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Large games

Section 4 covers how computer programs for games such as Chess,
Go, Othello, Checkers and similar games work.

These games have very large game trees—typically far too large to
be held in memory entirely, and certainly too large to try to find all
strategies.

In fact, even the methods in the previous section will not work on
such games—the game trees are so large that carrying out
alpha-beta search would take far too long to return a value and thus a
good move.

There are three problems which have to be solved to write such a
program which we will discuss in some detail. Finally we will have a
look at how Chess-playing programs developed, since Chess is the
game for which the most effort has been made when it comes to
writing programs.
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The three problems

In order to write a game-playing program, the following problems
have to be solved.

Board representation and move generation.

Alpha-beta search.

Evaluation function. Since alpha-beta search cannot be carried out
until a leaf is reached, the search stops instead at a pre-defined
depth. To obtain a value for a position at this depth, a function has to
be created which assigns one based entirely on the state of the board
at the time. This is known as the ‘evaluation function’.

The faster the program, the higher the depth to which it can carry out
alpha-beta search (before it has to ‘guess’ a value for a position), and
the better it will play. Hence speed is of the essence when writing
such programs, and is a concern for all the components mentioned
above.
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Representing the board and related
issues
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Representing the board–array

In order to illustrate our thoughts, we often use Chess as an example.
However, there’s no need to be familiar with the game beyond the
rudiments.

Obvious representation of a Chess board: 8 × 8 array.
Each field holds information about the piece that occupies the
corresponding field on the board (if any).

To generate moves: Pick piece, generate possible target fields, then:

• check target field not occupied by own piece;

• if piece is a rook, bishop, pawn or queen, check whether the way
to target is empty;

• if piece is a king check that target position cannot be reached by
an enemy piece in one step.

Need:

• loop over all fields (to pick piece);

• loop over all possible target positions;

• loop to check for obstructions along the way.

Complicated, not fast.
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Board representation–0x88

Faster: Assign a number to each square on the board given by one
byte, four high bits: row; four low bits: column.

a b c d e f g h
0000 0001 0010 0011 0100 0101 0110 0111 low bits

8 0111 112 113 114 115 116 117 118 119
7 0110 96 97 98 99 100 101 102 103
6 0101 80 81 82 83 84 85 86 87
5 0100 64 65 66 67 68 69 70 71
4 0011 48 49 50 51 52 53 54 55
3 0010 32 33 34 35 36 37 38 39
2 0001 16 17 18 19 20 21 22 23
1 0000 0 1 2 3 4 5 6 7

high bits

This is much faster than the first version. To check whether a number
i is a valid position on the board, check whether it satisfies
i&0x88 == 0 (&: bitwise).
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a b c d e f g h
0000 0001 0010 0011 0100 0101 0110 0111 low bits

8 0111 112 113 114 115 116 117 118 119
7 0110 96 97 98 99 100 101 102 103
6 0101 80 81 82 83 84 85 86 87
5 0100 64 65 66 67 68 69 70 71
4 0011 48 49 50 51 52 53 54 55
3 0010 32 33 34 35 36 37 38 39
2 0001 16 17 18 19 20 21 22 23
1 0000 0 1 2 3 4 5 6 7

high bits

To move one field to the left or right, just subtract or add one.

This is
much faster than the first version. To check whether a number i is a
valid position on the board, check whether it satisfies i&0x88 == 0
(&: bitwise).
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a b c d e f g h
0000 0001 0010 0011 0100 0101 0110 0111 low bits

8 0111 112 113 114 115 116 117 118 119
7 0110 96 97 98 99 100 101 102 103
6 0101 80 81 82 83 84 85 86 87
5 0100 64 65 66 67 68 69 70 71
4 0011 48 49 50 51 52 53 54 55
3 0010 32 33 34 35 36 37 38 39
2 0001 16 17 18 19 20 21 22 23
1 0000 0 1 2 3 4 5 6 7

high bits

To move up a row, add 16, to move down a row, subtract 16.

This is
much faster than the first version. To check whether a number i is a
valid position on the board, check whether it satisfies i&0x88 == 0
(&: bitwise).
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4 0011 48 49 50 51 52 53 54 55
3 0010 32 33 34 35 36 37 38 39
2 0001 16 17 18 19 20 21 22 23
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high bits

Board: represented as an array with 128 entries, only 64 of which
correspond to actual fields.

This is much faster than the first version.
To check whether a number i is a valid position on the board, check
whether it satisfies i&0x88 == 0 (&: bitwise).
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Board representation–bitboards

Idea: for each colour and piece, use a ‘bitboard’.

The white pawns:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0

Need: one 64-bit word for each piece. Operations: bit-wise—this is
really fast!

Only disadvantage: the code becomes more complicated; turning a
bitboard of possible moves into a list of possible moves, for example.

Advantages: fast; bitboards required more than once only have to be
computed once; several moves can be generated at the same time.
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Need: one 64-bit word for each piece. Operations: bit-wise—this is
really fast!
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Advantages: fast; bitboards required more than once only have to be
computed once; several moves can be generated at the same time.

Andrea Schalk: CS3191 Section 4 – p. 7/44



Board representation–bitboards

Idea: for each colour and piece, use a ‘bitboard’.
The white pawns:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0

Need: one 64-bit word for each piece. Operations: bit-wise—this is
really fast!

Empty fields: bitboard for all pieces negated.

Only disadvantage: the code becomes more complicated; turning a
bitboard of possible moves into a list of possible moves, for example.

Advantages: fast; bitboards required more than once only have to be
computed once; several moves can be generated at the same time.

Andrea Schalk: CS3191 Section 4 – p. 7/44



Board representation–bitboards

Idea: for each colour and piece, use a ‘bitboard’.
The white pawns:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0

All legal moves of pawns by one field can be stored in a bitboard
(similarly for all legal moves of pawns by two fields). Constant
bitboards can be prepared at compile time to be available in a library.
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Beyond board representation

Typically it is not sufficient merely to represent the pieces on the
board.

In Chess, for example, we have to know whose turn it is, whether a
player can still castle, and whether a capture en passant is possible.
Worse, there are rules about repeating previous positions in Chess
(which will lead to a draw), so the program has to have a way of
remembering those!

Chess programs typically use a large hash table to keep track of
positions that have occurred in play.

Andrea Schalk: CS3191 Section 4 – p. 8/44



Beyond board representation

Typically it is not sufficient merely to represent the pieces on the
board.

In Chess, for example, we have to know whose turn it is, whether a
player can still castle, and whether a capture en passant is possible.

Worse, there are rules about repeating previous positions in Chess
(which will lead to a draw), so the program has to have a way of
remembering those!

Chess programs typically use a large hash table to keep track of
positions that have occurred in play.

Andrea Schalk: CS3191 Section 4 – p. 8/44



Beyond board representation

Typically it is not sufficient merely to represent the pieces on the
board.

In Chess, for example, we have to know whose turn it is, whether a
player can still castle, and whether a capture en passant is possible.
Worse, there are rules about repeating previous positions in Chess
(which will lead to a draw), so the program has to have a way of
remembering those!

Chess programs typically use a large hash table to keep track of
positions that have occurred in play.

Andrea Schalk: CS3191 Section 4 – p. 8/44



Beyond board representation

Typically it is not sufficient merely to represent the pieces on the
board.

In Chess, for example, we have to know whose turn it is, whether a
player can still castle, and whether a capture en passant is possible.
Worse, there are rules about repeating previous positions in Chess
(which will lead to a draw), so the program has to have a way of
remembering those!

Chess programs typically use a large hash table to keep track of
positions that have occurred in play.

Andrea Schalk: CS3191 Section 4 – p. 8/44



Hash tables

Hash tables are not merely useful when it comes to determining
whether a position is being repeated.

When we carry out an alpha-beta search from a given position, we
will search to a given depth. When it is our turn again, we will repeat
that from the now current position—but we have searched this
position before, only to a depth of two less than we now require!

Hash tables are used in Chess programs to keep track of which
positions have been searched before, what value has been found for
them, and to which depth they were searched at the time.

A hash function frequently used consists of assigning to each pair,
consisting of a piece and a field on the board, a large random
number. The idea is that this number encodes the fact that the
corresponding piece occupies the corresponding field. Then one
sums up the appropriate numbers for the given position to obtain the
hash key. A checksum process can be applied to make sure later that
‘the right’ position is looked up.
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number. The idea is that this number encodes the fact that the
corresponding piece occupies the corresponding field. Then one
sums up the appropriate numbers for the given position to obtain the
hash key. A checksum process can be applied to make sure later that
‘the right’ position is looked up.
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Doing and undoing moves

In the course of a game, our program will not only have to make
moves, but it will also have to be able to undo them.

This is not in order to allow the opponent to reconsider his position,
but because in order to conduct an alpha-beta search the program
has to make moves to find out which positions are reachable.

It then has to undo those moves to try others, and ultimately to get
back to the position where it started the search.

This is best done by keeping a stack of moves with sufficient
information to undo them. This is typically much cheaper than
keeping a list of positions through which one has gone.
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Evaluation function
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The task

In order to implement a board representation and a move-generator,
as well as alpha-beta search the programmer does not have to know
much about the game in question—it suffices if he is familiar with the
rules.

This is entirely different for the evaluation function. In order to turn a
game position into a meaningful number, the programmer must have
considerable knowledge about the game.

If the values provided do not judge the given position accurately then
the program can’t possibly play well—until very close to the end, they
are all the program has to judge which move it should make.

There is no such thing as ‘the right’ evaluation function. A big part of
writing a game-playing program is to watch it play and fine-tune the
evaluation function to improve it.

There are no hard and fast rules for what makes a good evaluation
function; they are mostly based on heuristics.
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Speed

When writing a game-playing program, speed is always an issue.
Hence it pays to calculate the desired evaluation function in such a
way to make the process as fast as possible.

When calculating the
evaluation function for two successive positions, the value often does
not change very much, and, in fact, the actual calculations are very
similar.

We can make this work in our favour if we can express the evaluation
function in terms of the contributions made by the different pieces on
their various fields.

Let p be the current position, and e the evaluation function. Then if

e(p) = es1
(s1’s place in p) + · · · + esn

(sn’s place in p),

where s1, . . . , sn are the pieces involved, the value of a new position
resulting from one piece s being moved is

score(move) = es(s’s new field) − es(s’s old field).

Problems: For many games this kind of evaluation function is not
good enough—it does not take the relative position of pieces into
account.
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Techniques

It may be difficult to design an evaluation function in such a way that it
can take immediate future moves into account (captures in Chess, for
example).

In such a situation it makes sense to use the move-generating facility
and look one or two further moves ahead in evaluating a position.
That will tell us about immediately possible captures and similar
important changes we might expect in the near future.

Typically the evaluation function is split into a number of functions
which score one particular aspect of the current position.

These are then put together using weights, and often the actual
fine-tuning consists of playing with the weights.

It is important that an evaluation function judge any position from both
players’ point of view. Having many pieces on the board does not
give White any advantage if Black is about to checkmate him!
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Relevant constituent parts

Material. The number and kind of pieces on the board.Chess: Each
piece has a value; Go: count number of pieces on board, Othello:
same.

Not equally useful for all games: Othello: not number of pieces is
important, but their locations (corners). Player with fewer pieces
might have better position. There are other games where the number
of pieces may be irrelevant.

Space. Influence.Often: can divide board into areas of influence;
player controls that area, for example in Go.

Chess: count number of fields threatened by one player; Othello:
count number of pieces which cannot be taken by the opponent.
Calculate size, possible with weights for very important fields.

Mobility. Ability to move.

Tempo. Initiative.Go: one player has the initiative, that is, he acts,
other player reacts to his moves.

Other games: try ‘parity argument’: often find positions where player
who moves next wins/loses, can be simple to evaluate (see Nim,
Connect-4).

Threats.

Shape. How pieces on the board relate to each other. Chess: line of
pawns much stronger than other grouping. Go: shape is ‘territory to
be’—stones outline territory which the player can defend when
threatened.

Judging shape: often very difficult. Change of shape value:
incremental over time, long-term target. Evaluation function partially
based on shape: can’t just simply add piece-based functions.

Known Patterns. Go: libraries of sequences of moves in small areas
(joseki)—preserves balance between players.

Chess: bishop capturing a pawn on border is often trapped; Othello:
sacrifice one corners in exchange for another. Deciding when a
pattern applies is hard!
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Fine-tuning

Deducing constraints. Chess: every piece gets a material value.
Know: rook more important than pawn, e.g., so value should be
according. Can deduce values from experience.

Know, e.g.: one rook less than two pawns and bishop, or two pawns
and knight, but not less than one pawn and bishop/knight.

So: weight of a rook should be below weight of pawns and bishop,
but above one pawn and bishop. Get fewer possibilities to try.

Hand tweaking.

Optimization techniques. Employ general optimization techniques.
Example: ‘hill climbing’: Make small changes to parameters, keep
them if they improve the performance. Need measure to judge
performance, for example the percentage of won games against
some opponent.

Often slow; risks being stuck when each small change makes
performance worse, but big change might bring huge gains (‘local
optima’).

Can be modified by randomly sticking with some changes which do
not improve performance. ‘Randomness’ controlled by some
probabilities (start out fairly high, become smaller as a good value is
approached). Adjusted method is slower than original, but can get
good values.

Learning. Early: Thought good Chess programs would mimic human
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Measuring performance

In order to fine-tune our program we need to be able to measure its
performance.

Option: run program on large suit of test positions taken from
high-quality human games, see whether program can follow the
winner’s actions. (Method can be used to check any program, e.g. try
on ‘checkmate in two’ kind of positions.)

Typically combined with playing program against known opponent for
many matches, e.g. against another program, or version of itself
which has different weights, so that the two can be compared to each
other.

Problem with playing program against versions of itself: same lines
are explored over and over. To avoid this: start the program(s) from
positions a few moves into a game.
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Alpha-beta search
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Alpha-beta search

All game-playing programs contain variants of the minimax algorithm
with alpha-beta pruning.

In this context, the algorithm is usually referred to as alpha-beta
search, because it is a search for the best available move.

There are some ways of fiddling with this to adjust it to the game in
question. The thought is always to make it faster so that it can search
deeper.
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Iterative Deepening

Most programs give themselves a time limit to come up with a move.
This is to avoid running out of time by spending it all early into the
game.

Problem: It might take longer to search to a pre-defined depth than
time allows.

Solution: Don’t do a strictly depth-first search, but search to a higher
and higher depth.

This is not as expensive as it sounds: Searching to shallow depths
includes few moves and is cheap. Results from the previous level can
be used to order the moves on the next level to get the optimal
amount of pruning. Also can keep such results in hash table and
re-use them.

Obvious advantage: When time runs out we give the best move found
so far, and that will at least be sensible. This is known as iterative
deepening.
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Modified alpha-beta search

In the description of alpha-beta search there is no pre-conceived idea
as to the value of the current position.

But if we use a hash table to keep track of results so far we can
estimate a value.

Andrea Schalk: CS3191 Section 4 – p. 21/44



Modified alpha-beta search

In the description of alpha-beta search there is no pre-conceived idea
as to the value of the current position.

But if we use a hash table to keep track of results so far we can
estimate a value.

Andrea Schalk: CS3191 Section 4 – p. 21/44



Reminder: alpha-beta search

As the search reports back a value for the child of the current position
we get

• successively increasing lower bounds for a max node (α);

• successively decreasing upper bounds for a min node (β).

As we descend into the tree we keep track of the current values of α

and β by passing them down and updating them as appropriate.

• For a max node: only consider moves with value at least α. If we
find such a move we adjust α accordingly.

Find a value above β: that part of the tree that is irrelevant;
return to parent without adjusting α or β.

• For a min node: only consider moves with value at most β. If we
find such a move we adjust β accordingly.

If we find a value below α: that part of the tree is irrelevant;
return to the parent without adjusting α or β.
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Modified alpha-beta search

Get provisional value v from earlier searches. Decide that real value
will be between α ≤ v and β ≥ v. Use this as start for our search
(instead of −∞ and ∞).

The carry out alpha-beta search, but on a max node:

• only consider moves which lead to a value at least α (this allows
more pruning); (as before, only then α was guaranteed
minimum;)

• find value w above β: stop the search and report w back.

On a min node

• only consider moves which lead to a value at most β (again, this
allows more pruning); (again as before, only then β was
guaranteed maximum);

• if you find value w below α: stop the search and report w back.
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Modified alpha-beta search

Search will report new value w and the following cases may arise:

• Value w is between α and β. This will be the correct value.

• Value w is larger than β. Means our original upper bound β was
too low and v too pessimistic. Have to adjust our preliminary
value v to w, and might consider allowing a larger range.

This is known as ‘failing high’.

• Value w below α. Means our original lower bound α was too high
and preliminary value v was overly optimistic. Have to adjust
preliminary value v to w, maybe allow a larger range.

This is known as ‘failing low’.

This technique is known as aspiration search.
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Benefits of aspiration search

In the best case: best move explored first, considered range contains
correct value. Then:

Total size of the tree searched reduced to

(
√

b)d,

where b: branching factor of the tree and d: depth of search.

So might be able to search twice as deeply in the same time—in the
best case.

This algorithm is implemented in most game-playing programs.

Good idea to include the current values of α and β in the hash table
of previously searched positions.
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Move ordering

In order for alpha-beta search to perform at its best (prune as often
as possible) good moves have to be explored first.

For this we can use earlier search results, for example (where we
have searched the current position to a lower depth).

Alternatively, we can build in heuristics to order the available moves.
(Chess: Capturing moves, moves leading to check, moves turning
pawn into other piece.)

Or we may have found a good move from a sibling in the game
tree—this move might still be available.

Often it is sufficient to make sure the first few moves are the best
candidates, because the others may be pruned. Algorithms like
HeapSort or SelectionSort deliver sorted items one by one.

Can search the first move(s) with big window for potential value (see
aspiration search), and later moves with smaller ones. This is known
as principal variation search.
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Not winning from winning positions

But: Let’s assume Black moves
to d8. Then moving the king
back to d6 again gives White a
winning position.
But if Black now moves back
to e8, we are back where we
started and our program might
go into a loop. This will lead
to a draw since there are rules
about repeating the same posi-
tion.

Can avoid this by assigning slightly lower values to winning positions,
for example

1000 − number of moves req’d to get win.

Then alpha-beta search will work properly.
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The horizon effect

General problem: The computer cannot see anything which is beyond
its horizon, that is, that happens below its search depth.

This can lead to the program trying to fend off bad events (capture of
its piece, for example) by keeping them below the horizon.

In order to avoid, say, the capture of one of its pieces the program
may try pointless moves which merely postpone the
inevitable—typically these moves do not progress the program’s play.

The black bishop is trapped by
the white pawns. It will be cap-
tured (e.g: White rook: h2, h1,
a1, a2).
If the program playing Black
searches 6 moves ahead might
move black pawn e4 to e3,
checking the king. White has to
react to this by moving the king
or capturing this pawn.
That delays capture of the
bishop so that the program
thinks it is safe. The program
might so sacrifice all its pawns,
setting itself up for a loss.

Solutions: Add knowledge so that program can detect when piece is
trapped. Increase overall depth of search in such situations so that
horizon is widened. Whenever piece is threatened, search to deeper
level selectively.
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Selective extension

Many games do not search to fixed depth everywhere. Instead the
select an appropriate depth, which is greater whenever

• there is reason to believe that the current value for a position is
inaccurate or

• when the current line of play is particularly important.

For example, when currently set depth is reached search deeper for
all moves which are likely to lead to change of evaluation
considerably (Chess: capturing moves, check moves). This is known
as quiescent search.

Alternatively one might increase search depth whenever the currently
explored line contains a capturing move. Can only do this in a limited
way, or the program will keep looking deeper and deeper!

Many programs search deeper on what they think is the best move
(see principal variation search).
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Artificial phenomena

Sometimes carrying out an exhaustive search is better than the best
move a human being will find!

One program, playing a Grandmaster, suddenly seemed to offer a
rook for capture for no reason that the assembled experts could
discern. After the game was over they made the machine go back to
that position and asked it what would happen if it had made the move
judged ‘obviously better’ by the audience. The machine pointed out
an intricate mate which it was trying to avoid. Arguably, it would have
been better off leaving the rook alone and just hoping that the
opponent wouldn’t see the mate!

Mistakes or weaknesses in a program can be explored over and over
(until the creator finds a chance to fix this, since these programs don’t
learn). Many tournaments between various programs seemed to be
more about who could discover whose built-in faults, rather than
whose program genuinely played best!
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Chess-playing programs
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It begins

1950: Claude Shannon outlines a Chess-playing algorithm.

Evaluation function: Number of pieces, each with a weight, mobility,
pawn formations.

Search: depth-first minimax with two options.

• Search to a given depth, the same everywhere; and he called
that the ‘fixed depth’ method.

• Search to a variable depth (depending on the ‘type’ of a
position). Current move ‘obviously bad’: don’t search it. Notion
of ‘stability’ to decide where to stop. He called this the ‘variable
depth’ method.

Shannon thought this would be a useful application for computers,
and would give insights into how one makes intelligent decisions.

Andrea Schalk: CS3191 Section 4 – p. 32/44



It begins

1950: Claude Shannon outlines a Chess-playing algorithm.

Evaluation function: Number of pieces, each with a weight, mobility,
pawn formations.

Search: depth-first minimax with two options.

• Search to a given depth, the same everywhere; and he called
that the ‘fixed depth’ method.

• Search to a variable depth (depending on the ‘type’ of a
position). Current move ‘obviously bad’: don’t search it. Notion
of ‘stability’ to decide where to stop. He called this the ‘variable
depth’ method.

Shannon thought this would be a useful application for computers,
and would give insights into how one makes intelligent decisions.

Andrea Schalk: CS3191 Section 4 – p. 32/44



It begins

1950: Claude Shannon outlines a Chess-playing algorithm.

Evaluation function: Number of pieces, each with a weight, mobility,
pawn formations.

Search: depth-first minimax with two options.

• Search to a given depth, the same everywhere; and he called
that the ‘fixed depth’ method.

• Search to a variable depth (depending on the ‘type’ of a
position). Current move ‘obviously bad’: don’t search it. Notion
of ‘stability’ to decide where to stop. He called this the ‘variable
depth’ method.

Shannon thought this would be a useful application for computers,
and would give insights into how one makes intelligent decisions.

Andrea Schalk: CS3191 Section 4 – p. 32/44



It begins

1950: Claude Shannon outlines a Chess-playing algorithm.

Evaluation function: Number of pieces, each with a weight, mobility,
pawn formations.

Search: depth-first minimax with two options.

• Search to a given depth, the same everywhere; and he called
that the ‘fixed depth’ method.

• Search to a variable depth (depending on the ‘type’ of a
position). Current move ‘obviously bad’: don’t search it. Notion
of ‘stability’ to decide where to stop. He called this the ‘variable
depth’ method.

Shannon thought this would be a useful application for computers,
and would give insights into how one makes intelligent decisions.

Andrea Schalk: CS3191 Section 4 – p. 32/44



It begins

1950: Claude Shannon outlines a Chess-playing algorithm.

Evaluation function: Number of pieces, each with a weight, mobility,
pawn formations.

Search: depth-first minimax with two options.

• Search to a given depth, the same everywhere; and he called
that the ‘fixed depth’ method.

• Search to a variable depth (depending on the ‘type’ of a
position). Current move ‘obviously bad’: don’t search it. Notion
of ‘stability’ to decide where to stop. He called this the ‘variable
depth’ method.

Shannon thought this would be a useful application for computers,
and would give insights into how one makes intelligent decisions.

Andrea Schalk: CS3191 Section 4 – p. 32/44



It begins

1950: Claude Shannon outlines a Chess-playing algorithm.

Evaluation function: Number of pieces, each with a weight, mobility,
pawn formations.

Search: depth-first minimax with two options.

• Search to a given depth, the same everywhere; and he called
that the ‘fixed depth’ method.

• Search to a variable depth (depending on the ‘type’ of a
position). Current move ‘obviously bad’: don’t search it. Notion
of ‘stability’ to decide where to stop. He called this the ‘variable
depth’ method.

Shannon thought this would be a useful application for computers,
and would give insights into how one makes intelligent decisions.

Andrea Schalk: CS3191 Section 4 – p. 32/44



The first Chess programs

1951: Alan Turing creates first Chess playing algorithm, and first
Chess-playing program plays game against human opponent in
Manchester. (Program: carried out by human, very weak.)

First real Chess programs appear. In 1966: First match between
Soviet and US American program ends 3:1. (Rules: 1 hour time for
every 20 moves, so 3 minutes on average per move.) Searches cut
off after time runs out; moves explored at random.

1974: First world computer Chess championships. Repeated every
three years.
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Improvements by mid-eighties

Hash tables to keep track of positions searched to which depth, and
values discovered. (Often no update of value!)

Opening libraries used so that programs follow ‘approved opening
lines’.

Hash tables to store ‘tricky positions’ for future games—a limited
amount of learning takes place.

Iteratively deepening search implemented so that moves can be
pre-ordered. No pruning based on search to low depths, or program
will avoid sacrifices. Many early programs made that mistake!

Search to variable depth, depending on whether the current position
is judged to be ‘tricky’ or relatively straight-forward.
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Artificial Intelligence?

Many techniques employed by the first Chess-playing programs
turned out to be useful for other problems (iteratively deepening
search for theorem provers, for example).

But: early ideas about ‘artificial intelligence’ were proven less than
useful by these programs.

The algorithms did not try to mimic human decision making at all.

Nor did any true learning take place.

The early, strong claims regarding the possibilities of AI turned to out
to be vastly exaggerated. Today, Artificial Intelligence often is about
search techniques and the machine learning is very different from
human learning!
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Further improvements

By the mid- to late eighties, the following had been achieved.

Inclusion of large opening databases covering most approaches.

Development of endgame databases; all five piece endgames were
solved. Some of these solutions were genuinely new, in that people
didn’t realize that one player could force a win in some of these. As a
result, the official Chess rules were changed.

First Chess-specific circuitry employed by ‘Deep Thought’; very fast
move generation.

Since late eighties: Main development has gone into specialized
hardware.
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Speed increases strength
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Depth of search

To give some idea of how much strength a program gains by
searching to a greater depth, here are the results of a program (called
‘Belle’) playing against copies of itself which searched to a different
depth (late seventies).

4 5 6 7 8 9 rating
4 5 .5 0 0 0 1235
5 15 3.5 3 .5 0 1570
6 19.5 16.5 4 1.5 1.5 1826
7 20 17 16 5 4 2031
8 20 19.5 18.5 15 5.5 2208
9 20 20 18.5 16 14.5 2328

Three or four levels more of search means outclassing one’s
opponent! Connection between depth of search and rating: Linear
(see previous slide) or not?
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Improvement for increasing depth

Another way of measuring whether increasing the depth of search
improves the program is to check whether search to a higher depth
leads to a different move being chosen.

percent. of moves
picked different appr.

level from predecessor rating
4 33.1 1300
5 33.1 1570
6 27.7 1796
7 29.5 2037
8 26.0 2249
9 22.6 2433

10 17.7 2577
11 18.1 2725

Often different moves
are picked when search-
ing to a higher depth.
This explains why pro-
grams which search
more levels play better.

This table shows that
the benefit is dimin-
ished as overall depth
increases.
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Hardware for Chess

The following table gives an overview over Chess-playing programs
and the hardware they were running on.

Name Year Description
Ostrich 1981 5-processor Data General system
Ostrich 1982 8-processor Data General system
Cray Blitz 1983 2-processor Cray XMP
Cray Blitz 1984 4-processor Cray XMP
Sun Phoenix 1986 Network of 20 VAXs and Suns
Chess Challenger 1986 20 8086 microprocessors
Waycool 1986 64-processor N/Cube system
Waycool 1988 256-processor N/Cube system
Deep Thought 1989 3 2-processor VLSI chess circuits
Star Tech 1993 512-processor Connection Machine
Star Socrates 1995 1,824-processor Intel Paragon
Zugzwang 1995 96-processor GC-Powerplus distributed

system (based on the PowerPC)
Deep Blue 1996 32-processor IBM RS/6000 SP with

6 VLSI chess circuits per processor
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Cray Blitz 1984 4-processor Cray XMP
Sun Phoenix 1986 Network of 20 VAXs and Suns
Chess Challenger 1986 20 8086 microprocessors
Waycool 1986 64-processor N/Cube system
Waycool 1988 256-processor N/Cube system
Deep Thought 1989 3 2-processor VLSI chess circuits
Star Tech 1993 512-processor Connection Machine
Star Socrates 1995 1,824-processor Intel Paragon
Zugzwang 1995 96-processor GC-Powerplus distributed

system (based on the PowerPC)
Deep Blue 1996 32-processor IBM RS/6000 SP with

6 VLSI chess circuits per processor
Andrea Schalk: CS3191 Section 4 – p. 40/44



Man versus machine

1978: First ‘serious’ match of man against computer. Man won.

Late eighties: First Grandmaster beaten by program in tournament
(rather than in display match).

First program ranked Grandmaster (Deep Thought); beaten by World
Champion in only 41 moves.

1993: Program beats top 20 player. Computers participate
increasingly in Chess tournaments, usually on dedicated hardware.

Commercial interest: IBM takes on the team that came up with Deep
Thought, and they develop Deep Blue. (Previously: academic effort,
with much weaker commercially available programs.)

1996: Deep Blue takes on the world champion, match ends 2 to 4.

1997: Rematch, ending 2.5 to 3.5, Kasparov makes mistake in final
and deciding match.
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Man versus machine–II

Comparing the way man and machine play, we find that programs are
based on

• raw speed to do deep searching;

• libraries for openings and endgames.

Seeing a Chess board, good human players will only ever consider a
handful of moves. We have no idea how they make the decision
which moves to look at in more detail. This has something to do with
pattern recognition, at which computers are very bad.

Chess-playing programs have done very little to improve our
understanding of how humans think and make decisions.
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Other games

In Chess the very best programs (with many man-hours invested in
them) play as good as the best human players.

In 1982 a program called IAGO was assessed as playing Othello
(Reversi) at world championship level, but it didn’t take part in
tournaments.

In 1994 a program called Chinook became world Checkers
champion, but the reigning world champion had to forfeit the match
due to illness.

Go-playing programs currently are way below even good amateurs,
let alone professionals.
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Summary of Section 4

• Three tasks have to be solved: Designing an internal board
representation and generating valid moves, designing an
evaluation function and implementing (some variant of)
alpha-beta search. All considerations are overshadowed by the
need for speed.

• Board representations should make the generation of moves,
doing and undoing them fast.

• Evaluation functions assign a value to a board position statically,
from just what is on the board.

• Alpha-beta search assigns a value to a position by searching the
game tree below it and eventually applying the evaluation
function. Searching to greater depth will result in a better
program, so any gain in speed goes into searching to a greater
depth. There are many tricks to try to only search the relevant
parts of the game tree; in particular ordering moves to search
the most promising ones first.

• Most effort so far has gone into creating Chess-playing
programs. They have profited from faster hardware, and many
improvements have been made which are very Chess-specific:
better heuristics, opening and endgame libraries, and the like.
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