
3 Turing Machines

We once again wish to generalize the languages we can analyse. Rather than starting on
the syntactic side we look at more powerful automata, namely Turing machines. These
have read/write memory which allows them to access items in an arbitrary order. With
these machines there is a distinction to be made between languages which are recognized
(accepted) and those which are decided. We finally give an overview of how the different
kinds of languages covered so far fit together. This is the point where we lose connection with
the other part of this course.

3.1 Automata with random-access memory—Turing machines

Clearly the question of recognizing the language {aibici | i ∈ N} (see page 40) is not in itself
a difficult one. In most programming languages it would be easy to write a procedure which
does this, and therefore pushdown automata are not as powerful as other computing devices.
Before we go on to look at more expressive automata let us review the progression of such
devices so far.

We can think of a DFA as a computing device without dedicated memory. However, such
automata can remember a limited amount of information by making use of their states. We
can think of a pushdown automaton as a computing device that has a dedicated unlimited
memory15 which can only be used in a very limited way, namely in the manner of a stack.
The resulting machines are too weak even to be used to deal with programs on a level that a
compiler has to do. Symbol tables are typically used to keep track of variables, and for those
a random access memory of some form is required.

Turing machines were proposed as a theoretical device by Alan Turing16. Again they are
idealized in that they have an infinite memory, which comes in the form of an ‘infinite tape’
(infinite on both sides). The idea is that this tape consists of cells each of which can take
one symbol from some underlying alphabet Σ, and that there is a ‘read/write head’ which
moves over the tape one position at a time and can either read from or write to the tape. It
is practical to assume that the input string is written on the tape (from left to right). When
the machine starts the read/write head is positioned on the cell holding the first symbol of
the input string. We further assume that the tape contains no further symbols that is all
remaining cells are empty. In order to describe what the machine does (that is, under which
circumstances it moves the head one position to the left or the right, or it reads from the
tape, or writes to the tape) we need to have a notion of state, just as we had with the other
automata. As before there is a specific start state, and this time we need an action stop to
tell us when the machine has finished its computation.

15This is not entirely realistic when thinking of actual computers, since those cannot have an infinite amount
of memory. Automata are, after all, theoretical devices which help us reason about computations and as such
are ideal and not ‘realistic’. Models of the real world often are, as you may have seen in physics. There models
are unrealistic in that they fail account for ‘minor’ matters—when considering a pendulum it is customary
to neglect friction against the air, for example. It may help to think of computing devices with ‘unlimited
memories’ as machines with an operator who, whenever the machine threatens to run out of memory, installs
more.

16See A. Hodges, Alan Turing: The Enigma, Vintage, 1992 or visit http://www.turing.org.uk/turing/

for an account of the life of this great British logician and computer scientist who at some point worked in
the Maths Department at Manchester University. During the war Turing was part of the effort to decode the
German Enigma code, and he designed mechanical and electronic devices to help with that task.
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Figure 28: A Turing machine

We have to be able to refer to cells which do not contain a symbol, and to do so we
introduce the special symbol for an empty cell.17. We therefore have to distinguish between
the tape alphabet T and the alphabet of input strings Σ, the assumption being that T contains
all of Σ and at the very least (there may be other symbols occurring in T but not in Σ).
In pictures we typically leave cells containing no symbol empty. As for other automata there
is a transition function which describes how the Turing machine acts. Given a state and a
symbol for the cell where the head is currently positioned there are a number of actions a
Turing machine will take at each step:

• it writes a symbol onto the tape;

• it then moves the head one cell to the left or to the right or leaves it were it is;

• it finally goes to a new state.

Hence the transition function will take a pair consisting of a state and a symbol from the tape
alphabet and map it to a new state, a symbol that will be written in the current location
and one of L, R and N to indicate whether the head should move left, right, or not at all.
Alternatively the machine can just stop. Hence the result of applying the transition function
to an element of Q × T is an element of (Q × T × {L, R, N}) ∪ {stop}.18

Definition 15 A Turing machine or TM over the tape alphabet ∈ T ⊇ Σ consists of

• a finite set of states Q;

• a start state q• ∈ Q;

• a set of accepting states F ⊆ Q;

• a transition function that maps Q × T to (Q × T × {L, R, N}) ∪ {stop}.

Note that unlike a finite state machine or pushdown automaton a Turing machine can
manipulate the input string, and it can process the input string several times. Like pushdown
automata, Turing machines can run for ever on some input strings.

17This is similar to introducing symbols EOF and EOS for pushdown automata
18Note that even though we demand that the machine write something every time, this does not mean that

it has to change what is on the tape—it can just write again whatever symbol there was. If we didn’t do this
then the target of the transition function would have the more complicated form (Q × T × {L, R, N}) ∪ (Q ×
{L, R, N}) ∪ {stop}.
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We often tabulate the transition function δ in a table, and sometimes speak of the transi-
tion table. Assume that Σ = {a, b}, that the only additional symbol in T is , and that the
machine has only two states, the start state 0 and 1. Then the following describes a transition
function for a Turing machine.

δ a b

0 (0, a, R) (1, b, R) stop

1 stop stop stop

Just as before we have to define when a Turing machine accepts a given input string.

Definition 16 We say that a string α is accepted by a Turing machine if, when started
in the initial state with the head positioned on the first (left-most) character of the input string
and the tape otherwise empty, the Turing machine halts19 and the state at that time is an
accepting state. We say that a language is recognized by a Turing machine if it is the
set of all words accepted by the machine.

Assume that in the example above the only accepting state is 0. Clearly given some input
string α, the machine reads the characters from left to right until it either finds a b or a blank
cell. If it does find a b, it stops in state 1, otherwise in state 0. Hence the language accepted
by the machine is {an | n ∈ N}, the set of all strings over {a, b} which consist entirely of as.
Notice how the machine restores the input string as it examines it—this does not always have
to happen. In fact the machine

δ a b

0 (0, , R) (1, , R) stop

1 stop stop stop

accepts the same language but destroys the input in the process.
Table 3 gives a more interesting example. The underlying alphabet is {a, b} and we once

again assume that 0 is the only accepting state.

δ a b

0 (1, , R) (2, , R) stop

1 (1, a, R) (1, b, R) (3, , L)

2 (2, a, R) (2, b, R) (4, , L)

3 (5, , L) stop (0, , N)

4 stop (5, , L) (0, , N)

5 (5, a, L) (5, b, L) (0, , R)

Table 3: A Turing machine

This machine is is complicated enough that it is not clear at a glance which strings it will
accept. We will go through its behaviour for the input string ababa.

The machine always starts with the input string being the only non-blank symbols on the
tape, and with the head pointing at the first of these. It then starts ‘running’, and we can

19Remember that unlike DFAs, Turing machines do not always stop.
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capture ‘snapshots’ of what it is doing by describing the configurations it goes through. A
configuration describes the current content of the tape, the current position of the head, and
the current state of the machine. This information is sufficient to be able to carry out the
remainder of the computation (provided a description of the machine is available). Now at
first sight this looks as if we were trying to describe something infinite here (the tape), but
that is not true. When the machine starts there are only finitely many non-blank symbols
on the tape. In each step of the computation the machine changes at most one symbol on
the tape, and therefore at each stage of the overall computation there are only finitely many
non-blank symbols on the tape. The most efficient way of presenting the desired information
is as a string

x0x1 · · ·xiqxi+1 · · ·xn,

where

• q is the current state of the machine;

• the xj are tape symbols;

• the head of the machine points at the cell containing xi+1;

• to the immediate left of the head we find the symbols x0 · · ·xi on the tape, and all cells
to the left of the cell holding x0 are blank;

• to the immediate right of the head we find the symbols xi+2 · · ·xn, and all cells to the
right of xn hold blanks.

Control unit

x2x1· · · · · ·· · ·xi xi+1 xn· · ·

State: q

Figure 29: Configuration

Picture 29 gives an idea for how the current status of the machine maps onto the config-
uration.

The start configuration therefore clearly is of the form q•α where q• is the start state and
α is the input string.

Back to the example. The machine starts in configuration 0ababa. We look up the
transition table for state 0 and input symbol a and find (1, , R), so the machine overwrites
the a with a blank, moves the head one to the right and goes to state 1, giving configuration
1baba. We look up the table for state 1 and symbol b and find (1, b, R), so the machine writes
a b (thus in effect just leaving the cell as it is) and the head moves one to the right while
the machine remains in state 1. Hence the next configuration is b1aba. We notice that this
is, in fact, all that’s ever going to happen in state 1 until the machine finds a blank cell.
The machine will go through configurations ba1ba, bab1a and baba1. Now the head is over a
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cell which contains a blank and the corresponding entry in the table reads (3, , L), so the
resulting configuration is bab3a. We once again look up the corresponding table entry and find
(5, , L), so the next configuration is ba5b. The following few configurations are b5ab, 5bab,
5 bab and 0bab, which is somewhat reminiscent of the configuration in which we started. We
give the remaining configurations in less detail.

2ab a2b ab2 a4b 5a
5 a 0a 1 3 0.

Hence the state when the machine stops is 0 which is an accepting state and the string
ababa is therefore accepted by the machine. Exercise 21 is a good way of familiarizing yourself
with the notion of a configuration.

After solving Exercise 21, you should have a good idea regarding which words the machine
accepts. Can you spot some kind of pattern?

Here is an alternative, informal way of describing the same Turing machine.

• Remember the first symbol of the input string (by going to state 1 if it an a and to
state 2 if it is a b) and erase it.

• Go to the right until you find a blank.

• If the symbol to the left of that blank is the one remembered, erase it. If it is a blank,
stop in an accepting state (0). Otherwise stop (in a non-accepting state).

• Go to the left until you find a blank.

• Start over with the head pointing at the symbol to the right of that blank. (This means
the machine will start over with an input string where the two outermost characters
have been erased, provided they were equal. If they weren’t, the machine stopped in a
non-accepting state. If there was just one character, the machine stops in an accepting
state.)

So the machine works on the given string ‘from both ends’, and it is checking whether the
symbols on each end are the same. In other words, the machine accepts all palindromes over
the alphabet.

Exercises 22 and 23 invite you to create your own Turing machines. You are now ready
to do Assessed Exercise 2.4.

3.2 Languages accepted by Turing machines

It is easy to describe a machine which recognizes the language of all strings consisting of as
whose length is even, that is {a2n | n ∈ N}. It moves to the right until it finds a blank,
switching between two states which code ‘odd’ and ‘even’. It stops when it encounters a
blank. The only accepting state is the one that codes for ‘even’. Here is the corresponding
table.

δ a

0 (1, a, R) stop

1 (0, a, R) stop
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But we can have another Turing machine which recognizes this language. Just like the
first one, it moves to the right along the input string, switching between two states which
code for ‘odd’ and ‘even’. If it finds a blank it will do one of two things:

• it will stop if the current state is the one which is for ‘even’;

• it will keep moving to the right forever if the current state is the one for ‘odd’.

Once again here is a transition table for such a machine.

δ a

0 (1, a, R) stop

1 (0, a, R) (1, , R)

Which of the two machines is more useful? If you cannot watch the machine work, but
just observe whether or not it halts, and in which state, then clearly the second machine is
not as useful as the first one. You might wait and wait, but you can never be sure whether
that is because the input string is very long or whether the machine has slipped into this
endless ‘loop’.

We will distinguish these two ideas by having two definitions of the language recognized
by a Turing machine.

Definition 17 A language is Turing-recognizable (or recursively enumerable) if there
is a Turing machine which recognizes it.

A language is Turing-decidable (or recursive) if there is a Turing machine which
recognizes it which halts for all inputs.

Every Turing-decidable language is Turing-recognizable, but the converse is false. An
example for a language that is Turing-recognizable but not Turing-decidable is provided in
Theorem 4.1. Figure 30 shows how the two concepts relate. An example for a language which
is not even Turing-recognizable is given on Page 67.

The main difference between the two concepts is this: To show that a language is Turing-
decidable, we have to find a Turing machine which recognizes it which halts for all inputs.
For Turing-recognizability it is sufficient if the machine only halts for those inputs which is
accepts, that is which belong to the language.

If a language is Turing-decidable then we can find a Turing machine which, when given an
input string, will give us a definite answer whether the string belongs to the language: ‘yes’
(if it halts in an accepting state) or ‘no’ (if it halts in a non-accepting state).

If a language is Turing-recognizable then we can find a Turing machine which, given an
input string, will give us a definite answer only when the string does belong to the language.
The problem is that we have no way of knowing how long to wait for the answer. If the
language is very complicated (or the string very long), it might just take a very long time to
work out that it does belong.

Proposition 3.1 Every context-free language is Turing-decidable.

Proof sketch. This proof requires some technical material on context-free grammars that
we have not covered. Therefore we will only give a quick summary of the proof. The ‘obvious’
thing to try is to take a (possibly non-deterministic) PDA and mimic its behaviour using a

49



There exists a TM M such that for every string w,
Turing-decidable languages::

M run on input α halts and either rejects or accepts the string.

Σ∗

All languages over the given alphabet.

- runs forever.

Turing-recognizable languages:

M run on input α either
- halts and accepts or rejects α or

There exists a TM M such that for every string α,

Figure 30: Turing-decidable versus Turing-recognizable

Turing machine. However, a PDA might loop forever (see the example in Section 2), whereas
we claim that our Turing machine will halt for every input. The alternative would be to take
the generating grammar G and keep generating words of the language, but that suffers from
a similar flaw: When do we decide that a given word will not be generated, that is, when do
we stop trying? Hence we have to be more clever than that.

Every grammar can be converted into a so-called Chomsky-normal form, which has the
advantage that every string belonging to the language has a unique parse tree.20 It also has
the advantage that a string of length n will be generated after at most 2n− 1 applications of
a production rule.

This allows us to decide when a given string is not in the language: We let the Turing
machine convert the given grammar to its normal form.21 Given an input of length n, we
let the machine generate all the strings in the language that require no more than 2n − 1
applications of a production rule, comparing each to the input string as it is created. If the
input string occurs as a generated word the machine stops in an accepting state. If it does
not occur among these finitely many words, it stops in a non-accepting state. �

Exercise 24 invites you to draw further connections between Turing machines and material
from previous sections.

Theorem 3.2 A language is Turing-decidable if and only if that holds true for its comple-
ment.

Proof. This is an exercise. �

Recall that context-free languages are not closed under complementation, so this result is
more remarkable than you might think at first.

20The grammar for arithmetic expression in Section 2.1 has two parse trees for 2 + 3 × 4.
21There is an algorithm for doing that.
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When we defined Turing-decidable languages we said that they were also called ‘recursively
enumerated’ languages. So far we have only been concerned with a Turing machine accepting
an input string, that is, recognizing it as a word in some language. Turing machines can do
more, however, and this is another way in which they are much more flexible than PDAs.

Let us assume that we have a Turing machine which, given the empty input tape, starts
producing strings by writing them on the tape (each separated by a blank). We can then
define a language as the set of all strings the Turing machine produces in this way (if it is
allowed to go on forever). We say that the Turing machine enumerates the language, because
the Turing machine lists all the words of the language. We can see this as giving them all
numbers: There is a first word, a second word, a third word, etc, and each word in the
language will appear at some place and thus get a number as the nth word. Note that we
have not insisted on every word appearing only once on the list—so, in fact, a word might
get more than one number. However, one could easily clean that up by insisting that the
machine first compare the new word with each word created so far (which would slow the
machine down a lot, but that is not our concern here), and therefore nothing is lost or gained
by adding this stipulation. These languages are, in fact, nothing new as is shown in the
following theorem.

Theorem 3.3 A language is Turing-recognizable if and only if there is a Turing machine
enumerating it.

Proof. This is an exercise (albeit one marked with a ∗). �

closed under complement intersection union reversal concatenation

regular X X X X X

context-free X X X

Turing-decidable X X X X X

Turing-recognizable X X X X

Table 4: Properties of languages

3.3 Chomsky’s hierarchy of grammars

Before we leave the subject of different kinds of languages and machines which generate them
we want to summarize our findings. The following hierarchy was proposed by the linguist
Noam Chomsky in the nineteen-fifties. He was interested in finding classes of languages which
generated by various grammars, and whether machines can be identified which recognize
precisely the languages in one of these classes. We have only covered some of the entries in
the table below in any detail. It is given here in full for completeness’ sake.
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Languages Production rules for grammars recognizing machines
Γ → ∆ such that

regular Γ = R any one non-terminal finite automata
∆ = xR′ or ∆ = x or ∆ = ε where

R′ non-terminal, x terminal

context-free Γ = R any one non-terminal non-deterministic
∆ any string pushdown automata

context-sensitive Γ any string containing non-terminals Turing machines
∆ any string at least as long as Γ with bounded tape

Turing-recognizable Γ any string containing non-terminals Turing machines
∆ any string

These so-called ‘types’ get bigger as we move down the table, and each type is strictly
contained in the one below it, that is there are languages in the type below which are not in
the one above. Regular languages are the subject of Section 1. Context-free languages are
the subject of Section 2. At the time, we did not discuss the origin of the phrase ‘context-
free’. A context-free grammar has production rules by which one non-terminal is replaced by
some string (of terminals and non-terminals), and we may then make use of this production
rule whenever that non-terminal symbol occurs in a string—the rule is not sensitive to the
context in which it is used. Clearly natural languages are not context-free—just because I may
replace one word by another in some sentences (contexts) does not mean that I can do this
everywhere the first word appears. Context-sensitive grammars allow rules like aAb → aBcc,
which say that if we have a non-terminal symbol A which has an a to the left of it and a b to
the right of it then we may replace that whole string aAb by aBcc. These languages are not of
particular interest in computer science which is why we are not discussing them in any detail.
Turing-recognizable languages are the most general of all, and the associated grammars are
also called ‘unrestricted grammars’. We will not provide a proof here that these languages
are indeed generated by a grammar, nor for the fact that for any such grammar we can find
a Turing machine which recognizes the language. The former is done by creating a Turing
machine which generates all the words for the language in question and compares them with
the given word22. (This is most easily done if the Turing machine has three tapes (one holding
the word to be recognized, one holding the rules of the grammar, and one for the creation of
words) and is non-deterministic. See the following section for why this is valid.) The latter
is done by using configurations. There is a production rule which transfers one configuration
into another if and only if there one step in the Turing machine’s computation transfers the
first configuration into the second.

Summary. In this section we have introduced a notion of an automaton with random-
access memory, a Turing machine. Turing machines are more powerful than pushdown au-
tomata. The languages recognized by a Turing machine are called Turing-recognizable, and
having that property is equivalent to there being a Turing machine which enumerates the
language in question. There is a stricter concept, namely that of Turing-decidability, where
the deciding Turing machine is also required to effectively reject words which do not belong
to the language in question by halting in a non-accepting state.

22Compare this with a Turing machine enumerating a language outline above.
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Summary of Sections 1-3. We have discussed a number of theoretical devices to
investigate a hierarchy of increasingly powerful languages. Figure 31 gives an overview over
these languages for the alphabet {0, 1}, exhibiting examples that separate the different kinds
of languages from each other. It also specifies which abstract machines decide or recognize a
language, and how the language can be generated. Note that some of the examples given here
will be discussed in Section 4 and therefore may not mean very much to you at this point.

regular

context-free

{0, 1}∗

{0n1n0n1n | n ∈ N}

{0n1n | n ∈ N}

non-deterministic PDAs decide

TMs decide

TMs recognize

DFAs decide

context-free grammars generate

regular expressions generate

Turing-decidable

Turing-recognizable

{〈Mn〉 | Mn does not accept 〈Mn〉}

TMs enumerate; unrestricted grammars generate

{(〈M〉, α) | The Turing machine M halts on input α}

Figure 31: A hierarchy of languages
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3.4 Exercises for Section 3

Exercise 21 (a) Write out the configurations the machine in Table 3 goes through when
started with input strings baab and baba.

(b) Which of the following strings are accepted by the machine from Table 3: baab, baba, a,
b, babaab, bbabb?

Exercise 22 Extend the Turing machine from Table 3 to one which accepts all palindromes
over the alphabet {a, b, c}.

Exercise 23 (a) Design a Turing machine which recognizes the language {(ab)n | n ∈ N}.

(b) Design a Turing machine which recognizes the language {anbn | n ∈ N}.

Exercise 24 (a) Given a DFA, design a Turing machine which simulates that DFA. This is
much more straight-forward than mimicking a PDA since the problem of the PDA looping
forever does not arise.

(b) Design a TM which decides whether a word is of the form anbncn. Recall from Section 2
that this language is not context-free, so Turing-recognizable is indeed more general a concept
than than context-free.

Exercise 25 Prove Theorem 3.2. (Hint: Given a Turing-decidable language we know that
there exists a Turing machine which decides it. From this, argue that there is a Turing
machine deciding the complement.) What happens if you try to apply the same technique to
a Turing-recognizable language?

Exercise 26 (*) Can you sketch a proof of Theorem 3.3? Think about how, you might use a
Turing machine that recognizes a language to design one which enumerates it, and vice versa.
If you get totally stuck you might try consulting [Sip97], p. 140ff.
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Assessed exercises, due in week 12

Note that some of these exercises require knowledge from Section 4!

Exercise 3.1 Consider the following Turing machine with sole accepting state 0.

δ a b c

0 (1, , R) (5, b, N) (10, c, N) stop

1 (2, a, R) (5, , R) stop (1, , R)

2 (2, a, R) (3, , L) stop (2, , R)

3 (4, a, L) stop stop (3, , L)

4 (4, a, L) stop stop (0, , R)

5 stop (6, , R) stop (0, , N)

6 stop (7, b, R) (10, , R) (7, , R)

7 stop (7, b, R) (8, , L) (7, , R)

8 stop (9, b, L) stop stop

9 stop (9, b, L) stop (5, , R)

10 stop stop stop (0, , N)

Give the configurations the machine goes through when processing the string abbc.
Which of the following strings is accepted by the machine: ab, bc, abc, abbc, aabbbc,

aabbbcc?
What is the language accepted by the machine?

Exercise 3.2 (a) Design a Turing machine which decides whether a string of 0s and 1s,
considered as a binary number, is odd or divisible by 8. You may assume that at the start,
the head is on the left most, that is the most significant, digit. Do this by either giving a
transition table or by describing the action of your machine along the lines of that on page 57.

(b) Argue that the intersection of two Turing-decidable languages is decidable.

Exercise 3.3 Show that there is no program which reliably checks for division by 0. Hint:
Assume you have such a program which takes two files as its input and prints ‘Divides by
0’ when it detects that the first file, interpreted as a program, will divide by 0 if run on the
second file, and otherwise prints ‘Does not divide by 0’. Now create a new program similar to
DHalt, but instead of just reversing what is printed, replace all occurrences of the instruction
to print ‘Does not divide by 0’ by an instruction which produces the desired contradiction.
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