.

Proposition 5.8 (i) Suppose ⊥ is a precise orthogonality on a symmetric monoidal closed
category C. Then TJ is a multicategory.

(ii) Suppose ⊥ is a precise symmetric orthogonality on a ∗-autonomous category C. Then T
is a ∗-polycategory.
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For more information about multicategories see [41, 42] and for polycategories see [50, 20].
∗-polycategories are explained in [32].

A multicategory in which the multimaps are fully representable can be regarded as a
symmetric monoidal closed category; and a ∗-polycategory in which the polymaps are fully
representable can be regarded as a ∗-autonomous category. (Implicitly there is a choice of
structure.) It follows that the issue of the multiplicative structure of TJ(C) and T(C) is one
of representability. Representability requires a further condition on the orthogonality.

Definition 11 A precise orthogonality ⊥ is stable just when for all U ⊆ C(I, R), V ⊆ C(I, S)
and Y ⊆ C(S, J)

• (Stable tensor) (U ◦◦ ⊗ V ◦◦)◦ = (U◦◦ ⊗ V )◦ = (U ⊗ V ◦◦)◦;

• (Stable implication) (U ◦◦ −◦ Y ◦◦)◦ = (U −◦ Y ◦◦)◦ = (U◦◦ −◦ Y )◦.

This condition turns out to be too strong to capture some of the examples we have in
mind. We will therefore introduce a weaker, although somewhat less intuitive notion. First
of all we establish that same is indeed entailed by stability.

Lemma 5.9 Suppose ⊥ is a stable orthogonality. Then for closed sets U1 ⊆ C(I, R1), . . . ,
Un ⊆ C(I, Rn), U ⊆ C(I, R), Y ⊆ C(S, J) we have

((U1 ⊗ U2)
◦◦ ⊗ · · · ⊗ Un −◦ Y )◦ = (U1 ⊗ · · ·Un −◦ Y )◦,

({idI}
◦◦ ⊗ U1 ⊗ · · · ⊗ Un −◦ Y )◦ = (U1 ⊗ · · · ⊗ Un −◦ Y )◦,

(U1 ⊗ · · · ⊗ Un −◦ (U −◦ Y )◦◦)◦ = (U1 ⊗ · · · ⊗ Un −◦ (U −◦ Y ))◦.

Definition 12 A precise orthogonality is self-stable if it satisfies the conditions given in
Lemma 5.9.

A stable orthogonality is self-stable. Note that if ⊥ is a symmetric orthogonality on a
∗-autonomous category then these two conditions are equivalent.

Multiplicative structure. We first consider the case of intuitionistic linear logic.

Proposition 5.10 Suppose C is a symmetric monoidal closed category with a self-stable or-
thogonality. Then TJ(C) is symmetric monoidal closed. The tensor product of A = (R,U,X)
and B = (S, V, Y ) is given by

A⊗B = (R⊗ S, (U ⊗ V )◦◦, (U ⊗ V )◦),

and the tensor unit is (I, {idI}
◦◦, {idI}

◦); the linear function space of A and B is

A−◦B = (R−◦ S, (U −◦ Y )◦, (U −◦ Y )◦◦).

Aside. It is worth noting before we begin the proof that as ⊥ is precise, (U ⊗V )◦ is the final
component of A⊗B in GJ(C), and (U −◦ V )◦ is the middle component of A−◦B in GJ (C).

Proof. By our earlier discussion it suffices to check that A ⊗ B and A −◦ B fully represent
multimaps in the obvious sense; this is essentially the content of the definition of self-stable.
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We omit the details but give one key observation. Suppose A = (R,U,X), B = (S, V, Y )
and C = (T,W,Z) are objects of TJ(C). By the observation above f : R⊗ S - T is
a map A⊗B - C just when f̌ ∈ ((U ⊗ V )◦◦ −◦ Z)◦; as Z is closed that is equivalent
to f̌ ∈ (U ⊗ V −◦ Z)◦; that is equivalent to f̌ ∈ (U −◦ (V −◦ Z))◦ and as U is closed to
f̌ ∈ (U −◦ (V −◦ Z)◦◦)◦; but that is exactly the condition for f̌ to be a map A - B −◦ C.

2

The corresponding result for classical linear logic is now easy.

Proposition 5.11 Suppose C is ∗-autonomous with a symmetric and self-stable orthogonal-
ity. Then T(C) is ∗-autonomous and T(C) - C preserves the structure. T(C) is closed
under negation in G(C); and the tensor product of A = (R,U,X) and B = (S, V, Y ) is

A⊗B = (R⊗ S, (U ⊗ V )◦◦, (U ⊗ V )◦),

and the tensor unit is (I, {idI}
◦◦, {idI}

◦).

Additive structure. We refer the reader to the notation used for additives in glued cate-
gories. As for the slack categories there is no difference between the intuitionistic and classical
cases.

Proposition 5.12 Let C be a symmetric monoidal closed category with a stable orthogonal-
ity.

(i) Suppose C has finite products and the projections are focussed. The TJ(C) has finite
products and TJ(C) - C preserves them. The product of A = (R,U,X) and B = (S, V, Y )
is

A×B = (R× S,U × V, (U × V )◦)

and the terminal object is (1,C(I,1),C(I,1)◦).

(ii) Suppose C has finite coproducts and the injections are focussed. Then TJ(C) has finite
coproducts and TJ(C) - C preserves them. The coproduct of A = (R,U,X) and B =
(S, V, Y ) is

A+B = (R+ S, (X + Y )◦, X + Y ),

and the initial object is (0,C(0, J)◦,C(0, J)).

Proof. We just treat (i) since (ii) is similar. We first check that U × V = (X ⊕ Y )◦ so that
A× B is indeed in TJ(C). Since the projections are positive we know by considerations for
the slack category that U × V ⊆ (X ⊕ Y )◦. Now take ψ ∈ (X ⊕ Y )◦. As for all x ∈ X,
ψ ⊥R×S x · π1 and π1 is negative we get π1 ·ψ ⊥R x for all x ∈ X and so π1 ·ψ ∈ U . Similarly
π2 · ψ ∈ V so ψ ∈ U × V .

Now take C = (T,W,Z) in TJ(C). As ⊥ is precise we have that 〈f, g〉 : T - R× S is
a map C - A×B in TJ(C) just if 〈f, g〉 ∈ (W −◦ (U ×V )◦)◦ = (W −◦ (X ⊕Y )◦◦)◦. As ⊥
is stable this holds just if 〈f, g〉 ∈ (W −◦ (X ⊕ Y ))◦. Again as ⊥ is precise this is equivalent
to

〈f, g〉 · w ⊥R×S x · π1, 〈f, g〉 · w ⊥R×S y · π2, w ⊥T x · f, w ⊥T y · g

for all w ∈W , x ∈ X and y ∈ Y . But now as π1 and π2 are focussed this is equivalent to

f · w ⊥R x, w ⊥T x · f ; g · w ⊥S y, w ⊥T y · g,
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which is exactly the condition that f : C - A and g : C - B in TJ(C). 2

Note that we make rather limited use of the full stability assumption in the proof.

Exponential structure. As before we treat the intuitionistic and classical cases together.

Proposition 5.13 Let ⊥ be a stable orthogonality in a symmetric monoidal closed cate-
gory C. Let C have a linear exponential comonad with linear distribution κ on C(I,−).
Suppose that all structure maps ε, δ, e, d, and all maps of the form !f are positive for κ.
Then we can define a linear exponential comonad on TJ(C) by

!(R,U,X) = (!R, (κR[U ])◦◦, (κR[U ])◦).

Furthermore the functor TJ(C) - C preserves the exponential structure.

Proof. See Appendix A. 2

Theorem 5.14 Let ⊥ be a stable orthogonality in a model for intuitionistic linear logic C.
Suppose the linear exponential comonad is equipped with a linear distribution κ on C(I,−).
Suppose that all structure maps ε, δ, e, d, and all maps of the form !f are positive for κ and
that the projections are focussed.

(i) Then TJ(C) is a model for intuitionistic linear logic.

(ii) If in addition C is a model for classical linear logic, the orthogonality is symmetric and
the injections are focussed then T(C) is a model for classical linear logic.

Examples of tight orthogonality categories

Examples 5.15 (1) Let M be a commutative monoid giving the one object category M
and let F ⊆ M(I, I). Consider the category T(M) for the orthogonality on M induced
by F . By Proposition 5.11 T(M) is ∗-autonomous. Restricting maps to the fibre over I
in T(M) - M as described in Examples 5.1 (2)(ii) gives us a poset of closed subsets of
M in the sense of phase semantics [29, 30]. Then we can easily get additives and can take
for example the simple exponential in [30]. Alternatively we can take the free commutative
comonoid comonad (which necessarily exists in this context). Generally M does not have a
linear exponential comonad and we cannot apply Proposition 5.13.

(2) Consider the category Tt(Rel) for the total orthogonality. One can show directly that
the total orthogonality is stable. One can check further that the projections in Rel are
focussed and that the maps referred to in Proposition 5.13 are positive. Thus the conditions
of Theorem 5.14 (ii) are satisfied and Tt(Rel) is a model for classical linear logic. Tt(Rel) is
almost exactly Loader’s category Tot of totality spaces [43, 44]. (There is a slight mismatch.
Tt(Rel) contains objects of the form (R,P()(R), ∅) and (R, ∅,P()(R)) which do not appear
in Tot. There is a standard technique which removes them but we will not go into it here.)

We comment on the structure given by general theory. The multiplicative structure in Tot
corresponds exactly to that in Tt(Rel). Since it is given by universal properties, the additive
structure corresponds once we have fixed the mismatch mentioned above. Similarly the expo-
nentials on Tt(Rel) given by Proposition 5.13 induces an exponential on Tot. This certainly
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differs from the one briefly described by Loader in [44]; we have not checked that the latter
is a linear exponential comonad in our sense.

(3) Consider the category Tp(Rel) for the partial orthogonality. This orthogonality is not
stable, but it is self-stable. (In fact it satisfies the stability conditions for U , V , Y containing
all singletons.) It follows from Proposition 5.11 that Tp(Rel) is ∗-autonomous. Moreover it
is clear that X ⊕ Y is closed whenever X and Y are so the proof of Proposition 5.12 goes
through and Tp(Rel) has the standard additive structure. However failure of stability means
that we cannot apply Proposition 5.13 to get exponential structure. Still Tp(Rel) is exactly
(isomorphic to) the category Coh of coherence spaces. Given a coherence space (R, _^), the
corresponding object (R,U,X) in Tp(Rel) has U the collection of cliques andX the collection
of co-cliques (independent sets) in (R,_^). The multiplicative structure in Tp(Rel) and Coh
correspond exactly as does the additive structure (since it is given by universal properties).

Turning now to exponential structure, it is known that Coh cannot have an exponential
preserved by the forgetful functor Coh - Rel. (We are grateful to Thomas Ehrhard
and Laurent Regnier for a discussion of this point.) On the other hand Coh does have
linear exponential comonads. First there is a domain-theoretic power set exponential on Coh
(see [29]). (Its existence is surprisingly delicate from the abstract point of view.) Then there
is the larger (more intensional) multiset exponential on Coh. See [30] for a discussion of
both these. The existence of the multiset exponential can be explained on an abstract level
using the linear exponential comonad as for Tt(Rel) and making do with the self-stability
of the partial orthogonality, but one needs further structure on the category C. One defines
!(R,U,X) to have underlying object

†R =
∧

{M- - !R | κR(u) factors through M for all u ∈ U}.

The proof of Proposition 5.13 can be modified to deal with this situation but we do not give
the details here.

A Miscellaneous proofs

Proof of Proposition 4.12. We prove (i) and (ii) in parallel. The only difference is in the
second component: where in the first case, there is nothing much to prove, the second case is
somewhat more subtle.

The requirement that the forgetful functor GJ(C) - C preserve the structure tells us
what the various constituents must be. All we need to prove is that all the structure maps
are actually morphisms (and so natural transformations) in GJ(C).

For functoriality of !, we have to prove that if

A = (R,U,X)
f- (S, V, Y ) = B,

then !f is a GJ(C)-morphism A - B. But for u ∈ U ,

!f · κR(u) = κS(f · u)

by naturality of κ, and f · u ∈ V since f is a GJ(C)-morphism. Therefore, {κR(u) | u ∈ U}
is mapped to {κS(v) | v ∈ V }. That deals with the first component. In the first case (i),
there is nothing to be shown for the second component. In the second, (ii), we need to check
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inductively that if g : !S - J is in ?Y then g·!f is in ?X. The two base cases follow from
the simple equations. Assume that y ∈ Y , then y · εS · !f = y · f · εR, which is in ?X since
y · f ∈ X. If χ : I - J , then χ · eS · f = χ · f · eR, which is in ?X. For the induction step,
assume that we have

h : !S⊗!S - J

such that for all v ∈ V , both composites 〈κS(v)|h〉S are in ?Y , and so h ·dS ∈?Y . We wish to
show that h · dS ·!f ∈?X. We may assume inductively that 〈κS(v)|h〉S ·!f ∈?X for all v ∈ V .
Now suppose u ∈ U . Then f · u ∈ V , so for both composites we get

〈κR(u)|h · (!f⊗!f)〉R = 〈!f · κR(u)|h〉S ·!f = 〈κS(f · u)|h〉S ·!f ∈?X.

Hence h · dS ·!f = h · (!f⊗!f) · dR is an element of ?X as required.
Much of the rest of the structure is straightforward. The counit ε for the comonad and

discard e for the comonoid are morphisms by the the diagrams linking them with κ together
with the base clauses of the definition of ?X. The third clause, together with the connection
between d and κ, ensures that the duplication d for the comonoid is a morphism. The
argument for the comultiplication δ of the comonad is a similar induction to that for !f which
we presented in some detail above.

That leaves the monoidal structure. The nullary component, mI, is clearly a GJ(C)-
morphism by the equation linking it with κ (the last component is trivially well-behaved).
It remains to prove that the binary component of the monoidal structure is well-behaved.
Assume we are given (R,U,X) and (S, V, Y ) in GJ (C). In case (i) we have only to check that
composing with mR,S maps {κR(u)⊗κS(v) | u ∈ U, v ∈ V } to {κR⊗S(u⊗ v) | u ∈ U, v ∈ V };
but this follows at once since κR⊗S(u⊗ v) = mR,S(κR(u)⊗ κS(v)). In case (ii), there is more
to do: we have to establish the well-definedness of

(!R⊗!S, κR[U ] ⊗ κS [V ], Z!)

(!(R ⊗ S),

mR,S

?
κR⊗S [U ⊗ V ],

mR,S ·

?
?Z) .

·mR,S

6

Here

Z! = {!R⊗!S
f- J |∀I

u- R in U. (κR(u)|f)R : !S - J ∈?Y

∀I
v- S in V. (κS(v)|f)S : !R - J ∈?X},

Z = {R ⊗ S
z- J |∀I

u- R in U. (u|z)R : S - J ∈ Y

∀I
v- S in V. (v|z)S : R - J ∈ X}.

We prove by induction that − ·mR,S maps ?Z to Z!. The base clauses are easy.

• Take z : R⊗ S - J in Z. Now z · εR⊗S · mR,S = z · εR ⊗ εS . For u ∈ U we have
that 〈κR(u)|z · εR ⊗ εS〉!R = 〈u|z〉R · εS and since 〈u|z〉R ∈ Y , this is in ?Y ; similarly for
v ∈ V we have 〈κS(v)|z · εR ⊗ εS〉!S in ?X. This shows z · εR⊗S ·mR,S ∈ Z! as required.
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• Take χ : I - J . Now χ · eR⊗S ·mR,S = χ · eR ⊗ eS . For u ∈ U we have 〈κR(u)|χ ·
eR ⊗ eS〉!R = χ · eS ∈?Y ; similarly for v ∈ V , 〈κS(v)|χ · eR ⊗ eS〉!S ∈?X. Thus χ · eR⊗S ·
mR,S ∈ Z!, as required.

The induction clause takes a little more work.

• Suppose h : !(R ⊗ S)⊗!(R ⊗ S) - J is such that for all u ∈ U and v ∈ V each
〈κR⊗S(u ⊗ v)|h〉!(R⊗S) is in in ?Z (so that h · dR⊗S ∈?Z). We assume inductively
that all 〈κR⊗S(u ⊗ v)|h〉!(R⊗S) ·mR,S are in Z! and wish to show that h · dR⊗S ·mR,S

in Z!. For that it suffices to show that for u ∈ U , 〈κR(u)|h · dR⊗S · mR,S〉!R is in ?Y
(and 〈κS(v)|h · dR⊗S · mR,S〉!S ∈?X for v ∈ V , but that will follow similarly). Now
〈κR(u)|h · dR⊗S · mR,S〉!R = h · (κR(u) ⊗ id!S ⊗ κR(u) ⊗ id!S) · dR⊗S , so it suffices to
show for v ∈ V that each 〈κS(v)|h · (κR(u) ⊗ id!S ⊗ κR(u) ⊗ id!S)〉!S is in ?Y . But
〈κS(v)|h · (κR(u) ⊗ id!S ⊗κR(u) ⊗ id!S)〉!S = 〈κR(u)|〈κR⊗S(u⊗ v)|h〉!(R⊗S) ·mR,S〉!R and
〈κR⊗S(u⊗ V )|h〉!(R⊗S) ·mR,S is in Z!, so by the definition of Z! we are done. 2

Proof of Proposition 5.13. Apart fromm the structure maps are all of the form !R - S

for some R and S. For f : !R - S to be a morphism !A - B in TJ(C) we need to show
that f̌ ∈ (κR[U ]◦◦−◦Y )◦ = (κR[U ]−◦Y )◦. As ⊥ is precise this is equivalent to f ·κR(u) ⊥S y

and κR[u] ⊥!R y ·f for all u ∈ U , y ∈ Y . For all structure maps the first follows as κ is a linear
distributivity; the second then is a consequence by positivity of the structure map. The case
of mI is easy. For mR,S we have to show that

(!R⊗!S, (κR[U ]◦◦ ⊗ κS [V ]◦◦)◦◦,(κR[U ]◦◦ ⊗ κS [V ]◦◦)◦)

(!(R ⊗ S),

mR,S

?
(κR⊗S[(U ⊗ V )◦◦])◦◦,

mR,S ·

?
(κR⊗S [(U ⊗ V )◦◦])◦)

·mR,S

6

is a map, that is we have to show that

m̌R,S ∈ ((κR[U ]◦◦ ⊗ κS [V ]◦◦)◦◦ −◦ κR⊗S[(U ⊗ V )◦◦]◦)◦

= (κR[U ] ⊗ κS [V ]◦◦ −◦ κR⊗S[(U ⊗ V )◦◦]◦)◦

∼= (κR[U ] −◦ (κS [V ]◦◦ −◦ κR⊗S [(U ⊗ V )◦◦]◦))◦.

This is equivalent to 〈mR,S |κR(u)〉!S−◦!(R⊗S) ⊥!(R⊗S) ϑ and κR(u) ⊥!R 〈ϑ|mR,S〉!S for all u ∈ U ,
ϑ ∈ κS [V ]◦◦ −◦ κR⊗S [(U ⊗ V )◦◦]◦ (where we take some liberty in using the notation mR,S

here). The second now follows from the first by positivity of m. Hence it is enough to show
that 〈mR,S |κR(u)〉!R ∈ (κS [V ]◦◦ −◦κR⊗S [(U ⊗V )◦◦]◦)◦ = (κS [V ]−◦κR⊗S [(U ⊗V )◦◦]◦)◦. This
is equivalent to

mR,S · (κR(u) ⊗ κS(v)) = 〈κS(v)|〈mR,S |κR(u)〉!R〉!S ⊥!R⊗!S ϑ

and κS(v) ⊥!S 〈〈mR,S |κR(u)〉!R|ϑ〉!S

for all v ∈ V , ϑ ∈ κR⊗S [(U ⊗ V )◦◦]◦. Again the second follows by positivity of m, and the
first is true since mR,S · (κR(u) ⊗ κS(v)) = κR⊗S(u⊗ v) ∈ κ[U ⊗ V ] and we are done. 2
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