
Cartesian Closed Categories

Andrea Schalk · November 16, 2010

T
his is a supplementary part of the notes on category theory as provided
by Harold Simmons’ ‘An Introduction to Category Theory’. It explains

the notion of a cartesian closed category, which is merely a special example
of an adjunction.

Cartesian closed categories are precisely what is required to model the
simply-typed λ-calculus (or indeed intuitionistic logic with implication).
This is explained in the last lecture on category theory but that material is
not examinable and there will be no handout for it.1

It is worth stating the following very general ideas (they go much beyond
the simply-typed λ-calculus):

• types are modelled by objects and

• derivations (and, ultimately, judgements) are modelled by arrows.

For types, this means that

• to each atomic type or type variable we have assigned an object in the
category and

• for each type constructor (this is just the arrow in the case of the
simply-typed λ-calculus) there is a construction on objects that models
it. Without going into detail here it makes sense to demand that this
construction is functorial.

For atomic types we may have to demand some additional properties,
depending on what constants there are in our calculus.

Contexts are modelled by products, that is, we form the product of all the
objects interpreting the types that are mentioned in the context (honouring
repetitions). The empty context is therefore modelled by the terminal object.

The aim is now to inductively define an arrow for each derivation. The
‘type’ of the arrow is given by information in its final judgement: Its source
is the interpretation of the context and its target the interpretation of the
type of the derived λ-term.

How this works will be explained in the lecture mentioned above. Note
that once one has such an assignment the following questions become of
interest:

• If there are two derivations for the same judgement, can we say any-
thing about the corresponding arrows?

• If two terms are related by

– α-equivalence,

– β-reduction

what, if anything, can we say about the arrows interpreting their
derivations?

1Writing this all out such that all the details are correct is quite difficult—all the
published versions that I know of have a flaw or two.

1



You should pause to think about what you would expect to happen.
Note that if you take a derivation in the simply-typed λ-calculus and re-

move all the terms you get a derivation in the sequent calculus formulation

of intuitionistic logic (with implication the only connective). One can under-
stand the λ-terms constructed along the way as ‘proof terms’: They encode
the derivation in question. Hence by modelling this λ-calculus we can also
model intuitionistic logic.

A lot of what we want is already described in Section 5.2.2 of the book,
albeit in the special case of the category Set.

In order to model the simply-typed λ-calculus as outlined above we need
products to model the contexts. Since products are only defined up to unique
isomorphism we need something a bit stronger to have a proper assignment

for our interpretation of types: We have to assume that we have chosen a
particular product in all cases.

A category C with selected products is a category with

• a chosen terminal object and

• for each pair of objects A and B a chosen specific object A×B (with
projections πl and πr) which is a product of the two.

From Section 3.3.3 of the notes we know that in this situation given an
object B in C there is a functor −×B : C - C which maps objects A of
C to A×B, and arrows f : A - A′ to f × 1B : A×B - A′ ×B.

Once we have this we can define what else is needed: As per the above
sketch of interpreting derivations it is clear that we require a construction
that models the arrow formation on types.

To then be able to inductively define the interpretation of derivations, and
for that interpretation to have good properties, it is not enough to merely
assume that we have an assignment ⇒ on objects for this purpose. It turns
out that what is wanted here is the following.

Definition 1. A category C with designated products is cartesian closed

(a ccc if for every object B of C the functor −×B : C - C has a right
adjoint.

It is fairly standard to say that an object B is exponentiable if the
functor (−×B) has a right adjoint, so a category is cartesian closed if and
only if all its objects are exponentiable.

If such an adjoint exists we typically use B⇒− to refer to it. Given
some object C in C, the object B⇒C is often referred to as the internal

function space or internal hom-object or, the internal arrow object of B

and C. When we look at how B⇒− acts on arrows we frequently write
1B ⇒ e for (B⇒−)e where e : C ′ - C.

The remainder of the notes look at this definition in a bit more detail.
The general theory of adjunctions applies, so in particular we know that

for an exponentiable B there is a natural isomorphism with components

φA,C : C[A×B,C] - C[A,B⇒C],

which we call currying.

Exercise 1. Which two functors are connected by the natural isomor-
phism φ? If you find this hard then read on a bit.

The ‘typical’ example of a cartesian closed category is Set. Here for sets
B and C the object B⇒C is the set of all functions from B to C. But

2



this is merely the (covariant version of) the hom-functor as introduced in
Section 3.2! We are in a fortunate situation here since we need to define
a set B⇒C, and the set of arrows gives us back a set. Clearly we cannot
apply the same trick for any category other than Set. Nonetheless there are
many cases where B⇒C has a close connection with the set of arrows from
B to C, but this has to be turned into an object of the category in question.
This is the origin of the notion of ‘internalizing the hom-set’.

Now the components of φ are currying and uncurrying as you have met
them in your lectures on λ-calculi:

Given f : A×B - C we define the function φA,C(f) with source A and
target B⇒C by setting

φA,C(f)(a) : b 7−→ f(a, b).

So each φA,C(f)(a) becomes a function from B to C as required. You should
now be able to write down a definition of uncurrying.

We look at an alternative description of an adjunction, and this is a case
where the ‘co-free’ version of an adjunction seems to work better than the
free one (mostly because we already have a functor that we desire to be a
left adjoint). Here is the data required:

• A functor −×B : C - C,

• an assignment on objects C - B⇒C,

• a family of arrows (indexed by objects C of C)

evalC : (B⇒C) ×B - C

known as ‘evaluation arrows’ with the property that for all

f : A×B - C

there exists a unique
f♭ : A - B⇒C

such that the following diagram commutes.

A×B
f♭ × 1B

- (B⇒C) ×B

C

evalC

?

f
-

For the category Set, the evalC are evaluation functions in that given

a function f : B - C and an element b of B

we set
evalC(f, b) = f(b).

Exercise 2. Prove that the category Set is cartesian closed. You may want
to consider doing it in more than one way.

Unfortunately there aren’t a lot of simple examples of cartesian closed
categories. While it is often possible to equip a function space with the
structure required to turn it into an object of the category under considera-
tion, in general this does not lead to a right adjoint for the product functor.

3



Categories of algebras are good examples for this. One can then look for a
left adjoint for the function space construction instead; the result is typi-
cally know as a tensor product2 and one gets what are known as symmetric

monoidal closed categories.
Examples that do work are:

• Categories of partially ordered sets, for example the category of posets.
The function space is given the ‘pointwise order’, which means that
a function f : P - Q is below some function g between the same
posets if and only if for every p ∈ P it is the case that f(p) ≤ g(p).
This does provide a right adjoint for the product functor.

• Some categories of topological spaces. However, for this to work on has
to restrict oneself to locally compact topological spaces, which requires
too much detail regarding the general theory of topological spaces to
make it a suitable example for this course.

• Categories of monoid actions (see Chapter 6 of the notes). But this is
hardly a simple example!

• The category of functors from a given (small) category to the category
of sets.

• The category of (small) categories. A hom-object C⇒D is given by
the functor category of all functors from C to D.

Exercise 3. It would be a good idea at this stage to work out the details
of another cartesian closed category. If the above examples all seem daunt-
ing you might want to caracterize which posets (viewed as categories) are
cartesian closed. Be warned, however, that the answer may not look very
meaningful unless you have studied (at least) Boolean algebras.

There is one more thing to be discussed in these notes. In a cartesian
closed category we have a great number of pairs of adjoint functors, namely
one for each object. In some sense all these adjunctions ‘behave in the same
way’.

Instead of looking at the functors (− × B) we can certainly turn the B
into another variable and look at the functor −×− : C × C - C.

We make a general observation about functors with two arguments, also
known as bifunctors. Given categories C and D we can form their product
(in the category of categories) C × D, as described in Example 1.9 of the
notes. The objects of C × D are pairs (C,D), where C is an object of C

and D one of D. Morphisms, identities and composition are also defined
component-wise. So if we have a functor whose source is the product of two
categories C × D we can think of it as a functor with two arguments, one
from C and one from D.

Now let F : C × D - E be such a functor ‘of two arguments’. We can
define two families of derived functors, one with components C - E and
one with components D - E by ‘making one argument constant’. For
D in D let F (−, D) be the functor C - E which maps an object C to
F (C,D) and an arrow f : C - C ′ to F (f, 1D) : F (C,D) - F (C ′, D).
We can define F (C,−) for C an object of C in a similar manner.

Exercise 4. Let F,G : C × D - E be two functors. Show that a family
of arrows with components αC,D : F (C ×D) - G(C ×D) (where C and
D are objects of C and D respectively) is a natural transformation from F

to G if and only if ‘it is natural in both components separately’, that is

2This is a notion that is strictly weaker than a categorical product.

4



• given an object D of D we have that α−,D defines a natural transfor-
mation from F (−, D) : C - E to G(−, D) : C - E and

• given an object C of C we have that αC,− is a natural transformation
from F (C,−) to G(C,−).

We know that for every object B of a ccc C the functor (−×B) has a right
adjoint. What does that mean for the functor of two arguments (− × −)?
The answer to that question is that such a functor has good properties which
we describe below. Instead of doing so in the restricted setting of cccs we
generalize the problem.

Definition 2. A functor F : C × D - E is a left adjoint of a parametrized

adjunction if all the functors

F (−, D) : D - E

have a right adjoint
DG : E - C.

Before we look at parametrized adjunctions we summarize some of the
material explained in Chapter 5.3 of the notes as a reminder.

Recall the hom-functors in Chapter 2.4.1 of the notes. Given an object A
of some category C we can define functors

C[A,−] : C - Set and C[−, B] : C
op - Set.

The first one maps an object B of C to the set of arrows from A to B,
C[A,B] (which is also the result of applying the second functor to A). An
arrow g : B - B′ is mapped to the function

C[A,B] - C[A,B′]

that acts on some e ∈ C[A,B] by mapping it to the composite g ◦ e.

Exercise 5. These functors are described in more detail in Section 3.2 of
the notes, starting on page 73. If you don’t feel comfortable with them yet,
reread that part of the notes and do any proofs omitted there to establish
that they are indeed functors.

We can now put these two functors together and turn them into one ‘of two
variables’. In other words, we have a functor C[−,−] : C

op × C - Set.

Exercise 6. Define this functor and show that it is one—this is Exer-
cise 3.2.5 of the notes.

Let F : C - D be left adjoint to G : D - C. When describing the
adjunction according to Definition 5.1 of the notes we need to have these two-
variable hom-functors in order to make precise what is meant by naturality
in this context (you were encouraged to formulate this in Exercise 1).

In particular, in Section 5.3 of the notes it is explained how to define two
functors

C
op × D - Set,

namely by composing the hom-functors

D[−,−] : D
op × D - Set and C[−,−] : C

op × C - Set

with F op × 1D and 1Cop ×G respectively to get

D[F−,−], C[−, G−] : C
op × D - Set.

5



Then the family of isomorphisms with components

φC,D : D[FC,D] - C[C,GD]

is a natural isomorphism between these two functors.

Exercise 7. Let F : C - D be left adjoint to G : D - C, and let φ be
the corresponding natural isomorphism with components

φC,D : D[FC,D] - C[C,GD].

Show that the action of G on arrows is uniquely determined by φ. Now
assume that you are given assignments on objects F from C to D and G in
the opposite direction. What condition does φ have to satisfy so that we get a
functor when defining G on arrows by using this uniqueness condition? Show
that this condition can be formulated such that if we use this definition of
G then φC,− provides a natural transformation from D[FC,−] to C[C,G−].
Now derive similar statements for F .

Hint: For g : D - D′ we get Gg = φGD,D′(g ◦ φ−1
GD,D(1GD)).

The following result states what we can say about parametrized adjunc-
tions.

Theorem 3. Let F : C × D - E be the left adjoint of a parametrized

adjunction with DG : E - C giving the right adjoints for F (−, D) and the

natural isomorphism from E[F (−×D),−] to C[−,DG−] having components

DφC,E : E[F (C ×D), E] - C[C,DGE].

Then there is a unique functor G : D
op × E - C such that

• G(D,E) = DGE;

• for the two functors

E[F (−,−),−], C[−, G(−,−)] : C
op × D

op × E - Set

we have a natural isomorphism ψ with components ψC,D,E = DφC,E.

Proof. We begin by making an observation regarding the purported natural
isomorphism ψ. First of all we know that all the components of ψ are indeed
isomorphisms. Secondly by Exercise 4 naturality of ψ is equivalent to it
being natural in all three components separately. We already know that it
is natural in the components from C and E, but with respect to the functors
F (−, D) and DG. This is expressed by the following square, which commutes
for all objects D of D and arrows3 f : C ′ - C in C and h : E - E′ in
E.

E[F (C,D), E]
DφC,E

- C[C,DGE]

E[F (C ′, D), E′]

h ◦ − ◦ F (f, 1D)

? DφC′,E′

- C[C ′,DGE′]

DGh ◦ − ◦ f

?

3Note that E[F (−,−),−], C[−, DG], and C[−, G(−,−)] are contravariant in their C and
D arguments. We prefer to describe arrows in D rather than in D

op, but it should be noted
that the arrows then compose in the opposite way of what might be expected.

6



Put into equations, we know that for all e ∈ E[F (C,D), E] we have

DφC′,E(e ◦ F (f, 1D)) = DφC,E(e) ◦ f

and
DφC,E′(h ◦ e) = DGh ◦

DφC,E(e).

On objects we define G(D,E) = DGE as suggested by the statement of
the theorem. This implies naturality of ψ in the C component, which we
achieve by letting E = E′ and h = 1E in the above diagram.

In order to define G on arrows4 we look at one of the requirements, namely
naturality for ψ in the D and E components. This is expressed by the fol-
lowing square, where g : D′ - D in D and h : E - E′ in E, and C is
an arbitrary object from C. Any G we define must satisfy

E[F (C,D), E]
ψC,D,E = DφC,E

- C[C,G(D,E)]

E[F (C,D′), E′]

h ◦ − ◦ F (1C , g)

? ψC,D′,E′ = D′

φC,E′

- C[C,G(D′, E′)]

G(g, h) ◦ −

?

By setting C = G(D,E) = DGE we may consider

Dφ−1
DGE,E

(1DGE) ∈ E[F (C,D), E]

and chase that through the diagram. Across the top and right we get

G(g, h) ◦ DφDGE,E(Dφ−1
DGE,E

(1DGE)) = G(g, h) ◦ 1DGE = G(g, h).

Along the left and bottom we get

D′

φDGE,E′(h ◦
Dφ−1

DGE,E
(1DGE) ◦ F (1C , g))

and so any functor G with the desired properties must satisfy

G(g, h) = D′

φDGE,E′(h ◦
Dφ−1

DGE,E
(1DGE) ◦ F (1C , g))

which shows that such a G is indeed uniquely determined if it exists, and
we use this as the definition.

From now on we drop subscripts from the natural transformation φ. They
do not add any information, and can indeed be restored from the given
context. This makes the presentation much less cluttered, and it is easier
to follow the equations. If you want a version of the same proofs with all
indices talk to me.

So we know that G has to satisfy the equation

G(g, h) = D′

φ(h ◦
Dφ−1(1DGE) ◦ F (1C , g)).

We note that by Exercise 7 for all objects D of D and h as before we have

DGh = Dφ(h ◦
Dφ−1(1DGD)).

It remains to show that G as defined is a functor and that ψ is natural
in its D and E components. For the E component this amounts to showing

4A simpler version of doing precisely the same thing is the subject of Exercise 7, so
doing that first will help with understanding the proof that follows.

7



that the above diagram commutes for D = D′ and h = 1D. But that then
is a direct consequence of the naturality of Dφ in E since

G(1D, h) = Dφ(h ◦
Dφ−1(1DGE)) = DGh.

For naturality in the D component, let g : D′ - D as before. Then for
arbitrary objects C of C and E of E and e ∈ E[F (C,D), E]

G(g, 1E)(Dφ(e))

= D′

φ
(

1E ◦
Dφ−1(1DGE) ◦ F (1C , g)

)

(Dφ(e)) Def G

= D′

φ
(

Dφ−1(1DGE) ◦ F (1C , g) ◦ F (Dφ(e), 1D)
)

Nat D′

φ

= D′

φ
(

Dφ−1(1DGE) ◦ F (Dφ(e), g)
)

Funct F

= D′

φ
(

Dφ−1(1DGE) ◦ F (Dφ(e), 1D) ◦ F (1C , g)
)

Funct F

= D′

φ
(

Dφ−1(1DGE ◦
Dφ(e)) ◦ F (1C , g)

)

Nat Dφ−1

= D′

φ
(

Dφ−1(Dφ(e)) ◦ F (1C , g)
)

Id

= D′

φ(e ◦ F (1C , g)) Inv

as desired.
It remains to show that by defining G through this equation we have

indeed defined a functor. The identity on an object (D,E) of D
op × E is

(1D, 1E), and applying G to that we get

G(1D, 1E) = Dφ
(

1E ◦
Dφ−1(1DGE) ◦ F (1C , 1D)

)

Def G

= Dφ
(

Dφ−1(1DGE) ◦ 1F (C,D)

)

Funct F

= Dφ(Dφ−1(1DGE)) Id
= 1DGE Inv
= 1G(D,E). Def G

Now assume that we have g : D′ - D and g′ : D′′ - D′ in D as well
as h : E - E′ and h : E′ - E′′ in E. Then

G(g′, h′) ◦G(g, h)

= G(g′, h′) ◦ D′

φ
(

h ◦
Dφ−1(1DGE) ◦ F (1C , g)

)

Def G

= D′′

φ
(

h′ ◦ h ◦
Dφ−1(1DGE) ◦ F (1C , g) ◦ F (1C , g

′)
)

Nat ψ

= D′′

φ
(

(h′ ◦ h) ◦ Dφ−1(1DGE) ◦ F (1C , g ◦ g
′)
)

Funct F
= G(g ◦ g′, h′ ◦ h) Def G

This completes the proof.

So we now know that in a cartesian closed category the functor

−×− : C × C - C

is the left adjoint in a parametrized adjunction, hence there is a functor of
two arguments formed by the individual right adjoints

−⇒− : C
op × C - C.

Currying and uncurrying are natural transformations between the func-
tors

C[−×−,−], C[−,−⇒−] : C
op × C

op × C - Set,

and they are natural in all three arguments.

8


