
Connecting semantics for While to that for PCF

Andrea Schalk
A.Schalk@manchester.ac.uk

6th May 2023

The aim of these notes is to create a connection between the standard model of the While
programming language as, for example, described in [NN07], and the standard semantics for
PCF, as for example given in [Str06]. For the latter we make copious reference to [RS22],
adopting the notation given there and also using specific results. We assume the reader is
familiar with the syntax and operational semantics of While.

In both cases fixed point operators are at work, and we want to see here what the connection
between the two may be.

I would like to thank Vlad Sirbu and Joe Razavi for their helpful comments and ideas.

1 Interpreting While programs

We give a brief introduction into the first language at issue and describe a denotational semantics
which is a very mild variation on that given in [NN07].

1.1 The While language

The While language is a theoretical imperative language that allows us to study key aspects
of that paradigm. At the University of Manchester it is the vehicle for introducing students to
ideas such as computability, decidability, and a ‘natural semantics’ in the form of a transition
system that tracks how the values of variables change as the program is executed. Students are
also given a first account of reasoning about programs via Hoare triples in a way that matches
the transition system.

The language is based on the idea of a program where steps (known as statements) are
carried out one at a time making it natural to ask for a compositional interpretation. The con-
structs available are assigning values in the form of natural numbers to variables, a conditional
statement, and loops in the form of ‘while’ loops. For theoretical reasons there is also a statement
skip which does not have any effect. In order to support values which may be assigned to
variables (and to carry out computations on these) and the conditionals the language has a
notion of arithmetic and boolean expressions, which have obvious interpretations in the sets ℕ
and 𝔹 = {tt, ff}.

1.2 Interpreting While programs: states

As one might expect for an imperative language, the effect of a program is tracked by how the
values assigned to the available variables change as the program is executed.

We assume that we have a supply of variables Vars. It is standard to demand that the supply
of variables is inexhaustible, but, of course, any one program can only mention finitely many
variables, and we see below that neither the transitional nor the denotational semantics rely on
variables that are not mentioned in the given program. Nielson and Nielson in [NN07] assume

1



that we might as well work under the principle that we have a value for every variable in Vars
available to us; they then adopt the convention that if we give a finite description, say

[𝑥 ↦ 3, 𝑦 ↦ 0]

we assume that the value for each of the remaining variables in Vars is 0. We follow their lead.
A state is a function from Vars to ℕ. We may update a state by changing the value of one

of the variables, and we use the notation

𝜎[𝑥 ↦ 𝑛]

to describe the function that is given by the assignment

𝑦

{

𝑛 𝑦 = 𝑥
𝜎𝑦 else.

↤→

Where we carry out several updates in succession we assume that we do so from left to right.
We may think of the set of all states as St = Fun(Vars,ℕ), but this is not always the most

suitable manifestation of the idea. We may alternatively think of it as an infinite produce of the
form

∏

𝑥∈Vars
ℕ = {(𝑛𝑥)𝑥∈Vars ∣ 𝑛𝑥 ∈ ℕ},

that is an (infinite) tupel which has one coordinate for each variable. We say that the product
(or the tuples) is indexed by the elements of the set Vars.

There are bijections between the two sets, namely we map a function 𝜎 ∶ Vars ℕ←→ to the
tupel

(𝜎𝑥)𝑥∈Vars,

that is, the tupel which, at the component for the variable 𝑥, has the value 𝜎𝑥 assigned to 𝑥 in
the state 𝜎.

In the opposite direction, given a tupel (𝑛𝑥)𝑥∈Vars, we may define a function from Vars to ℕ
by the assignment

𝑥 𝑛𝑥.

↤→

We allow ourselves to switch our point of view of states between these two as we find convenient.
We sometimes want to restrict a given state to only assign values to some of the variables,

and we employ the machinery described below to do so.
For every variable 𝑥 we get a function from St to ℕ, which we may think of in two ways

depending on which point of view we have in mind. We set

ev𝑥 ∶ Fun(Vars,ℕ) ℕ
𝜎 𝜎𝑥,

←→

↤ →

and
𝜋𝑥 ∶

∏

𝑦∈Vars ℕ ℕ

(𝑛𝑦)𝑦∈Vars 𝑛𝑥.

←→

↤→

If we start with an element 𝜎 of Fun(Vars,ℕ), apply our isomorphism to obtain an element of
∏

𝑥∈Vars ℕ and then apply the function 𝜋𝑥 we get the same result as if we apply ev𝑥 to 𝜎.
If we are interested in the values of several variables, say 𝑥1, 𝑥2,… , 𝑥𝑛 we may define a

function that is more easily viewed as

𝜋𝑥1,…,𝑥𝑛 ∶
∏

𝑥∈Vars ℕ
∏

1≤𝑖≤𝑛 ℕ

←→

2



which maps an infinite tupel to the 𝑛-tupel that only retains the values of the chosen variables
𝑥1, 𝑥2 to 𝑥𝑛.

On the other hand, if we have values for some variables, we may define a state that assigns
those values to the given variables, and 0 to all the variables not mentioned. This provides us
with a function

zr𝑥1,…,𝑥𝑛 ∶
∏

1≤𝑖≤𝑛 ℕ
∏

𝑥∈Vars

←→ ℕ

given by the fact that the component for 𝑥 of zr𝑥1,…,𝑥𝑛(𝑚1,… , 𝑚𝑛) is given by

(

zr𝑥1,…,𝑥𝑛(𝑚1,… , 𝑚𝑛)
)

𝑥
=

{

𝑚𝑖 𝑥 = 𝑥𝑖
0 else.

We have the following equalities connecting these functions:

𝜋𝑥1,…,𝑥𝑛 ◦ zr𝑥1,…,𝑥𝑛 = id∏

1≤𝑖≤𝑛ℕ,

while the 𝑦th component of zr𝑥1,…,𝑥𝑛 𝜋𝑥1,…,𝑥𝑛(𝑛𝑥)𝑥∈Vars agrees with that of the input (𝑛𝑥)𝑥∈𝑥1,…,𝑥𝑛
provided that 𝑦 is one of the variables 𝑥1, 𝑥2,. . . , 𝑥𝑛. In general we can’t say anything about
whether their respective values for any of the other variables are equal.

1.3 Interpreting While programs: Typing

Our intention is to interpret a While program as a function that manipulates states. However,
the program might not terminate, in which case there is nothing safe we can say about the
resulting change to the start state.

There are two ways of modelling this situation:

• We may describe the interpretation of a program as a partial function on the set of states
St or

• we may describe the interpretation of a program as a function that outputs an element
of the set St⊥ = St ∪ {⊥}, where we add an additional element ⊥ to the set of states to
signify that there is no ‘output state’ in some situations.

The former solution is chosen by Nielson and Nielson while we prefer the latter due to the
fact that it connects more easily with our semantics for PCF. However, this choice is in some
sense immaterial since the two settings for the denotational semantics are isomorphic to each
other, see Proposition 1.1.

When we consider the elements of St⊥ we use a variable 𝜏 , but we frequently want to
emphasize that we know our element to be a state, rather than ⊥, and in that situation we
use the variable 𝜎. Further when we talk about elements of this set we typically make case
distinctions based on whether the element in question is ⊥ or not, and we typically treat that
case first, and subsequently assume that we have a state, which we may query for the value it
assigns to some variable.

We want the semantics to be compositional in the sense that given a program 𝑃 and a
statement 𝑆 we expect the interpretation of the program 𝑃 ; 𝑆 to be the composite of the
interpretation of 𝑆 with that of 𝑃 , that is

⟦𝑃 ; 𝑆⟧ = ⟦𝑆⟧ ◦ ⟦𝑃⟧.

Consequently we have to ensure that the interpretation of a program has the same source
and target set, and so for us the interpretation of a program is a function from St⊥ to itself.
However, we do not want to view St⊥ merely as a set, but as a partially ordered set.

3



For a set 𝑆 , when we form 𝑆⊥ we equip it with the partial order for which ⊥ ≤ 𝑠 for all
𝑠 ∈ 𝑆 are the only non-reflexive instances of the order relation. This is a flat partial order (see
Section 4.3 of [RS22]).

When we consider St⊥ in this way we have an element ⊥ which we may consider as ‘less
informative’ than all the states. The element ⊥ is the least element of St⊥. We say that an
order-preserving function between two posets with least elements is strict if it maps the least
element of the source set to the least element of the target set.

In Section 1.5 we give a formal definition of the interpretation of a While program 𝑃 as a
strict (and so order-preserving) function

⟦𝑃⟧∶ St⊥ St⊥.

←→

We further note that the effect of running the program 𝑃 on the state 𝜎 has the consequence
of updating the state 𝜎 accordingly, provided that 𝑃 terminates, and if the variables that occur
in 𝑃 are 𝑥1,… , 𝑥𝑛 we would expect our semantics to be such that the effect of that is

𝜎[𝑥1 ↦ (⟦𝑃⟧𝜎)𝑥1]⋯ [𝑥𝑛 ↦ (⟦𝑃⟧𝜎)𝑥𝑛].

This is established in Proposition 1.4.
We provide a result that tells us what we need to check to ensure that a function is suitable

to interpret a While program.

Proposition 1.1
The following statements hold.

(i) A strict function from 𝑆⊥ to 𝑇⊥ is order-preserving.

(ii) A function from 𝑆⊥ to 𝑇⊥ is order-preserving if and only if

• the function is strict or
• the function is constant.

Proof. Routine.

For posets 𝑃 and 𝑄 with least elements we write

𝑃 ⇒s 𝑄

for the partially ordered set of strict order-preserving functions from 𝑃 to 𝑄 with the element-
wise partial order.

We interpret a While program 𝑃 as an element of St⊥ ⇒s St⊥.
When interpreting While programs we only rely on fixed points to exist in the partially

ordered set
(St⊥ ⇒s St⊥)⇒ (St⊥ ⇒s St⊥)

of Scott-continuous functions from St⊥ ⇒s St⊥ to itself in order to give a meaning to loops.
It is important to realize that St⊥ ⇒s St⊥ is not a poset with finite height, even if we only

have one variable. For example, we may find an infinite chain of functions from the constant
function 𝑘⊥, which produces the output ⊥ for every input, to the identity function on St⊥: Let
the only variable be 𝑥, and 𝑓𝑛 ∶ St⊥ St⊥

←→ be given by the assignment which

• maps ⊥ to ⊥,

4



• for 1 ≤ 𝑖 ≤ 𝑛 it maps each state [𝑥 ↦ 𝑖] to itself and

• for 𝑖 > 𝑛 it maps the state [𝑥 ↦ 𝑖] to ⊥.

Then 𝑘⊥ < 𝑓1 < 𝑓2⋯ < idSt⊥ .
Hence the fixed points employed to interpret while loops (see Section 1.5) are non-trivial.
As is the case for the semantics for PCF described in [RS22], the least fixed point of a

Scott-continuous function

𝐹 ∶ St⊥ ⇒s St⊥ St⊥ ⇒s St⊥

←→

may be calculated as
BB���
𝑗∈ℕ

𝐹 𝑗𝑘⊥,

where again 𝑘⊥ is the function that assigns ⊥ to each input from St⊥.
In Section 1.6 we see this construction in action, and in particular we see that for simple

examples, we only have to compute repeated applications of 𝐹 to 𝑘⊥ a small number of times.
The following result helps us understand how we may calculate directed suprema. in St⊥⇒sSt⊥.

Proposition 1.2
Let  be a directed set of strict functions from St⊥ to itself. Given a state 𝜎 it is the case that

(i) if there exists 𝑓 ∈  with (𝑓𝜎) ≠ ⊥ then for all 𝑓 ′ ∈  with 𝑓 ≤ 𝑓 ′ it is the case
that 𝑓𝜎 = 𝑓 ′𝜎 and

(ii)
(

BB���
)

𝜎 = BB���
𝑓∈

𝑓𝜎 =

{

𝑓𝜎 ∃𝑓 ∈  . 𝑓𝜎 ≠ ⊥
⊥ else.

Proof. The first statement is an immediate consequence of the partial order on St⊥: We
know that strict functions preserve the order, and that for all 𝑓 , 𝑓 ′ and 𝜎 as given it must
be the case that 𝑓𝜎 ≤ 𝑓 ′𝜎, but the only non-trivial instances of the partial order in St⊥ are
⊥ ≤ 𝜎′, and so if 𝑓𝜎 ≠ ⊥ then 𝑓𝜎 = 𝑓 ′𝜎 must hold.

The second statement follows from the first, including the fact that the expression on
the right does not depend on the choice of 𝑓 .

We conclude this section by making the connection with the semantics described in [NN07].
The authors choose the set of partial functions from St to itself to interpret While programs,
and they equip this set with the partial order given by

𝑓 ⪯ 𝑔 if and only if for all 𝜎 ∈ St

𝑓𝜎 defined ⟹ 𝑔𝜎 defined and 𝑓𝜎 = 𝑔𝜎.

In other words, 𝑔 is ‘more defined’ than 𝑓 , but takes on the same values as 𝑓 for elements of
the domain of definition of 𝑓 . This partial order is required to ensure the existence of the fixed
points required to interpret loops.

It turns out that their setting is not substantially different from ours:

5



Proposition 1.3
The set of partial functions from 𝑆 to 𝑇 with the partial order given by ⪯ is isomorphic to
the set of strict functions from 𝑆⊥ to 𝑇⊥ with the pointwise order.

Proof. Routine.

Given this we do occasionally refer to results in [NN07] translated into our description of
the semantic setting.

1.4 Interpreting expressions

Our language comes with two kinds of expressions, arithmetic and boolean ones. Given a state
we may interpret the former by natural numbers and the latter by an element of 𝔹 = {tt, ff} via
a simple recursive definition using the obvious operations on these two sets to interpret the
various formation rules.

For an arithmetic expression 𝑎 we may think of ⟦𝑎⟧ as a function from St to ℕ. We do not
need a bottom state in this situation since the meaning of an arithmetic expression is always
well-defined. So we may think of ⟦𝑎⟧𝜎 as the natural number given by the arithmetic expression
𝑎 for the state 𝜎.

Similarly, for a boolean expression we have a function ⟦𝑏⟧ from St to 𝔹.

1.5 Interpreting programs

For the simple statements we may use the following interpretations:

• The skip command takes no action, and so it should not be surprising that we set
⟦skip⟧ = idSt⊥ . We note that the identity function is strict.

• Updating the value of a particular variable also has a fairly obvious interpretation.

⟦𝑥 ∶= 𝑎⟧𝜏 =

{

⊥ 𝜏 = ⊥
𝜏[𝑥 ↦ ⟦𝑎⟧𝜏] else.

We abuse notation slightly here in that ⟦𝑎⟧𝜏 is only defined if 𝜏 is a state (rather than ⊥),
and we have left that implicit in our case distinction. We write case distinctions to first
cover the case where the input is ⊥, and we then assume that the input is a state for the
remaining cases. Similar considerations apply to boolean expressions, see below. For the
given definition it is obviously the case that the resulting function on states is strict.

As indicated in Section 1.3 we expect our interpretation to be compositional in the sense
that if 𝑃 is a program and 𝑆 a statement we set

⟦𝑃 ; 𝑆⟧ = ⟦𝑆⟧ ◦ ⟦𝑃⟧.

The composition of two strict functions is strict.
For the remaining two formation rules we need to worry about what to do about the

condition that appears.
We note that we have the following function

cond∶ (St⇒ 𝔹) × (St⊥ ⇒s St⊥) × (St⊥ ⇒s St⊥) St⊥ ⇒s St⊥

←→

6



given by

cond(𝑏, 𝑓 , 𝑓 ′)𝜏 =

⎧

⎪

⎨

⎪

⎩

⊥ 𝜏 = ⊥
𝑓𝜏 𝑏𝜏 = tt

𝑓 ′𝜏 𝑏𝜏 = ff,

where
𝑓, 𝑓 ′ ∶ St⊥ St⊥.

←→

We again abuse notation slightly here: for the boolean 𝑏, 𝑏𝜏 is defined only if 𝜏 is a state
rather than ⊥, and this is implicitly ruled out by the way we formulate the case distinction. We
do this routinely whenever we consider this conditional function below.

We note that the function cond(𝑏, 𝑔, 𝑔′) is indeed strict, and so is suitable as an interpretation
of a While program, as well as being Scott-continuous.

We may now define the interpretation of a conditional as

⟦if 𝑏 then𝑃 else𝑃 ′
⟧ = cond(⟦𝑏⟧, ⟦𝑃⟧, ⟦𝑃 ′

⟧).

This takes us to the interpretation of the looping construction.
We set

⟦while 𝑏 do𝑃 ⟧ = fix𝐹 ,

where
𝐹 ∶ St⊥ ⇒s St⊥ St⊥ ⇒s St⊥

𝑓 cond(⟦𝑏⟧, 𝑓 ◦ ⟦𝑃⟧, idSt⊥)

← →

↤ →
.

We want to invoke Proposition 4.13 from [RS22] to ensure that this fixed point exists, for
which we need to establish that this assignment is Scott-continuous in the argument 𝑔. If  is a
directed subset of St⊥ ⇒s St⊥ then

𝐹 (BB��� ) = cond(⟦𝑏⟧, (BB��� ) ◦ ⟦𝑃⟧, idSt⊥) def 𝐹
= cond(⟦𝑏⟧, BB���

𝑓∈
(𝑓 ◦ ⟦𝑃⟧), idSt⊥) composition is Scott-continuous,

where we have to use a well-known result for dcpos in the final step. If we can show that

BB���
𝑓∈

𝐹𝑓 = BB���
𝑓∈

cond(⟦𝑏⟧, 𝑓 ◦ ⟦𝑃⟧, idSt⊥) = cond(⟦𝑏⟧, BB���
𝑓∈

(𝑓 ◦ ⟦𝑃⟧), idSt⊥)

we are done. Assume that 𝜏 ∈ St⊥ is a suitable input to this function. We have three cases:

• If 𝜏 = ⊥ then both expressions evaluate to ⊥.

• If ⟦𝑏⟧𝜏 = tt then

cond(⟦𝑏⟧, BB���
𝑓∈

(𝑓 ◦ ⟦𝑃⟧), idSt⊥)𝜏 = BB���
𝑓∈

(𝑓 ◦ ⟦𝑃⟧)𝜏 def cond

=
(

BB���
𝑓∈

cond(𝑏, 𝑓 ◦ ⟦𝑃⟧, idSt⊥)
)

𝜏 def cond

as required.

• If ⟦𝑏⟧𝜏 = ff then both expressions evaluate to 𝜏 .

7



Hence in all three cases the two functions agree, so we have

𝐹 BB��� = BB���
𝑓∈

𝐹𝑓,

which means that 𝐹 is Scott-continuous as required.
It is now possible to show that our semantics has the effect foreshadowed at the end of

Section 1.3. We further note that a program cannot affect the values of variables that it does not
mention, and that its effect only depends on the values of variables that it does.

Proposition 1.4
If the variables that occur in the program 𝑃 are among 𝑥1, 𝑥2,… 𝑥𝑛 and 𝜎 is a state then

⟦𝑃⟧𝜎 =

{

𝜎[𝑥1 ↦ (⟦𝑃⟧𝜎)𝑥1]⋯ [𝑥𝑛 ↦ (⟦𝑃⟧𝜎)𝑥𝑛] 𝑃 terminates
⊥ else.

If 𝑦 is a variable that is not mentioned in 𝑃 and 𝑃 terminates when run on the state 𝜎 we
have

(⟦𝑃⟧𝜎)𝑦 = 𝜎𝑦.

Further if 𝜎′ is a state with 𝜎𝑥𝑖 = 𝜎′𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑛 then either ⟦𝑃⟧𝜎 = ⊥ = ⟦𝑃⟧𝜎′ or
for all 1 ≤ 𝑖 ≤ 𝑛 we have (⟦𝑃⟧𝜎)𝑥𝑖 = (⟦𝑃⟧𝜎′)𝑥𝑖.

Proof. For the first claim there are two points at issue: One may show by induction that the
denotation of 𝑃 has the following property: If 𝑃 terminates for the state 𝜎 and ⟦𝑃⟧𝜎𝑥 ≠ 𝜎𝑥
then 𝑥 must be mentioned in 𝑃—in other words, executing 𝑃 can only change the value of
variables that are mentioned in 𝑃 . The base cases are given by the interpretation of skip
and the assignment, for which this is straightforward to verify. For the three step cases it
is a straightforward application of the induction hypothesis for composition and for the
conditional. For loops we may show this by first proving that it is true for the function 𝐹
whose fixed point is taken, provided it is true for the function 𝑓 that appears as its argument,
and then observing that

• it is true for the function 𝑘⊥ which is the ‘seed ’ for calculating the fixed point and

• if  is a directed set of strict endofunctions on St⊥ which do not affect the values of
variables not mentioned in 𝑃 then this is also true for their directed supremum since

(

BB���
)

𝜎 = BB���
𝑓∈

𝑓𝜎 =

{

𝑓𝜎 ∃𝑓 ∈  . 𝑓𝜎 ≠ ⊥
⊥ else

by Proposition 1.2, and this shows that the directed supremum BB��� may only affect
variables that are affected by one of the 𝑓 ∈  .

The second point at issue is that of non-termination versus termination. In order
to define the notion of non-termination for a program we must refer to the structural
operational semantics as given in [NN07], which is there shown to give the same result as
our denotational semantics (and which my be transferred to our order-isomorphic setting).
From this result we know that for a state 𝜎 it is the case that

⟦𝑃⟧𝜎 = ⊥

8



if and only if

𝑃 does not terminate when started in state 𝜎.

The second statement is an immediate consequence of the first by ensuring that 𝑦 is not
among the 𝑥𝑖.

The final claim may also be shown by induction over the definition of the denotation.
One first has to show that the corresponding statement holds for the interpretation of
expressions, where it is a simple observation. For programs, in the base cases, this is trivial
for the skip statement, and for the update statement it follows from the fact that the
statement holds for expressions. Again, the step cases of composition and conditional are
simple applications of the induction hypothesis, and it is only the case of loops where one
has to look a bit deeper. The proof is then much the same as that for the first statement:
It’s true for the constant function 𝑘⊥, and if we have a directed set of function  of strict
functions from St⊥ to itself such that for each 𝑓 ∈  we have 𝑓𝜎 = 𝑓𝜎′ then this is also
true for BB��� .

We may use our functions 𝜋 and zr from Section 1.2 to reformulate some of the statements
from the previous result:

If 𝑦 is not mentioned in 𝑃 then

𝜋𝑦 ◦ ⟦𝑃⟧ = 𝜋𝑦.

If 𝑥1, 𝑥2, . . . , 𝑥𝑛 contain all the variables mentioned in 𝑃 then for states 𝜎 and 𝜎′ we have

𝜋𝑥1,…,𝑥𝑛𝜎 = 𝜋𝑥1,…,𝑥𝑛𝜎
′ implies 𝜋𝑥1,…,𝑥𝑛(⟦𝑃⟧𝜎) = 𝜋𝑥1,…,𝑥𝑛(⟦𝑃⟧𝜎

′).

In particular
𝜋𝑥1,…,𝑥𝑛 ◦ ⟦𝑃⟧ = 𝜋𝑥1,…,𝑥𝑛 ◦ ⟦𝑃⟧ ◦ zr𝑥1,…,𝑥𝑛 ◦𝜋𝑥1,…,𝑥𝑛

and

zr𝑥1,…,𝑥𝑛 ◦𝜋𝑥1,…,𝑥𝑛 ◦ ⟦𝑃⟧ ◦ zr𝑥1,…,𝑥𝑛 = ⟦𝑃⟧ ◦ zr𝑥1,…,𝑥𝑛 . (†)

This result indicates that one might define a variation of the given semantics, where instead
of demanding that a state provides values for all variables, we only need to ensure that it gives
one for all variables mentioned in 𝑃 . We make use of related ideas in Section 3.

We may now examine the definition of the denotational semantics to determine what
might cause non-termination: It is clear that the two statements terminate for all states,
and that if 𝑃 and 𝑃 ′ are programs that terminate for the state 𝜎 then so are 𝑃;𝑃 ′ and
if 𝑏 then 𝑃 else 𝑃 ′. Hence as expected the only possible cause of non-termination is a
while loop.

1.6 Examples

It may be helpful to show some very simple examples of the fixed point operator in action.

Non-terminating loop

The interpretation of

while true do skip

9



is the fixed point of the function 𝐹 ∶ St⊥ ⇒ St⊥ St⊥ ⇒ St⊥

←→ given by

𝐹𝑔𝜏 =

{

⊥ 𝜏 = ⊥
𝑓𝜏 else.

We further know that we may compute the fixed point by repeatedly applying 𝐹 to the constant
function 𝑘⊥. We may see that if we apply 𝐹 to 𝑘⊥ we get 𝑘⊥. Indeed, the given program does
not terminate, so no matter in what state we start running it, the output should be the bottom
element of St⊥.

Terminating loop without effect

We next look at

while false do skip.

Its interpretation is the fixed point of the function 𝐹 ∶ St⊥ ⇒ St⊥ St⊥ ⇒ St⊥

←→ given by

𝐹𝑓𝜏 =

{

⊥ 𝜏 = ⊥
𝜏 else.

We may calculate that

𝐹𝑘⊥𝜏 =

{

⊥ 𝜏 = ⊥
𝜏 else,

and it is easy to check that if we apply 𝐹 again we obtain the same result, so this is a fixed
point. This is, in fact, the identity function on St⊥ and we would indeed expect that running
the above program has no effect on the state in which we start.

Simple terminating loop with limited effect

For something mildly more interesting, consider

while ~(𝑥=1) do 𝑥:=1.

Its interpretation is fix𝐹 where 𝐹 ∶ St⊥ ⇒ St⊥ St⊥ ⇒ St⊥

←→ given by

𝐹𝑓𝜏 =

⎧

⎪

⎨

⎪

⎩

⊥ 𝜏 = ⊥
𝑓 (𝜏[𝑥 ↦ 1]) 𝜏𝑥 ≠ 1
𝜏 else.

We may calculate that

𝐹𝑘⊥𝜏 =

{

⊥ 𝜏 = ⊥ or 𝜏𝑥 ≠ 1
𝜏 else,

and if we apply 𝐹 again we get

𝐹𝐹𝑘⊥𝜏 =

⎧

⎪

⎨

⎪

⎩

⊥ 𝜏 = ⊥
𝐹𝑘⊥(𝜏[𝑥 ↦ 1]) 𝜏𝑥 ≠ 1
𝜏 else,

=

⎧

⎪

⎨

⎪

⎩

⊥ 𝜏 = ⊥
𝜏[𝑥 ↦ 1] 𝜏𝑥 ≠ 1
𝜏 else

=

{

⊥ 𝜏 = ⊥
𝜏[𝑥 ↦ 1] else.

which is a fixed point. Once again the fixed point models the expected effect of our program on
the start state.

10



Loop with varying termination behaviour

We finally look at a situation where the loop sometimes terminates, and sometimes doesn’t,
depending on the state we start in.

while ~(𝑥=1) do x:=y

The function 𝐹 whose fixed point gives the denotation of this program is given by

𝐹𝑓𝜏 =

⎧

⎪

⎨

⎪

⎩

⊥ 𝜏 = ⊥
𝑓 (𝜏[𝑥 ↦ 𝜏𝑦]) 𝜏𝑥 ≠ 1
𝜏 𝜏𝑥 = 1.

We calculate that

𝐹𝑘⊥𝜏 =

{

⊥ 𝜏 = ⊥ or 𝜏𝑥 ≠ 1
𝜏 𝜏𝑥 = 1,

and if we apply 𝐹 again we have

𝐹𝐹𝑘⊥𝜏 =

⎧

⎪

⎨

⎪

⎩

⊥ 𝜏 = ⊥
𝐹𝑘⊥(𝜏[𝑥 ↦ 𝜏𝑦]) 𝜏𝑥 ≠ 1
𝜏 𝜏𝑥 = 1

=

⎧

⎪

⎨

⎪

⎩

⊥ 𝜏 = ⊥ or (𝜏𝑥 ≠ 1 and 𝜏𝑦 ≠ 1)
𝜏[𝑥 ↦ 𝜏𝑦] 𝜏𝑥 ≠ 1 and 𝜏𝑦 = 1
𝜏 𝜏𝑥 = 1

=

⎧

⎪

⎨

⎪

⎩

⊥ 𝜏 = ⊥ or (𝜏𝑥 ≠ 1 and 𝜏𝑦 ≠ 1)
𝜏[𝑥 ↦ 1] 𝜏𝑥 ≠ 1 and 𝜏𝑦 = 1
𝜏 𝜏𝑥 = 1.

This is a fixed point for 𝐹 , and so the interpretation of the given program. We make the
following observations:

• While we are able to describe the various case distinctions based on the given input, the
case distinctions may become complicated for an arbitrary while loop.

• In the general case the number of case distinctions may increase in a situation where the
number of times the body of the loop is executed varies depending on the state where
the program starts, or where there are further conditionals involved.

• Consequently there is no simple way of calculating output of the fixed point for a given
input (other than ⊥).

2 Translating While programs to PCF

My student Vlad Sirbu [Sir22] has defined with a translation from While programs to PCF.

2.1 Idea

The underlying idea is that variables that appear in the While program 𝑃 will appear as free
variables in the PCF translation 𝑇𝑃 , and we may then interpret a state 𝜎 as a valuation that
provides suitable values for those variables.

11



Since a state assigns a value to all available variables, it will typically provide values for
variables that do not appear in 𝑇𝑃 , but that is fine since Proposition 2.36 of [RS22] ensures that
this does not affect the denotation of 𝑇𝑃 . Further, Proposition 1.4 tells us that the interpretation
of 𝑃 does not change if we manipulate a given state by changing the values of variables that
don’t occur in 𝑃 , so our two notions of interpretation, for 𝑇𝑃 and 𝑃 , match there.

Since the only free variables that appear in terms of the form 𝑇𝑃 are of type nat we can do
without a type environment here, and just assume that free variables in our terms are all of that
type. This makes the notation a little less complicated.

A typical While program may potentially change any one variable in Vars, and there is no
designated output variable. On the other hand, since we do not have product types in PCF, we
can’t easily mimic the effect of the given program on all its variables, but instead we have to
pick one of the available variables as our ‘output’.

Hence the translation has some parameters, namely

• a (finite) set of variables 𝐷 = {𝑥1, 𝑥2,… , 𝑥𝑛} which contains all the variables that occur
in 𝑃 and

• the chosen output variable 𝑥𝑖.

What should we expect from a valid translation? We aim to compare the original program
𝑃 with its translation 𝑇𝐷

𝑥𝑖
𝑃 via the denotations for the two language, but we need to take a

little extra care here.
⟦𝑃⟧ is a strict function from St⊥ to itself, and we would like to know the value of a ⟦𝑃⟧𝜎

at the declared output variable 𝑥𝑖. If ⟦𝑃⟧𝜎 is a state, then we may apply it to 𝑥𝑖 to obtain an
element of ℕ, but if ⟦𝑃⟧𝜎 = ⊥, then this is not a priori an expression we may apply to 𝑥𝑖.

We therefore now think of each element of St⊥ as providing us with a function from Vars
to ℕ⊥ where we set

𝜏𝑥 =

{

⊥ 𝜏 = ⊥
𝜏𝑥 else.

In Section 1.2, given a variable 𝑋 we define a function ev𝑥 ∶ St ℕ←→ which returns the value
of the variable 𝑥 in the given input state. We may extend this function to a function

ev𝑥⊥ ∶ St⊥ ℕ⊥

←→

by mapping an element 𝜏 ∈ St⊥ to 𝜏𝑥 using this idea.
In other words we view St⊥ as a sub-poset of Vars⇒ ℕ⊥, where we equip Vars with the

discrete partial order. Note that when we apply a state 𝜎 to a variable we are always guaranteed
an element ofℕ, it is only when we apply⊥ ∈ St⊥ to a variable that we obtain the value⊥ ∈ ℕ⊥.
Hence Vars⇒ ℕ⊥ has many elements that do not correspond to elements of St⊥: Any function
that assigns ⊥ to a natural number, but doesn’t do so for all of them, is such an element.

Having explained this usage we may now formulate a property that indicates that our
translation works properly, namely we want for every state 𝜎 that

(⟦𝑃⟧𝜎)𝑥𝑖 = ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜎
. (∗)

In other words when 𝑃 has run for start state 𝜎, the value for the variable 𝑥𝑖 is equal to the
value of the translation of 𝑃 for output variable 𝑥𝑖, provided that the original values of the
variables in 𝐷 are provided by 𝜎.

12



Here is a diagram to explain the idea more abstractly:

St ℕ⊥

St⊥ ℕ⊥

←→⟦𝑃⟧|St

←→
⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜎

⇐⇐

←→
ev𝑥𝑖

where we restrict the denotation of 𝑃 to states and evaluate the given state at the variable 𝑥𝑖
along the left and bottom, while along the top we have the denotation of the translated term
which provides an element of ℕ⊥.

2.2 The translation

For expressions we do not have to worry about output variables, and we abuse notation by
reusing 𝑇 for our translation of these:

For an arithmetic expressions we get a PCF term 𝑇 𝑎 by demonstrating that we may define
PCF terms for each of the arithmetic operations that are permitted in While so that for every
state 𝜎 we have

⟦𝑎⟧𝜎 = ⟦𝑇 𝑎⟧𝜎 .

For boolean expressions, we need to match the conditional available in PCF, which is for
natural numbers rather then for booleans. We use the function

𝐼 ∶ 𝔹 ℕ

𝑥

{

0 𝑥 = tt

1 𝑥 = ff
← →

↤→

for this purpose. We may then provide appropriate PCF terms for each of the boolean operations
available in While to give our translation the property that

𝐼⟦𝑏⟧𝜎 = ⟦𝑇 𝑏⟧𝜎 .

In [Sir22] we find most of a proof by induction that the property (∗) holds, requiring only
the properties of PCF as given in [RS22], and the denotation for While programs as summarized
above. There is one gap when it comes to the looping construction, and one aim of these notes
is to provide the result on denotations that allows this gap to be filled.

To convey the flavour of the translation and the process of establishing property (∗), we
provide a sketch of the proof. We assume that𝑃 is aWhile program and that𝐷 = {𝑥1, 𝑥2,… , 𝑥𝑛}
contains the variables that occur in 𝑃 .

Note that in order to treat non-termination of 𝑃 appropriately we have to insert additional
conditionals into the PCF term, where both branches are the same, and we use the following
notational shortcut in that situation: Let 𝑡 and 𝑡′ be PCF terms of type nat, then

ifz 𝑡 [𝑡′]2 = ifz 𝑡[𝑡′][𝑡′].

If we abstract over a number of variables of the same type, we abbreviate as follows:

𝜆𝑥1⋯ 𝑥𝑛∶nat. 𝑡 = 𝜆𝑥1∶nat. 𝜆𝑥2∶nat. ⋯ 𝜆𝑥𝑛∶nat. 𝑡.

• For the skip statement we have

⟦𝑇𝐷
𝑥𝑖
skip⟧

𝜎
= ⟦𝑥𝑖⟧𝜎 = 𝜎𝑥𝑖 = (⟦skip⟧𝜎)𝑥𝑖.

13



• For an assignment we have

⟦𝑇𝐷
𝑥𝑖
(𝑥:=𝑎)⟧

𝜎
= ⟦(𝜆𝑥∶nat. 𝑥𝑖)𝑇 𝑎⟧𝜎 =

{

⟦𝑇 𝑎⟧𝜎 𝑥 = 𝑥𝑖
⟦𝑥𝑖⟧𝜎 = 𝜎𝑥𝑖 else,

while

(⟦𝑥:=𝑎⟧𝜎)𝑥𝑖 = (𝜎[𝑥 ↦ ⟦𝑎⟧𝜎]) 𝑥𝑖 =

{

⟦𝑎⟧𝜎 𝑥 = 𝑥𝑖
𝜎𝑥𝑖 else

as required if we invoke the property of the translation of arithmetic expressions from
above.

• For the conditional we may reason as follows: We have

⟦𝑇𝐷
𝑥𝑖
(if 𝑏 then𝑃 else𝑃 ′)⟧

𝜎
= ⟦ifz (𝑇 𝑏)[𝑇𝐷

𝑥𝑖
𝑃 ][𝑇𝐷

𝑥𝑖
𝑃 ′]⟧

𝜎

= ifz ⟦𝑇 𝑏⟧𝜎⟦𝑇
𝐷
𝑥𝑖
𝑃⟧

𝜎
⟦𝑇𝐷

𝑥𝑖
𝑃 ′

⟧

𝜎

=

{

⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜎
⟦𝑇 𝑏⟧𝜎 = 0

⟦𝑇𝐷
𝑥𝑖
𝑃 ′

⟧

𝜎
⟦𝑇 𝑏⟧𝜎 = 1,

while
(

⟦if 𝑏 then𝑃 else𝑃 ′
⟧𝜎

)

𝑥𝑖 =
(

cond(⟦𝑏⟧, ⟦𝑃⟧, ⟦𝑃 ′
⟧)𝜎

)

𝑥𝑖

=

{

(⟦𝑃⟧𝜎)𝑥𝑖 ⟦𝑏⟧𝜎 = tt

(⟦𝑃 ′
⟧𝜎)𝑥𝑖 ⟦𝑏⟧𝜎 = ff.

We note that the two case distinctions match via the property of our translation, and that
the corresponding expressions are equal by the induction hypothesis.

• For composition of programs with statements the translation becomes more complicated.
The interpretation of the While program in question is easily calculated as

(⟦𝑃;𝑆⟧𝜎) 𝑥𝑖 = (⟦𝑆⟧(⟦𝑃⟧𝜎)) 𝑥𝑖.

⟦𝑇𝐷
𝑥𝑖
(𝑃;𝑆)⟧

𝜎

= ⟦ifz (𝑇𝐷
𝑥𝑖
𝑃 ) [(𝜆𝑥1⋯ 𝑥𝑛∶nat. 𝑇𝐷

𝑥𝑖
𝑆)(𝑇𝐷

𝑥1
𝑃 )⋯ (𝑇𝐷

𝑥𝑛
𝑃 )]2⟧

𝜎

=

{

⊥ ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜎
= ⊥

⟦(𝜆𝑥1⋯ 𝑥𝑛∶nat. 𝑇𝐷
𝑥𝑖
𝑆)(𝑇𝐷

𝑥1
𝑃 )⋯ (𝑇𝐷

𝑥𝑛
𝑃 )⟧

𝜎
else

By the induction hypothesis ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜎
= ⊥ if and only if ⟦𝑃⟧𝜎 = ⊥, and so the two

denotations agree in that case since we know ⟦𝑆⟧ to be strict. For the else case, we
observe that

⟦(𝜆𝑥1.⋯.𝑥𝑛∶nat. 𝑇𝐷
𝑥𝑖
𝑆)(𝑇𝐷

𝑥1
𝑃 )⋯ (𝑇𝐷

𝑥𝑛
𝑃 )⟧

𝜎

= ⟦𝑇𝐷
𝑥𝑖
𝑆⟧

𝜎[𝑥1↦⟦𝑇𝐷
𝑥1

𝑃⟧
𝜎
]⋯[𝑥𝑛↦⟦𝑇𝐷

𝑥𝑛
𝑃⟧

𝜎
]
,

which by the induction hypothesis is equal to
(

⟦𝑆⟧(𝜎[𝑥1 ↦ (⟦𝑃⟧𝜎)𝑥1]⋯ [𝑥𝑛 ↦ (⟦𝑃⟧𝜎)𝑥𝑛])
)

𝑥𝑖,

and since by Proposition 1.4 we have that

𝜎[𝑥1 ↦ (⟦𝑃⟧𝜎)𝑥1]⋯ [𝑥𝑛 ↦ (⟦𝑃⟧𝜎)𝑥𝑛] = ⟦𝑃⟧𝜎

we have also shown this case.

14



That leaves us with understanding what happens when we have a loop in the program. We
begin by giving the translation of a loop. Here we use 𝜌𝑛 to denote the type that expects 𝑛many
inputs of type nat to produce an output of type nat. The translation of

while 𝑏 do 𝑃

is
(

rec (𝜆𝜙∶𝜌𝑛. 𝜆𝑥1⋯𝑥𝑛∶nat. ifz (𝑇 𝑏)
[

ifz (𝑇𝐷
𝑥𝑖
𝑃 ) [𝜙(𝑇𝐷

𝑥1
𝑃 )⋯ (𝑇𝐷

𝑥𝑛
𝑃 )]2

]

[

𝑥𝑖
]

)
)

𝑥1⋯ 𝑥𝑛.

The interpretation of the resulting PCF term is also via a fixed point construction, but for the
function 𝐺 whose type is ⟦𝜌𝑛⟧ ⟦𝜌𝑛⟧←→ . In other words, 𝐺 is an endofunction on

ℕ⊥ ⇒ (ℕ⊥ ⇒ (⋯ℕ⊥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛 many

⇒ℕ⊥)⋯).

We discuss the interpretation of this PCF term, and its connection with the interpretation
of the original program, in Section 3. To obtain a working understanding we look at examples
first.

2.3 Examples

We revisit the examples from Section 1.6 to improve our understanding of how the translation
works, and how the interpretation of a translated program might relate to the interpretation of
the original.

Based on the material presented in the previous section our only concern is understanding
the translation of loops, and we concentrate on those.

Instead of looking at the full translated term we use some simplifications that have the same
interpretation. For example, if we know that the body of the loop terminates, we do not use
the second conditional in the given translation, and we also take shortcuts with arithmetic and
boolean expressions.

Non-terminating loop

We again look at a trivial loop in the form of the following program.

while true do skip

This program mentions no variables but we may nonetheless consider the PCF term 𝑇𝐷
𝑥 ,

where 𝐷 = {𝑥}. Its translation has the same interpretation as the PCF term

(rec (𝜆𝜙∶nat → nat. 𝜆𝑥∶nat. ifz 0̄[𝜙𝑥][𝑥])) 𝑥.

The interpretation of the term inside the rec constructor is the least fixed point of the function

𝐺∶ ℕ⊥ ⇒ ℕ⊥ ℕ⊥ ⇒ ℕ⊥

←→

which for 𝑔∶ ℕ⊥ ℕ⊥

←→ and 𝑛 ∈ ℕ is given by

𝐺𝑔𝑛 = ifz 0 𝑔𝑛 𝑛
= 𝑔𝑛.

15



In order to compute the corresponding fixed point we have to work out what happens if we
repeatedly apply 𝐺 to 𝑘⊥, and we can see that

𝐺𝑘⊥ = 𝑘⊥,

so 𝑘⊥ is the least fixed point of 𝐺. A priori this looks like the same result as we had for ⟦𝑃⟧ in
Section 1.6, but we need to be careful here in that the two functions 𝑘⊥ have different types in
the two settings. But we may certainly verify that we have, for a state 𝜎 that ⟦𝑃⟧𝜎 = ⊥ ∈ St⊥
and so (⟦𝑃⟧𝜎)𝑥 = ⊥, as well as ⟦𝑃⟧𝜎 = ⊥ ∈ ℕ⊥.

Terminating loop without effect

We next look at

while false do skip.

Its translation for the variable 𝑥 has the same interpretation as the PCF term

(rec (𝜆𝜙∶nat → nat. 𝜆𝑥∶nat. ifz (s̄0̄)[𝜙𝑥][𝑥])) 𝑥.

The interpretation of the term inside the rec constructor is the least fixed point of the function

𝐺∶ ℕ⊥ ⇒ ℕ⊥ ℕ⊥ ⇒ ℕ⊥

←→

which for 𝑔∶ ℕ⊥ ℕ⊥

←→ and 𝑛 ∈ ℕ is given by

𝐺𝑔𝑛 = ifz 1 𝑔𝑛 𝑛
= 𝑛.

We may see that 𝐺𝑘⊥ = idℕ⊥
, and that the identity function on ℕ⊥ is the least fixed point of 𝐺.

The interpretation of the full term, for a state 𝜎, is the application of this function to the number
𝜎𝑥, which gives 𝜎𝑥.

Hence we do have that

(⟦𝑃⟧𝜎)𝑥 = (idSt⊥ 𝜎)𝑥 = 𝜎𝑥 = ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜎

in this case.

Simple terminating loop with limited effect

Our third example is once again the program

while ~(𝑥=1) do 𝑥:=1.

Its translation has the same interpretation as the PCF term
(

rec (𝜆𝜙∶nat → nat. 𝜆𝑥∶nat. ifz (𝑡∼𝑡=𝑥(s̄0̄))[𝜙s̄0̄][𝑥])
)

𝑥

where 𝑡∼ and 𝑡= are terms that match the expected behaviour of the given boolean expression.
The interpretation of the term inside the rec constructor is the least fixed point of the function

𝐺∶ ℕ⊥ ⇒ ℕ⊥ ℕ⊥ ⇒ ℕ⊥

←→

which for 𝑔∶ ℕ⊥ ℕ⊥

←→ and 𝑛 ∈ ℕ is given by

𝐺𝑔𝑛 = ifz (𝑛 ≠ 1) 𝑔1 𝑛

16



=

⎧

⎪

⎨

⎪

⎩

⊥ 𝑛 = ⊥
𝑔1 𝑛 ∈ ℕ, 𝑛 ≠ 1
1 else,

where we assume an appropriate interpretation of 𝑛 ≠ 1 as first input to ifz. We may now
calculate that

𝐺𝑘⊥𝑛 =

{

⊥ 𝑛 ≠ 1
1 else,

and if we apply 𝐺 again we obtain

𝐺2𝑘⊥𝑛 =

{

𝐺𝑘⊥1 𝑛 ≠ 1
1 else

=

{

1 𝑛 ≠ 1
1 else

= 1.

This is the least fixed point of 𝐺, and applying it to 𝜎𝑥 is the interpretation of the full PCF term
from above. Hence once again we may confirm that we have, for a state 𝜎, that

(⟦𝑃⟧𝜎)𝑥 = (𝜎[𝑥 ↦ 1])𝑥 = 1 = (fix𝐺)(𝜎𝑥) = ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜎

in this case.

Loop with varying termination behaviour

We finally once again look at a situation where the loop sometimes terminates, and sometimes
doesn’t, depending on the state we start in.

while ~(𝑥=1) do x:=y

Note that this program uses two variables, which causes some changes to our translation,
and correspondingly to the denotation of the resulting PCF term.

The translation of the given program for the output variable 𝑥 has the same interpretation
as the PCF term

(

rec (𝜆𝜙∶nat → nat → nat. 𝜆𝑥∶nat. 𝜆𝑦∶nat. ifz (𝑡∼𝑡=𝑥(s̄0̄))[𝜙𝑦𝑦][𝑥])
)

𝑥 𝑦

The interpretation of the term inside the rec constructor is the least fixed point of the function

𝐺∶ ℕ⊥ ⇒ (ℕ⊥ ⇒ ℕ⊥) ℕ⊥ ⇒ (ℕ⊥ ⇒ ℕ⊥)

←→

which for 𝑔∶ ℕ⊥ ℕ⊥

←→ and 𝑚, 𝑛 ∈ ℕ is given by

𝐺𝑔𝑚𝑛 = ifz (𝑚 ≠ 1) (𝑔𝑛𝑛)𝑚

=

⎧

⎪

⎨

⎪

⎩

⊥ 𝑚 = ⊥
𝑔𝑛𝑛 𝑚 ∈ ℕ and 𝑚 ≠ 1
𝑚 else.

We now require a function which we again call 𝑘⊥ with the behaviour that 𝑘𝑚𝑛 = ⊥ for all
inputs 𝑚 and 𝑛. We calculate

𝐺𝑘⊥𝑚𝑛 =

{

⊥ 𝑚 ≠ 1
𝑚 else

=

{

⊥ 𝑚 ≠ 1
1 else,

17



and if we apply 𝐺 again we obtain

𝐺2𝑘⊥𝑚𝑛 =

⎧

⎪

⎨

⎪

⎩

⊥ 𝑚 = ⊥
𝐺𝑘⊥𝑛𝑛 𝑚 ∈ ℕ and 𝑚 ≠ 1
𝑚 else

=

⎧

⎪

⎨

⎪

⎩

⊥ 𝑚 = ⊥
⊥ 𝑚 ∈ ℕ and 𝑚 ≠ 1
1

=

{

⊥ 𝑚 ≠ 1 and 𝑛 ≠ 1
1 else

This is the least fixed point of 𝐺 which is applied to 𝜎𝑥 to give the interpretation of the PCF
term given. Hence once again we may confirm that we have, for a state 𝜎, if 𝑥 = 1 or 𝑦 = 1 we
have

(⟦𝑃⟧𝜎)𝑥 = (𝜎[𝑥 ↦ 1])𝑥 = 1 = (fix𝐺)(𝜎𝑥) = ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜎

while otherwise (⟦𝑃⟧𝜎)𝑥 = ⊥ = ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜎
.

If instead we calculate the translation for the output variable 𝑦 we obtain a PCF term that
has the same interpretation as

(

rec (𝜆𝜙∶nat → nat → nat. 𝜆𝑥∶nat. 𝜆𝑦∶nat. ifz (𝑡∼𝑡=𝑥(s̄0̄))[𝜙𝑦𝑦][𝑦])
)

𝑥 𝑦

and the corresponding function 𝐺 is given by

𝐺𝑔𝑚𝑛 = ifz (𝑚 ≠ 1) (𝑔𝑛𝑛) 𝑛

=

⎧

⎪

⎨

⎪

⎩

⊥ 𝑚 = ⊥
𝑔𝑛𝑛 𝑚 ∈ ℕ and 𝑚 ≠ 1
𝑛 else.

Now

𝐺𝑘⊥𝑚𝑛 =

{

⊥ 𝑚 ≠ 1
𝑛 else

while

𝐺2𝑘⊥𝑚𝑛 =

⎧

⎪

⎨

⎪

⎩

⊥ 𝑚 = ⊥
𝐺𝑘⊥𝑛𝑛 𝑚 ≠ 1
𝑛 else

=

⎧

⎪

⎨

⎪

⎩

⊥ 𝑚 ≠ 1 and 𝑛 ≠ 1
𝑛 𝑚 ≠ 1 and 𝑛 = 1
𝑛 else

=

{

⊥ 𝑚 ≠ 1 and 𝑛 ≠ 1
𝑛 else

which gives the required fixed point. This is applied to 𝜎𝑦 for the interpretation of 𝑇𝐷
𝑦 𝑃 , and

this confirms that we have, for a state 𝜎 that if 𝜎𝑥 = 1 or 𝜎𝑦 = 1 then

(⟦𝑃⟧𝜎)𝑦 = 𝜎𝑦 = (fix𝐺)(𝜎𝑦) = ⟦𝑇𝐷
𝑦 𝑃⟧

𝜎

and otherwise both expressions evaluate to ⊥ ∈ ℕ⊥.
These examples illustrate a few interesting points:

• The calculation of the least fixed point is closely related to that of the least fixed point
that appears in the interpretation of the given While program.

• In order to calculate the required fixed point we make no use of the given state (which
appears in the valuation we require to interpret the translation)—the calculation works
for all possible states, and it is only when we evaluate the fixed point that we feed the
values of the relevant variable for a fixed state to the term.

These operations raise hope that there may be a simple connection between the two.

18



3 Connecting the two fixed point constructions

We provide a connection between the two fixed point constructions. This is motivated by
wanting to complete the proof by induction of statement (∗), which says that if 𝑄 is a While
program, 𝜎 is a state and 𝑥 a variable, we have

(⟦𝑄⟧𝜎)𝑥 = ⟦𝑇𝐷
𝑥𝑖
𝑄⟧

𝜎
.

3.1 The interpretation of loops

The missing step case is that where the program 𝑄 is of the form

while 𝑏 do 𝑃.

The interpretation ⟦𝑄⟧ of the While program 𝑄 is the least fixed point of the function

𝐹𝑄 ∶ St⊥ ⇒s St⊥ St⊥ ⇒s St⊥

𝑓 cond(⟦𝑏⟧, 𝑓 ◦ ⟦𝑃⟧, idSt⊥.)

← →

↤ →

In order to understand this assignment we look at its effect on inputs 𝑓 ∈ St⊥ ⇒s St⊥ and
𝜏 ∈ St⊥, which is given by

𝐹𝑄𝑓𝜏 =

⎧

⎪

⎨

⎪

⎩

⊥ 𝜏 = ⊥
𝑓 (⟦𝑃⟧𝜏) ⟦𝑏⟧𝜏 = tt

𝜏 ⟦𝑏⟧𝜏 = ff.

For comparison with the function that interprets the translation of 𝑄 we find it useful to make
reorder the case distinctions and add another, using the fact that 𝑓 is strict:

𝐹𝑄𝑓𝜏 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⊥ 𝜏 = ⊥
𝜏 ⟦𝑏⟧𝜏 = ff

⊥ ⟦𝑏⟧𝜏 = tt and ⟦𝑃⟧𝜏 = ⊥
𝑓 (⟦𝑃⟧𝜏) ⟦𝑏⟧𝜏 = tt and ⟦𝑃⟧𝜏 ≠ ⊥

For this definition we have
⟦𝑄⟧ = fix𝐹𝑄.

The interpretation of the translation of 𝑄 is relative to a state 𝜎, and it requires us to know
that 𝑥1, 𝑥2,… , 𝑥𝑛 contain all the variables that occur in 𝑄. We also have to choose an output
variable 𝑥𝑖.

This interpretation also relies on a fixed point construction. Here we are interested in the
function

𝐺𝑖
𝑄 ∶ ℕ⊥ ⇒ (ℕ⊥ ⇒ (⋯ℕ⊥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛 many

⇒ℕ⊥)⋯) ℕ⊥ ⇒ (ℕ⊥ ⇒ (⋯ℕ⊥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛 many

⇒ℕ⊥)⋯).←→

We sometimes find it easier to supply arguments to a function in the source of 𝐺𝑖 as tuples,
and we note that by Fact 1 we have

ℕ⊥ ⇒ (ℕ⊥ ⇒ (⋯ℕ⊥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛 many

⇒ℕ⊥)⋯) ≅ ℕ𝑛
⊥ ⇒ ℕ⊥,

19



and we sometimes use the corresponding alternative typing for 𝐺𝑖
𝑄.

The least fixed point of 𝐺𝑖
𝑄 is the interpretation of the subterm 𝑇 of 𝑇𝐷

𝑥𝑖
𝑄 to which the rec

constructor applies. A straightforward proof by induction ensures that 𝑇 does not contain any
free variables: The only variables that may appear in a translated term are:

• When translating expressions we invoke terms that implement the various required
operations, but these terms contain no free variables, and so the only potential free
variables come from the base case wherewe translate aWhile variable to the corresponding
PCF variable. In 𝑇 these are all abstracted.

• When translating programs, we use the variables from 𝐷 as well as 𝜙. Again these
variables are abstracted in 𝑇 and so they do not occur free in 𝑇 .

By the abstraction step case of the definition of the denotational semantics for PCF, the
interpretation of subterms of 𝑇 come with the valuation

[𝜙 ↦ 𝑔][𝑥1 ↦ 𝑚1]⋯ [𝑥𝑛 ↦ 𝑚𝑛],

where 𝑔 is a function in the interpretation of the type of 𝜙, and the 𝑚𝑖 are elements in ℕ⊥.
We further know where 𝜙 occurs as a free variable, which allows us to put 𝑔 in the one

place where it is required, and this means that we may write the assignment underlying 𝐺𝑖
𝑄 by

referring to the valuation
𝜃 = [𝑥1 ↦ 𝑚1]⋯ [𝑥𝑛 ↦ 𝑚𝑛],

where we no longer need to worry about 𝜙.
These are the arguments required by 𝐺𝑖

𝑄, and we may describe its underlying assignment as

𝐺𝑖
𝑄 𝑔 𝑚1𝑚2⋯𝑚𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⊥ ⟦𝑇 𝑏⟧𝜃 = ⊥
𝑚𝑖 ⟦𝑇 𝑏⟧𝜃 = 1
⊥ ⟦𝑇 𝑏⟧𝜃 = 0 and ⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜃
= ⊥

𝑔⟦𝑇𝐷
𝑥1
𝑃⟧

𝜃
⋯ ⟦𝑇𝐷

𝑥𝑛
𝑃⟧

𝜃
else.

It is important here to note that the expression ⟦𝑇 𝑏⟧𝜃 depends on the inputs𝑚𝑖 under consideration,
which means that if we apply 𝐺𝑖

𝑄 repeatedly, as is required for the construction of the fixed
point, the case distinctions may (and typically will) change. The fourth example in Section 2.3
illustrates this.

The two assignments show some similarities which we want to exploit.
We observe that𝐺𝑖

𝑄 is calculated independent from the state 𝜎 relative to which we calculate
the interpretation of the translation of 𝑄—in some sense, fix𝐺𝑖

𝑄 is calculated for all possible
states. We also note that the 𝐺𝑖

𝑄 are uniform in their construction, and differ in only one place
depending on which output variable 𝑥𝑖 is chosen.

To establish the property (∗) we need to show that, given a state 𝜎 and a variable 𝑥𝑖
mentioned in 𝑄, we have

((fix𝐹𝑄)𝜎)𝑥𝑖 = (fix𝐺𝑖
𝑄) (𝜎𝑥1)⋯ (𝜎𝑥𝑛).

Our strategy is to do this by proving a connection between the functions 𝐹𝑄 and the 𝐺𝑖
𝑄.

20



3.2 Laying the ground work

We methodically build a connection between 𝐹𝑄 and the 𝐺𝑖𝑄 which eventually allows us to
make the desired connection between their fixed points.

The case distinctions of the two functions are controlled by the interpretations of boolean
expressions, and arithmetic expressions, and we collect suitable properties of those first.

In order to tackle programs we then have to properly account for the values which we use
to denote non-termination, and relate

St⊥ and
∏

1≤𝑖≤𝑛
ℕ⊥,

which we may do by extending the families of functions zr and 𝜋 from Section 1.2.
We then check that fix𝐹𝑄 and the fix𝐺𝑖

𝑄 have the same termination behaviour, before we
finally show that there is a sufficient connection between 𝐹𝑄 and 𝐺𝑖

𝑄 to argue that their fixed
points satisfy the required equality.

3.3 Expressions

The interpretation of expressions is simpler since they are given by functions from states to
the natural numbers or the booleans, rather than having states as part of the output. It is easy
to establish that for every arithmetic expression 𝑎, and every boolean expression 𝑏, as well as
states 𝜎 and 𝜎′:

If the variables mentioned in 𝑎 (or 𝑏) are included among 𝑥1, 𝑥2, . . . , 𝑥𝑛 then

𝜋𝑥1,…,𝑥𝑛𝜎 = 𝜋𝑥1,…,𝑥𝑛𝜎
′ implies ⟦𝑎⟧𝜎 = ⟦𝑎⟧𝜎′ (or ⟦𝑏⟧𝜎 = ⟦𝑏⟧𝜎′).

This implies further that for all states 𝜎 we have

⟦𝑎⟧𝜎 = ⟦𝑎⟧(zr𝑥1,…,𝑥𝑛(𝜋𝑥1,…,𝑥𝑛𝜎)),

and similarly for boolean expressions.

3.4 Programs

Since programs manipulate states, and in particular output a state (or⊥), the interaction between
their interpretation and the functions 𝐹𝑄 and 𝐺𝑖

𝑄 from above is less straightforward.
We have to extend our definition of the family of functions 𝜋 to cope with the potential

input ⊥ and so create functions

St⊥
∏

1≤𝑖≤𝑛 ℕ⊥.

←→

The obvious way of doing so is to define an assignment

𝜏

{

(⊥)𝑥1,…,𝑥𝑛 𝜏 = ⊥

𝜋𝑥1,…,𝑥𝑛𝜏 else.

↤→

In order to avoid a surfeit of subscripts, we take the liberty of re-using the name 𝜋𝑥1,…,𝑥𝑛 for
this function.

We would also like to reconsider the typing of our families of function zr to be

∏

1≤𝑖≤𝑛 ℕ⊥ St⊥

←→

21



which we do by the assignment

(𝑚1⋯𝑚𝑛)

{

⊥ ∃𝑖. 𝑚𝑖 = ⊥
zr𝑥1,…,𝑥𝑛(𝑚1⋯𝑚𝑛) else.

↤→

Again we abuse notation by referring to this function as zr𝑥1,…,𝑥𝑛 . In the text below whenever
we use these names we mean the functions typed as above.

Assume we have a programme 𝑃 whose variables are among 𝑥1, 𝑥2,. . . , 𝑥𝑛.
The equalities we give following Proposition 1.4 for the functions 𝜋 and zr extend to these

redefined versions:
If 𝜎 and 𝜎′ are two states that agree for these variables then we may express this as saying

that
𝜋𝑥1,…,𝑥𝑛𝜎 = 𝜋𝑥1,…,𝑥𝑛𝜎

′,

and in this situation we have

𝜋𝑥1,…,𝑥𝑛(⟦𝑃⟧𝜎) = 𝜋𝑥1,…,𝑥𝑛(⟦𝑃⟧𝜎
′).

We further have that Property (†) from above still holds for these functions, that is

zr𝑥1,…,𝑥𝑛 ◦𝜋𝑥1,…,𝑥𝑛 ◦ ⟦𝑃⟧ ◦ zr𝑥1,…,𝑥𝑛 = ⟦𝑃⟧ ◦ zr𝑥1,…,𝑥𝑛 (†).

We may now reformulate our desired property as

((fix𝐹𝑄)𝜎)𝑥𝑖 = (𝜋𝑥𝑖 ◦ (fix𝐹𝑄))𝜎 = (fix𝐺𝑖
𝑄)𝜋𝑥1,…,𝑥𝑛𝜎 = (fix𝐺𝑖

𝑄)(𝜎𝑥1)⋯ (𝜎𝑥𝑛),

or
𝜋𝑥𝑖 ◦ (fix𝐹𝑄) = (fix𝐺𝑖

𝑄) ◦ 𝜋𝑥1,…,𝑥𝑛 . (∗∗)

3.5 Termination

We may see that the definitions of 𝐹𝑄 and the 𝐺𝑖
𝑄 make case distinctions that depend on the

termination of 𝑃 or, to be more precise, on ⟦𝑃⟧𝜎 = ⊥ or ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜃
= ⊥, and we are only

concerned about the situation where the values that appear in 𝜃 are natural numbers rather
than the bottom element of ℕ⊥.

We aim to show by induction that the two match, provided 𝜎 and 𝜃 correspond to each
other. By this we mean that for

𝜃 = [𝑥1 ↦ 𝑚1]⋯ [𝑥𝑛 ↦ 𝑚𝑛]

we have
𝜋𝑥1,…,𝑥𝑛𝜎 = (𝑚1,… , 𝑚𝑛),

that is, the values assigned to the variables that occur in 𝑃 coincide with those provided by the
valuation 𝜃.

It is our aim to establish that

⟦𝑃⟧𝜎 = ⊥ if and only if ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜃
= ⊥,

where
𝜃 = [𝑥1 ↦ 𝜎𝑥1]⋯ [𝑥𝑛 ↦ 𝜎𝑥𝑛].

In Section 1.5 we argue that the only case where non-termination may arise for a While
program is that of a loop. It is further established in Section 2.2 that for the other cases, the

22



interpretation of a program agrees with that of its translation for a state 𝜎. By Proposition 1.4
the interpretation of a While program only depends on the values for the variables that occur in
it. This means our desired property holds for these cases, and the only potential issue is that of
the loop.

We begin by checking the fixed point of the function 𝐹𝑄 that arises in the interpretation of
the program 𝑄

while 𝑏 do 𝑃.

For 𝑘⊥ the constant ⊥ function from St⊥ ⇒s St⊥ to itself we have

fix𝐹𝑄 = BB���
𝑗∈ℕ

𝐹 𝑗
𝑄𝑘⊥.

We know by Proposition 4.4 from [RS22] that

BB���
𝑗∈ℕ

𝐹 𝑗
𝑄 = BB���

𝑗∈ℕ
𝐹 𝑗+1
𝑄 ,

and so we may calculate the fixed point as
(

BB���
𝑗∈ℕ

𝐹 𝑗+2
𝑄

)

𝑘⊥𝜏 = BB���
𝑗∈ℕ

(𝐹 𝑗+2
𝑄 𝑘⊥)𝜏

= BB���
𝑗∈ℕ

⎧

⎪

⎨

⎪

⎩

⊥ 𝜏 = ⊥
𝜏 ⟦𝑏⟧𝜏 = ff

(𝐹 𝑗+1
𝑄 𝑘⊥)(⟦𝑃⟧𝜏) ⟦𝑏⟧𝜏 = tt.

= BB���
𝑗∈ℕ

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⊥ 𝜏 = ⊥
𝜏 ⟦𝑏⟧𝜏 = ff

⊥ ⟦𝑏⟧𝜏 = tt and ⟦𝑃⟧𝜏 = ⊥
⟦𝑃⟧𝜏 ⟦𝑏⟧𝜏 = tt and ⟦𝑏⟧(⟦𝑃⟧𝜏) = ff

(𝐹 𝑗
𝑄𝑘⊥)(⟦𝑃⟧

2𝜏) else.

= BB���
𝑗∈ℕ

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⊥ 𝜏 = ⊥ or (⟦𝑏⟧𝜏 = tt and ⟦𝑃⟧𝜏 = ⊥)
𝜏 ⟦𝑏⟧𝜏 = ff

⟦𝑃⟧𝜏 ⟦𝑏⟧𝜏 = tt and ⟦𝑏⟧(⟦𝑃⟧𝜏) = ff

(𝐹 𝑗
𝑄𝑘⊥)(⟦𝑃⟧

2𝜏) else

= BB���
𝑗∈ℕ

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⊥ 𝜏 = ⊥ or (⟦𝑏⟧𝜏 = tt and (⟦𝑃⟧𝜏 = ⊥ or
(⟦𝑏⟧(⟦𝑃⟧𝜏) = tt and ⟦𝑃⟧2𝜏 = ⊥)))

𝜏 ⟦𝑏⟧𝜏 = ff

⟦𝑃⟧𝜏 ⟦𝑏⟧𝜏 = tt and ⟦𝑏⟧(⟦𝑃⟧𝜏) = ff

(𝐹 𝑗
𝑄𝑘⊥)(⟦𝑃⟧

2𝜏) else.

We further know from Proposition 1.2 that

fix𝐹𝑄𝜎 = ⊥

if and only if it is the case that for all 𝑗 ∈ ℕ we have

(𝐹 𝑗
𝑄𝑘⊥)𝜎 = ⊥.

23



Inspecting the directed supremum from above we may see that it takes on the value ⊥ for all 𝑗
for an input 𝜏 if one of the following happens:

• It is the case that 𝜏 = ⊥ in St⊥ or

• ⟦𝑏⟧𝜏 = tt and ⟦𝑃⟧𝜏 = ⊥ or

• there exists 𝑘 ∈ ℕ such that ⟦𝑏⟧(⟦𝑃⟧𝑙𝜏) = tt and ⟦𝑃⟧𝑙 ≠ ⊥ for 1 ≤ 𝑙 < 𝑘, and ⟦𝑃⟧𝑘 = ⊥
(this is a generalization of the previous case) or

• on every iteration we are in the final case which can only happen if ⟦𝑏⟧(⟦𝑃⟧𝑗𝜏) = tt for
all 𝑗 ∈ ℕ.

We similarly expand the expression obtained when calculating the least fixed point of 𝐺𝑖
𝑄.

If we are in the fourth case of the following case distinction and we apply 𝐺𝑖
𝑄 again, we need to

account for the fact that 𝜃 is a function in the 𝑚𝑖 which needs to be updated to

𝜃′ = [𝑥1 ↦ ⟦𝑇𝐷
𝑥1
𝑃⟧

𝜃
]⋯ [𝑥𝑛 ↦ ⟦𝑇𝐷

𝑥𝑛
𝑃⟧

𝜃
].

(

BB���
𝑗∈ℕ

(𝐺𝑖
𝑄)

𝑗+2
)

𝑘⊥𝑚1⋯𝑚𝑛

= BB���
𝑗∈ℕ

((𝐺𝑖
𝑄)

𝑗+2𝑘⊥)𝑚1⋯𝑚𝑛

= BB���
𝑗∈ℕ

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⊥ ⟦𝑇 𝑏⟧𝜃 = ⊥
𝑚𝑖 ⟦𝑇 𝑏⟧𝜃 = 1
⊥ ⟦𝑇 𝑏⟧𝜃 = 0, ⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜃
= ⊥

((𝐺𝑖
𝑄)

𝑗+1𝑘⊥)(⟦𝑇𝐷
𝑥1
𝑃⟧

𝜃
)⋯ (⟦𝑇𝐷

𝑥𝑛
𝑃⟧

𝜃
) ⟦𝑇 𝑏⟧𝜃 = 0, ⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜃
≠ ⊥.

= BB���
𝑗∈ℕ

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

⊥ ⟦𝑇 𝑏⟧𝜃 = ⊥
𝑚𝑖 ⟦𝑇 𝑏⟧𝜃 = 1
⊥ ⟦𝑇 𝑏⟧𝜃 = 0, ⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜃
= ⊥

⊥ ⟦𝑇 𝑏⟧𝜃 = 0, ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜃
≠ ⊥, ⟦𝑇 𝑏⟧𝜃′ = ⊥

⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜃
⟦𝑇 𝑏⟧𝜃 = 0, ⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜃
≠ ⊥, ⟦𝑇 𝑏⟧𝜃′ = 1

⊥ ⟦𝑇 𝑏⟧𝜃 = 0, ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜃
≠ ⊥, ⟦𝑇 𝑏⟧𝜃′ = 0, ⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜃′
= ⊥

((𝐺𝑖
𝑄)

𝑗𝑘⊥)(⟦𝑇𝐷
𝑥1
𝑃⟧

𝜃′
)⋯ (⟦𝑇𝐷

𝑥𝑛
𝑃⟧

𝜃′
) else

= BB���
𝑗∈ℕ

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⊥ ⟦𝑇 𝑏⟧𝜃 = ⊥ or (⟦𝑇 𝑏⟧𝜃 = 0 and (⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜃
= ⊥ or

⟦𝑇 𝑏⟧𝜃′ = ⊥ or (⟦𝑇 𝑏⟧𝜃′ = 0 and ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜃′
= ⊥)))

𝑚𝑖 ⟦𝑇 𝑏⟧𝜃 = 1
⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜃
⟦𝑇 𝑏⟧𝜃 = 0, ⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜃
≠ ⊥, ⟦𝑇 𝑏⟧𝜃′ = 1

((𝐺𝑖
𝑄)

𝑗𝑘⊥)(⟦𝑇𝐷
𝑥1
𝑃⟧

𝜃′
)⋯ (⟦𝑇𝐷

𝑥𝑛
𝑃⟧

𝜃′
) else.

Note that by the induction hypothesis we know that

⟦𝑇𝐷
𝑥𝑘
𝑃⟧

𝜃′
=
(

⟦𝑃⟧ zr𝑥1,…,𝑥𝑛((⟦𝑇
𝐷
𝑥1
𝑃⟧

𝜃
)⋯ (⟦𝑇𝐷

𝑥𝑛
𝑃⟧

𝜃
))
)

𝑥𝑘 = (⟦𝑃⟧2𝜃)𝑥𝑘

24



for all 1 ≤ 𝑘 ≤ 𝑛. This means that we may describe 𝜃′ as

𝜋𝑥1,…,𝑥𝑛(⟦𝑃⟧ zr𝑥1,…,𝑥𝑛(𝑚1,… , 𝑚𝑛)),

and more generally, that on the 𝑗 + 1th iteration of 𝐺 we have the valuation given by

𝜃𝑗 = 𝜋𝑥1,…,𝑥𝑛(⟦𝑃⟧
𝑗 zr𝑥1,…,𝑥𝑛(𝑚1,… , 𝑚𝑛)).

It is further useful to realize that if ⟦𝑇 𝑏⟧𝜃 ≠ ⊥ and ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜃
≠ ⊥ then we also know that

⟦𝑇 𝑏⟧𝜃𝑗 ≠ ⊥, which is why there are no conditions for the latter.
We may similarly argue that for (fix𝐺𝑖

𝑄)𝑚1⋯𝑚𝑛 = ⊥ to hold it must be the case that this
is true for all iterations of (𝐺𝑖

𝑄)
𝑗 , where 𝑗 ∈ ℕ, for the inputs 𝑔 = 𝑘⊥ and 𝑚1, . . . , 𝑚𝑛 from ℕ.

This happens in the following cases:

• If ⟦𝑇 𝑏⟧𝜃 = ⊥, but this can only happen if one of the 𝑚𝑖 is equal to ⊥, and we are only
interested in the case where all the 𝑚𝑖 are in ℕ.

• If ⟦𝑇𝐷
𝑥𝑖
𝑏⟧

𝜃
= 0 and ⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜃
= ⊥, and this matches the second case for 𝐹𝑄 from above

using the induction hypothesis and the properties of our translation for regular expres-
sions.

• There exists 𝑙 ∈ ℕ such that ⟦𝑇 𝑏⟧𝜃 = 0 and for all 𝑘 < 𝑙 it is the case that ⟦𝑇 𝑏⟧𝜃𝑘+1 = 0,
⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜃𝑘
≠ ⊥ and ⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜃𝑙
= ⊥, which matches the third case for 𝐹𝑄 form for the same

reason.

• If on every iteration we are in the final case, which means that for all 𝑗 ∈ ℕ we have
⟦𝑏⟧𝜃𝑗 = 0 for all 𝑗 ∈ ℕ. This matches the fourth case give for 𝐹𝑄 from above.

Hence we have for all While programs 𝑃 that

⟦𝑃⟧ zr𝑥1,…,𝑥𝑛(𝑚1⋯𝑚𝑛) = ⊥ if and only if ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜃
= ⊥,

and we use that property below to show that the two fixed points are related as we expect them
to be.

3.6 Connecting 𝐹𝑄 with the 𝐺𝑖
𝑄

We can see that based on Fact 1 we may connect the two functions of interest in the following
way:

St⊥ ⇒s St⊥ St⊥ ⇒s St⊥

ℕ𝑛
⊥ ⇒ ℕ⊥ ℕ𝑛

⊥ ⇒ ℕ⊥

←→
𝐹𝑄

←→zr𝑥⃗ ⇒𝜋𝑥𝑖 ←→ zr𝑥⃗ ⇒𝜋𝑥𝑖

← →
𝐺𝑖
𝑄

The aim is to show that we have the required properties to invoke Proposition 4.2 which forges
a connection between fix𝐹𝑄 and fix𝐺𝑖

𝑄 by telling us that that

fix𝐺𝑖
𝑄𝜋𝑥⃗𝜎 = 𝜋𝑥𝑖(fix𝐹𝑄(zr𝑥⃗(𝜋𝑥⃗𝜎))). (∗∗)

We may think of 𝜋𝑥⃗𝜎 as feeding the values from the valuation given by 𝜎 to fix𝐺𝑖
𝑄. Using this

property we may further argue that we have for all states 𝜎 that

⟦𝑇𝐷
𝑥𝑖
𝑄⟧

𝜎
= (fix𝐺𝑖

𝑄)𝜎𝑥1⋯ 𝜎𝑥𝑛 def ⟦ ⟧𝜎

25



= (fix𝐺𝑖
𝑄)𝜋𝑥⃗𝜎 def 𝜋𝑥⃗

= 𝜋𝑥𝑖
(

(fix𝐹𝑄)(zr𝑥⃗ 𝜋𝑥⃗𝜎)
)

Property (∗∗)

=
(

⟦𝑄⟧(zr𝑥⃗ 𝜋𝑥⃗𝜎)
)

𝑥𝑖 def ⟦ ⟧
= (⟦𝑄⟧𝜎)𝑥𝑖 Proposition 1.4,

which establishes that the translation does preserve the meaning of a program, see also The-
orem 3.1.

It remains therefore to establish property (∗∗), and in order to do so we merely have to show
that the conditions from Proposition 4.2 are satisfied, that is we have to show that 𝜋𝑥𝑖 ⇒ zr𝑥⃗ is
strict and that the diagram from above commutes, that is

𝐺𝑖
𝑄 ◦ (zr𝑥⃗⇒𝜋𝑥𝑖) = (zr𝑥⃗⇒𝜋𝑥𝑖) ◦ 𝐹𝑄,

but by Proposition 4.1 it is sufficient to do so for inputs other than ⊥.
For the former we note that the bottom element of St⊥ ⇒s St⊥ is the function 𝑘⊥ that maps

every element of St⊥ to ⊥ ∈ St⊥. We have that

𝜋𝑥𝑖 ◦ 𝑘⊥ ◦ zr𝑥⃗

is a function which, given inputs (𝑚1⋯𝑚𝑛) ∈ ℕ𝑛
⊥, returns

𝜋𝑥𝑖(𝑘⊥(zr𝑥⃗(𝑚1⋯𝑚𝑛))) = 𝜋𝑥𝑖⊥ def 𝑘⊥
= ⊥ def 𝜋𝑥𝑖 .

For the latter let 𝑓 be a strict function from St⊥ to itself, and let (𝑚1⋯𝑚𝑛) be an element
of ℕ𝑛. For 𝐺𝑖

𝑄 we obtain
(

(𝐺𝑖
𝑄 ◦ (zr𝑥⃗⇒𝜋𝑥𝑖))𝑓

)

(𝑚1⋯𝑚𝑛)

=
(

𝐺𝑖
𝑄(𝜋𝑥𝑖 ◦ 𝑓 ◦ zr𝑥⃗)

)

(𝑚1⋯𝑚𝑛)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚𝑖 ⟦𝑇 𝑏⟧zr𝑥⃗(𝑚1⋯𝑚𝑛)
= 1

⊥ ⟦𝑇 𝑏⟧zr𝑥⃗(𝑚1⋯𝑚𝑛)
= 0, ⟦𝑇𝐷

𝑥𝑖
𝑃⟧

zr𝑥⃗(𝑚1⋯𝑚𝑛)
= ⊥

𝜋𝑥𝑖(𝑓 zr𝑥⃗(⟦𝑇𝐷
𝑥𝑘
𝑃⟧

zr𝑥⃗(𝑚1⋯𝑚𝑛)
)1≤𝑘≤𝑛) else

while for 𝐹𝑄 we have
(

((zr𝑥⃗⇒𝜋𝑥𝑖) ◦ 𝐹𝑄)𝑓
)

(𝑚1⋯𝑚𝑛)

=
(

𝜋𝑥𝑖 ◦ 𝐹𝑄𝑓 ◦ zr𝑥⃗
)

(𝑚1⋯𝑚𝑛)

=

⎧

⎪

⎨

⎪

⎩

𝜋𝑥𝑖(zr𝑥⃗(𝑚1⋯𝑚𝑛)) = 𝑚𝑖 ⟦𝑏⟧ zr𝑥⃗(𝑚1⋯𝑚𝑛) = ff

⊥ ⟦𝑏⟧ zr𝑥⃗(𝑚1⋯𝑚𝑛) = tt, ⟦𝑃⟧ zr𝑥⃗(𝑚1⋯𝑚𝑛) = ⊥
𝜋𝑥𝑖(𝑓 (⟦𝑃⟧(zr𝑥⃗(𝑚1⋯𝑚𝑛)))) else.

We observe that the case distinctions match: for the boolean expressions this is due to the
fact that we have that ⟦𝑏⟧𝜎 = ⟦𝑇 𝑏⟧𝜎 for every state 𝜎, and in Section 3.5 we establish that for
every state 𝜎 we have ⟦𝑃⟧ = ⊥ if and only if ⟦𝑇𝐷

𝑥𝑖
𝑃⟧

𝜎
= ⊥.

26



Hence it remains to establish that the final cases agree. The crucial information here comes
from the induction hypothesis which tells us that the value of the state ⟦𝑃⟧ zr𝑥⃗(𝑚1⋯𝑚𝑛)) at a
variable 𝑥𝑘 is equal to ⟦𝑇𝐷

𝑥𝑘
𝑃⟧

zr𝑥⃗(𝑚1⋯𝑚𝑛)
, which means that we are comparing

⟦𝑃⟧(zr𝑥⃗)(𝑚1⋯𝑚𝑛)

with
zr𝑥⃗(𝜋𝑥⃗(⟦𝑃⟧(zr𝑥⃗(𝑚1⋯𝑚𝑛))))

as inputs to 𝜋𝑥𝑖 ◦ 𝑓 . But we know as a consequence of Proposition 1.4 that

zr𝑥⃗ ◦𝜋𝑥⃗ ◦ ⟦𝑃⟧ ◦ zr𝑥⃗ = ⟦𝑃⟧(zr𝑥⃗,

see property (†) from above.
With the material from Section 2.2 we have now established the following theorem from

[Sir22]:

Theorem 3.1

For every While program 𝑃 whose variables are among 𝑥1, 𝑥2, . . . , 𝑥𝑛 it is the case that for
every state 𝜎 we have

𝜋𝑥𝑖⟦𝑃⟧𝜎 = ⟦𝑇𝐷
𝑥𝑖
𝑃⟧

𝜎
.

This tells us that running the given program has the same effect as evaluating the PCF term
arising from the translation for the output variable 𝑥𝑖.

4 Mathematical background material

Above we have used some facts about dcpos that allow us to easily move between various
isomorphic ones. It further creates a connection between functions that take arguments in a
product space to produce a particular outcome, versus functions that expects such arguments
one at a time. We have used this idea quite freely in our account.

Fact 1

We have the following for dcpos 𝐷, 𝐷′, 𝐸 and 𝐸′ and Scott-continuous functions

𝑓 ∶ 𝐷′ 𝐷←→ and 𝑔∶ 𝐸 𝐸′.←→

(i) The dcpos (𝐷 ×𝐷′)⇒ 𝐸 and 𝐷⇒ (𝐷′ ⇒ 𝐸) are isomorphic.

(ii) There is a Scott-continuous function

𝑓 ⇒ 𝑔∶ 𝐷⇒ 𝐸 𝐷′ ⇒ 𝐸′

ℎ 𝑔 ◦ ℎ ◦ 𝑓.

←→

↤ →

(iii) If we have further Scott-continuous functions between dcpos

𝑓 ′ ∶ 𝐷′′ 𝐷′←→ and 𝑔′ ∶ 𝐸′ 𝐸′′←→

then
(𝑓 ′ ⇒ 𝑔′) ◦ (𝑓 ⇒ 𝑔) = (𝑓 ◦ 𝑓 ′)⇒ (𝑔′ ◦ 𝑔).

27



Proposition 4.1

Let 𝐺 and 𝐺′ be Scott-continuous endofunctions on

ℕ⊥ ⇒ (ℕ⊥ ⇒ (⋯ℕ⊥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛 many

⇒ℕ⊥)⋯).

If for all 𝑚1, 𝑚2,. . .𝑚𝑛 in ℕ and all 𝑔 which provide a suitable first input to 𝐺 it is the case
that if

𝐺 𝑔 𝑚1⋯𝑚𝑛 = 𝐺′ 𝑔 𝑚1⋯𝑚𝑛

then
(fix𝐺)𝑚1⋯𝑚𝑛 = (fix𝐺′)𝑚1⋯𝑚𝑛.

Proof. Let 𝑘⊥ be the function that takes 𝑛 inputs from ℕ⊥ and always gives ⊥ ∈ ℕ⊥ as the
output. We may prove by a simple induction proof that for the given prerequisites we have
that for all 𝑖 ∈ ℕ and 𝑔 and 𝑚1, 𝑚2,. . .𝑚𝑛 as given

(𝐺𝑖𝑔)𝑚1⋯𝑚𝑛 = (𝐺′𝑖𝑔)𝑚1⋯𝑚𝑛.

To calculate the least fixed point of𝐺 for inputs𝑚1,𝑚2,. . . ,𝑚𝑛 fromℕ⊥ wemay calculate

(fix𝐺)𝑚1⋯𝑚𝑛 =
(

BB���
𝑗∈ℕ

𝐺𝑖𝑘⊥

)

𝑚1⋯𝑚𝑛 constr of fix

= BB���
𝑗∈ℕ

(𝐺𝑖𝑘⊥)𝑚1⋯𝑚𝑛 def BB���

= BB���
𝑗∈ℕ

(𝐺′𝑖𝑘⊥)𝑚1⋯𝑚𝑛 above

= (fix𝐺′)𝑚1⋯𝑚𝑛.

The following result appears as early as Plotkin’s Pisa notes [Plo83]:

Proposition 4.2
Assume we have Scott-continuous functions between dcpos such that 𝑓 is strict and such
that the following diagram commutes

𝐷 𝐷

𝐸 𝐸,

←→𝐹

←→𝑓 ←→ 𝑓

←→
𝐺

that is 𝐺 ◦ 𝑓 = 𝑓 ◦ 𝐹 . Then
fix𝐺 = 𝑓 (fix𝐹 ).

Proof. We note that the given condition implies that for all 𝑗 ∈ ℕ we have

𝑓 ◦ 𝐹 𝑗 = 𝐺𝑗 ◦ 𝑓 ∶

The base case follows from 𝑓 = 𝑓 , and in the step case we may argue (using associativity

28



of composition) that

𝑓 ◦ 𝐹 𝑗+1 = 𝐺𝑗 ◦ 𝑓 ◦ 𝐹 induction hypothesis
= 𝐺𝑗+1 ◦ 𝑓 𝑓 ◦ 𝐹 = 𝐺 ◦ 𝑓.

We may calculate

𝑓 (fix𝐹 ) = 𝑓
(

BB���
𝑗∈ℕ

𝐹 𝑗⊥
)

def fix

= BB���
𝑗∈ℕ

𝑓 (𝐹 𝑗⊥) 𝑓 Scott-continuous

= BB���
𝑗∈ℕ

𝐺𝑗(𝑓⊥) property from above

= BB���
𝑗∈ℕ

𝐺𝑗⊥ 𝑓 strict

= fix𝐺 def fix .

References

[NN07] Hanne R. Nielson and Flemming Nielson. Semantics with Applications: An Appetizer.
Undergraduate Topics in Computer Science. Springer, March 2007. URL: http://dx.
doi.org/10.1007/978-1-84628-692-6.

[Plo83] Gordon Plotkin. Domains (Pisa Notes). available from teh authors website, 1983. URL:
https://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps.

[RS22] Joe Razavi and Andrea Schalk. Giving Meaning to Programs. Lecture notes, University
of Manchester, 2022.

[Sir22] Vlad Sirbu. Studying the While Programming Language. Third year project report
(draft), University of Manchester, 2022.

[Str06] Thomas Streicher. Domain-Theoretic Foundations of Functional Programming. World
Scientific Publishing Co, USA, 2006. URL: https://www.semanticscholar.
org/paper/Domain-theoretic-foundations-of-functional-Streicher/
730a2c4fe57e22dfcf62179795d877708c176280.

29

http://dx.doi.org/10.1007/978-1-84628-692-6
http://dx.doi.org/10.1007/978-1-84628-692-6
https://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps
https://www.semanticscholar.org/paper/Domain-theoretic-foundations-of-functional-Streicher/730a2c4fe57e22dfcf62179795d877708c176280
https://www.semanticscholar.org/paper/Domain-theoretic-foundations-of-functional-Streicher/730a2c4fe57e22dfcf62179795d877708c176280
https://www.semanticscholar.org/paper/Domain-theoretic-foundations-of-functional-Streicher/730a2c4fe57e22dfcf62179795d877708c176280

	Interpreting While programs
	The While language
	Interpreting While programs: states
	Interpreting While programs: Typing
	Interpreting expressions
	Interpreting programs
	Examples

	Translating While programs to PCF
	Idea
	The translation
	Examples

	Connecting the two fixed point constructions
	The interpretation of loops
	Laying the ground work
	Expressions
	Programs
	Termination
	Connecting F and G

	Mathematical background material

