
COMP61132: Modal and Description Logics

Week 5

Uli Sattler

University of
Manchester

1

Discussion of Coursework

1. Tableau: • straightforward but cumbersome application of tableau rules

• should clarify/raise questions regardings these rules...any?

2. Proof: • not quite straightforward argumentation required – I saw some good

reasoning!

• some difficulties regardings all/some models:

– in a coherent ontology O, each concept name is satisfiable w.r.t.

O
– hence for each A, there is a model I in which AI ̸= ∅
– ...it might be the case that you need different models for A

and B (but not in ALC)

University of
Manchester

2

Discussion of Coursework II

3. Algorithm: • advanced difficulty, required background reading & hard thinking

for the PSpace argument

• crucial observations: for an acyclic TBox T ,

– the abs-GCI-rule suffices!

– we can define role depth of a concept C in T : recursively

replace in C all lhs with rhs of axioms in T , then count max.

role depth

– for any generated individual a, the maximum role depth in con-

cepts a : C is strictly smaller than this depth for its ancestors.

– hence the tree depth is bounded by maximum role depth, i.e.,

linearly in T and concept size in A.

4. Ontology: any difficulties/insights/questions?

University of
Manchester

3

Leftovers from last session

Naive implementation of ALC tableau algorithm is doomed to failure:

It constructs a

• set of ABoxes,

• each ABox being of possibly exponential size, with possibly exponentially many indi-

viduals (see binary counting example)

• in the presence of a GCI such as ⊤ ⊑ (C1⊔D1)⊓ . . .⊓(Cn⊓Dn) and exponentially

many individuals, algorithm might generate double exponentially many ABoxes

 requires double exponential space or

• use non-deterministic variant and backtracking to consider one ABox at a time

 requires exponential space

University of
Manchester

4

Leftovers from last session

Soundness, completeness, and termination of ALCI tableau algorithm.

...see slides 38 – 41 from last session

University of
Manchester

5

Plan for today

1. Add one further constructor to ALCI : number restrictions

2. Look at undecidable extensions: role chain inclusions and others

3. Justifications: what are they?

4. Finally: other interesting stuff that we can’t cover properly

University of
Manchester

6

Number restrictions

Number restrictions

• a standard constructor in DLs, rather rare in MLs

• given that

– ∃r.C is “at least 1 r-successor is a C” and

– ∀r.C is “at most 0 r-successor is not a C”

• why not also allow for

– ≥ nr.C is “at least n r-successors are Cs” and

– ≤ nr.C is “at most n r-successors are Cs”

• many examples from applications

– cars have exactly 4 wheels (at least 4 and at most 4)

– bicycles have exactly 2 wheels

– ...

University of
Manchester

7

The DL ALCQI

Further add qualifying number restrictions (>nr.C) and (6nr.C):

(>nr.C)I := {x ∈ ∆I | #{y | ⟨x, y⟩ ∈ rI and y ∈ CI} ≥ n}
(6nr.C)I := {x ∈ ∆I | #{y | ⟨x, y⟩ ∈ rI and y ∈ CI} ≤ n}

ALCQI is ALCI extended with qualifying number restrictions.

Observation: ALCQI ontologies do not enjoy the finite model property:

C0 := ¬A, T := {⊤ ⊑ ∃R.A ⊓ (61R−.⊤)}

C0 is satisfiable w.r.t. T , but only in infinite models

University of
Manchester

8

A tableau algorithm for ALCQI ontologies

Obvious: 2 new rules for tableau algorithm

≥-rule: If x : (>nr.C) ∈ A, x is not blocked, and x has

less than n r-neighbours yi with y : C ∈ A
then create n new individuals y1, . . . , yn and replace A with

A ∪ {(x, yi) : r, yi : C | 1 ≤ i ≤ n}

≤-rule: If x : (6nr.C) ∈ A, x is not indirectly blocked,

x has n + 1 r-neighbours y0, . . . , yn with yi : C ∈ A, and

for each i, j with yj is not an ancestor of yi, set Ai,j = A[yj/yi]

Then replace A with the set of all those Ai,j

University of
Manchester

9

A tableau algorithm for ALCQI ontologies

Problem: Consider what the tableau algorithm does for

satisfiability of C0 = (>3r.B) ⊓ (62r.A) w.r.t. the empty TBox

⇒ algorithm does not terminate due to yoyo effect

Solution: Use explicit inequality ̸ .= to prevent yoyo effect

University of
Manchester

10

A tableau algorithm for ALCQI ontologies

Solution: Use explicit inequality ̸ .= to prevent yoyo effect:

≥-rule: If x : (>nr.C) ∈ A, x is not blocked, and x has

less than n r-neighbours yi with yi : C ∈ A
then create n new individuals y1, . . . , yn and replace A with

A ∪ {(x, yi) : r, yi : C | 1 ≤ i ≤ n} ∪ {yi ̸ .= yj | 1 ≤ i < j ≤ n}

≤-rule: If x : (6nr.C) ∈ A, x is not indirectly blocked,

x has n + 1 r-neighbours y0, . . . , yn with yi : C ∈ A, and

for each i, j with yj is not an ancestor of yi and yi ̸ .= yj ̸∈ A
set Ai,j = A[yj/yi] and

Then replace A with the set of all those Ai,j

Note: • we assume that inequality yi ̸ .= yj is implicitly symmetric

• an interpretation I satisfies a ̸= b if aI ̸= bI

University of
Manchester

11

A tableau algorithm for ALCQI ontologies

Extend definition of a clash to NRs: an ABox A contains a clash if

• {x : A, x : ¬A} ⊆ A for some x, A

• or if

– x : (6nr.C) ∈ A and

– x has more than n r-neighbours y0, . . . , yn with yi ̸ .= yj for all i ̸= j.

Does this suffice? No:

{a : (61r.A) ⊓ (61r.¬A) ⊓ (>3r.B)}

is inconsistent, but the algorithm would answer “consistent”

Reason: if (6nr.C) ∈ L(x) and x has an r-neighbour y,

we need to know whether y is a C or not

University of
Manchester

12

A tableau algorithm for ALCQI ontologies

Solution: add a third new rule:

choose-rule: If x : (6nr.C) ∈ A, x is not indirectly blocked,

x has an r-neighbour y with {y : C, y : NNF(¬C)} ∩ A = ∅
Then replace A with A ∪ {y : C} and A ∪ {y : NNF(¬C)}

Does this suffice? No . . .

University of
Manchester

13

A tableau algorithm for ALCQI ontologies

Example: test satisfiability of ¬A w.r.t. T :

T = {⊤ ⊑ ∃S. (A ⊓ (61S−.⊤) ⊓ (∃S−.¬A)︸ ︷︷ ︸
D

)}
b

lo
ck

z

y

x

S

L(x) = {¬A, (∃S.D)}

S

L(y) = {D, A, (≤ 1 S−), (∃S−.¬A), (∃S.D)}

L(z) = {D, A, (≤ 1 S−), (∃S−.¬A), (∃S.D)}

z would block y but we cannot construct a model from this

...and ¬A is unsatisfiable w.r.t. T , i.e., our algorithm is still incorrect!

University of
Manchester

14

A tableau algorithm for ALCQI ontologies

Solution: use double-blocking:

y is directly blocked if there are ancestors x, x′, and y′ of y with

• x is predecessor of y,

• x′ is predecessor of y′,

• E(⟨x, y⟩) = E(⟨x′, y′⟩),
• L(x) = L(x′), and L(y) = L(y′).

bl
oc

k

L(y)

S

S

L(x′)x′

y′ L(y′)

x L(x)

y

...using “completion tree notation” rather than ABoxes for brevity

University of
Manchester

15

A tableau algorithm for ALCQI ontologies

Lemma:

Let O be an ALCQI ontology. Then the

1. the algorithm terminates when applied to O
2. if the rules generate a clash-free & complete ABox, then O is consistent

3. if O is consistent, then the rules generate a clash-free & complete ABox

Proof: 1. termination is mostly standard, but requires care because ≤-rule

removes individuals

2. soundness is more complicated: we unravel a c. & c.-f. ABox into an

infinite tree model, copying blocking individuals.

3. completeness is standard using a model and mapping π.

University of
Manchester

16

Pffffew!

That was hard!

• the tableau algorithm for ALC wasn’t complicated...despite blocking and GCI rules

• extending it to inverse roles was (almost) straighforward:

– r-neighbours instead of r-successors

– equality-blocking instead of subset-blocking

• extending it to number restrictions was hard

– 2 new obvious rules, one for ≤ n r.C and ≥ n r.C

– an explicit inequality relation to prevent yoyo-effect

– another new rule to ensure that we count correctly for ≤ n r.C

– double (equality) blocking instead equality blocking

University of
Manchester

17

Optimising the ALCQI Tableau Algorithm: Optimised Blocking

For ALCQI , the blocking condition is:

y is blocked by y′ if

for x the predecessor of y, x′ the predecessor of y′

1. L(x) = L(x′)

2. L(y) = L(y′)

3. (x, R, y) iff (x′, R, y′)

 blocking occurs late
 search space is huge

University of
Manchester

18

Optimising the ALCQI Tableau Algorithm: Optimised Blocking

For ALCQI , the blocking condition is:

y is blocked by y′ if

for x the predecessor of y, x′ the predecessor of y′

1. L(x) = L(x′)

2. L(y) = L(y′)

3. (x, R, y) iff (x′, R, y′)

 blocking occurs late
 search space is huge

1. L(x) ∩ RC = L(x′) ∩ RC

2. L(y) ∩ RC = L(y′) ∩ RC

3. (x, R, y) iff (x′, R, y′)

for “relevant concepts RC”

 blocking occurs earlier
 search space is smaller

. . . details are beyond the scope of this course

University of
Manchester

19

Optimising the ALCQI Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example x : ∃R.(A ⊓ B) ⊓ ((C1 ⊔ D1) ⊓ . . . ⊓ (Cn ⊔ Dn)) ⊓ ∀R.¬A

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

x

⊔

⊔ ⊔

⊔

⊔⊔
x

x

R

yL(y) = {(A ⊓ B), ¬A, A, B}

Clash

R

y L(y) = {(A ⊓ B), ¬A, A, B}

Clash Clash . . . Clash

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

L(x) ∪ {Cn}

University of
Manchester

20

Optimising the ALCQI Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example x : ∃R.(A ⊓ B) ⊓ ((C1 ⊔ D1) ⊓ . . . ⊓ (Cn ⊔ Dn)) ⊓ ∀R.¬A

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

⊔

⊔ ⊔

⊔

⊔⊔
x

x

R

yL(y) = {(A ⊓ B), ¬A, A, B}

Clash

University of
Manchester

21

Optimising the ALCQI Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example x : ∃R.(A ⊓ B) ⊓ ((C1 ⊔ D1) ⊓ . . . ⊓ (Cn ⊔ Dn)) ⊓ ∀R.¬A

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

Clash . . . Clash

⊔

⊔ ⊔

⊔

⊔⊔
x

x

R

yL(y) = {(A ⊓ B), ¬A, A, B}

Clash

R

y

Clash

L(y) = {(A ⊓ B), ¬A, A, B}

University of
Manchester

22

Optimising the ALCQI Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example x : ∃R.(A ⊓ B) ⊓ ((C1 ⊔ D1) ⊓ . . . ⊓ (Cn ⊔ Dn)) ⊓ ∀R.¬A

R

y

Clash

L(y) = {(A ⊓ B), ¬A, A, B}

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

Clash . . . Clash

⊔

⊔ ⊔

⊔

⊔⊔
x

x

R

yL(y) = {(A ⊓ B), ¬A, A, B}

Clash

University of
Manchester

23

Optimising the ALCQI Tableau Algorithm: SAT Optimisations

Finally: ALCQI extends propositional logic

 heuristics developed for SAT are relevant

Summing up: optimisations are possible at each aspect of tableau algorithm

can dramatically enhance performance

 do they interact?

 how?

 which combination works best for which “cases”?

 is the optimised algorithm still correct?

...are tableau algorithms all there is?

University of
Manchester

24

Are all DLs decidable?

So far, we have extended ALC with

• inverse role and

• number restrictions

• ...which resulted in logics whose reasoning problems are decidable

• ...we even discussed decision procedures for these extensions

Next, we will discuss some undecidable extension

• ALC with role chain inclusions

• ALC with number restrictions on complex roles

University of
Manchester

25

An undecidable DL: ALC with role chain inclusions

OWL 2 supports axioms of the form

• r ⊑ s: a model of O with r ⊑ s ∈ O must satisfy rI ⊆ sI

• trans(r): a model of O with trans(r) ∈ O must satisfy rI ◦rI ⊆ rI ,

where p ◦ q = {(x, z) | there is y : (x, y) ∈ p and (y, z) ∈ q},

i.e., a model I of O must interpret r as a transitive relation

• r ◦s ⊑ t: a model of O with r ◦s ⊑ t ∈ O must satisfy rI ◦sI ⊆ tI

subject to some complex restrictions

...why do we need restrictions?

...because axioms of this form lead to loss of tree model property and

undecidability

University of
Manchester

26

How to prove undecidability of a DL

Often, we prove undecidability of a DL as follows:

1. fix reasoning problem, e.g., satisfiability of a concept w.r.t. a TBox

• remember Theorem 2?

• if concept satisfiability w.r.t. TBox is undecidable,

• then so is consistency of ontology

• then so is subsumption w.r.t. an ontology

• ...

2. pick a decision problem known to be undecidable, e.g., the domino problem

3. provide a (computable) mapping π(·) that

• takes an instance D of the domino problem and

• turns it into a concept AD and a TBox TD such that

• D has a tiling if and only if AD is satisfiable w.r.t. TD

i.e., a decision procedure of concept satisfiability w.r.t. TBoxes could be used as

a decision procedure for the domino problem
University of
Manchester

27

The Classical Domino Problem - a picture

using D?

types
dominoe
of
set
a fixed
D,

can we tile the

����

first quadrant

��
��
��
��

��
��
��
��

University of
Manchester

28

The Classical Domino Problem

Definition: A domino system D = (D, H, V)

• set of domino types D = {D1, . . . , Dd}, and

• horizontal and vertical matching conditions H ⊆ D × D and V ⊆ D × D

A tiling for D is a (total) function:

t : N × N → D such that

⟨t(m, n), t(m + 1, n)⟩ ∈ H and

⟨t(m, n), t(m, n + 1)⟩ ∈ V

Domino problem: given D, has D a tiling?

It is well-known that this problem is undecidable [Berger66]

University of
Manchester

29

Almost Encoding the Classical Domino Problem in ALC

We can express various obligations of the domino problem in ALC TBox axioms:

¬ each object carries exactly one domino type Di

 use unary predicate symbol Di for each domino type and

make sure that all elements carry at least 1 domino type, but

not two domino types

⊤ ⊑ D1 ⊔ . . . ⊔ Dd

D1 ⊑ ¬D2 ⊓ . . . ⊓ ¬Dd

D2 ⊑ ¬D3 ⊓ . . . ⊓ ¬Dd
... ...

Dd−1 ⊑ Dd

University of
Manchester

30

Almost Encoding the Classical Domino Problem in ALC

­ every element has a horizontal (X-) successor and a vertical (Y -) successor

⊤ ⊑ ∃X.⊤ ⊓ ∃Y.⊤

® every element satisfies D’s horizontal/vertical matching conditions:

D1 ⊑ ⊔
(D1,D)∈H

∀X.D ⊓ ⊔
(D1,D)∈V

∀Y.D

D2 ⊑ ⊔
(D2,D)∈H

∀X.D ⊓ ⊔
(D2,D)∈V

∀Y.D

... ...

Dd ⊑ ⊔
(Dd,D)∈H

∀X.D ⊓ ⊔
(Dd,D)∈V

∀Y.D

Does this suffice?

I.e., does D have a tiling iff there is a Di satisfiable w.r.t. the axioms from ¬ to ®?

• if yes, we have shown that satisfiability of ALC is undecidable

• so no...what is missing?

University of
Manchester

31

Encoding the Classical Domino Problem in ALC with role chain inclusions

¯ for each element, its horizontal-vertical-successors coincide with their

vertical-horizontal-successors and vice versa

X ◦ Y ⊑ Y ◦ X and Y ◦ X ⊑ X ◦ Y

Lemma: Let TD be the axioms from ¬ to ¯.

Then ⊤ is satisfiable w.r.t. TD iff D has a tiling.

• since the domino problem is undecidable, this implies undecidability of

concept satisfiability w.r.t. TBoxes of ALC with role chain inclusions

• due to Theorem 2, all other standard reasoning problems are undecidable, too

• Proof: 1. show that, from a tiling for D, you can construct a model of TD

2. show that, from a model I of TD, you can construct a tiling for D

(tricky because elements in I can have several X- or Y -successors

but we can simply take the right ones, see picture)

University of
Manchester

32

Let’s do this again!

What other constructors can us help to express ¯?

• counting and complex roles (role chains and role intersection):

⊤ ⊑ (≤ 1X.⊤) ⊓ (≤ 1Y.⊤) ⊓ (∃(X ◦ Y) ⊓ (Y ◦ X).⊤)

• restricted role chain inclusions (only 1 role on RHS), and counting (an all roles):

⊤ ⊑ (≤ 1X.⊤) ⊓ (≤ 1Y.⊤)

X ◦ Y ⊑ r

Y ◦ X ⊑ r

⊤ ⊑ (≤ 1r.⊤)

• various others...see coursework

University of
Manchester

33

Are Standard Reasoning Problems/Services Everything?

So far, we have talked a lot about standard reasoning problems

• consistency

• satisfiability

• entailments

• ...is this all that is relevant?

Next, we will look at 1 reasoning problem that

• cannot be polynomially reduced to any of the above standard reasoning

problems

• is relevant when working with a non-trivial ontology

• ...justifications!

University of
Manchester

34

Building Ontologies for Real

Imagine you are building, possibly with your colleagues, an ontology O, and

• O is non-trivial, say has 500 axioms, or 5,000, or even more

(S1) a class C is unsatisfiable w.r.t. O
(S2) 27 classes Ci are unsatisfiable w.r.t. O

– Claim: it is possible that O\{α} is coherent, but O contains 27 unsatisfiable classes

– ...even for a very sensible, small, harmless axiom α

(S3) O is inconsistent

– Claim: it is possible that O \ {α} is consistent, but O is inconsistent

– ...even for a very sensible, small, harmless axiom α

? what do you do?

? how do you go about repairing O?

? which tool support would help you to repair O?

University of
Manchester

35

Building Ontologies for Real II

Imagine you are building, possibly with your colleagues, an ontology O, and

• O is non-trivial, say has 500 axioms, or 5,000, or even more

(S4) O |= α, and you want to know why

– e.g., so that you can trust O and α

– e.g., so that you understand how O models its domain

? what do you do?

? how do you go about understanding this entailment?

? which tool support would help you to understand this entailment?

? would this tool support be the same/similar to the one to support repair?

University of
Manchester

36

Justifications

In all scenarios (Si), we clearly want to know at least the reasons for O |= α,

which axioms can I/should I

(S1) change so that O′ ̸|= C ⊑ ⊥?

(S2) change so that O′ becomes coherent?

(S3) change so that O′ becomes consistent?

(S4) look at to understand O |= α?

Definition: Let O be an ontology with O |= α.

Then J ⊆ O is a justification for α in O if

• J |= α and

• J is minimal, i.e., for each J ′ (J : J ′ ̸|= α

University of
Manchester

37

An Example

Consider the following ontology O with O |= C ⊑ ⊥:

O := {C ⊑ D ⊓ E (1)

D ⊑ A ⊓ ∃r.B1 (2)

E ⊑ A ⊓ ∀r.B2 (3)

B1 ⊑ ¬B2 (4)

D ⊑ ¬E (5)

G ⊑ B ⊓ ∃s.C} (6)

Find a justification for C ⊑ ⊥ in O.

How many justifications are there?

University of
Manchester

38

More about Justifications

Claim: discuss the following claims:

1. for each entailment of O, there exists at least one justification

2. one entailment can have several justifications in O
3. justifications can overlap

4. let O′ be obtained as follows from O with O |= α:

• for each justification Ji of the n justifications for α in O,

pick some βi ∈ Ji

• set O′ := O \ {β1, . . . , βn}
then O′ ̸|= α, i.e., O′ is a repair of O.

5. due to monotonicity of DLs, if J is a justification for α and O′ ⊇ J ,

then O′ |= α.

Hence any repair of α must touch all justifications.

University of
Manchester

39

A Naive Black-Box Algorithm to Compute Justifications

Let O = {β1, . . . , βm} be an ontology with O |= α.

Get1Just(O, α)

Set J := O and Out := ∅
For each β ∈ O

If J \ {β} |= α then

Set J := J \ {β} and Out := Out ∪ {β}
Return J

Claim: • loop invariants: J |= α and O = J ∪ Out

• Get1Just(,) returns 1 justification for α in O
• it requires m entailment tests

Other approaches to computing justifications exists, more performant,

glass-box and black-box.

University of
Manchester

40

Linking Justifications to our Scenarios

(S4) 1 justification suffices, but which? A good, easy one...how to find?

(S1-S3) require the computation of all justifications, possibly for several entailments

• even for one entailment, search space is exponential

[(S2)] requires even more:

• who wants to look at x × 27 justifications? Where to start?

• A justification J (for α) is root if there is no justification J ′ (for β) with J ′ (J
• start with root justifications, remove/change axioms in them and

• reclassify: you might have repaired several unsatisfiabilities at once!

• Check example on slide 38: both justifications for C ⊑ ⊥ are root, contained

in 2 non-root justifications for G ⊑ ⊥
• repairing C ⊑ ⊥ repairs G ⊑ ⊥

University of
Manchester

41

More About Justifications

• recent, optimised implementations

– behave well in practise

– can compute all justifications for all atomic entailments of existing, complex ontologies

• recent surveys show that existing ontologies have entailments

– with large justifications, e.g., over 35 axioms and

– with numerous justifications, e.g., over 60 justifications for 1 entailment

– for which justifications can be understood well by domain experts

University of
Manchester

42

Beyond Justifications

• there are hard justifications that need further explanation

– e.g., consider O = { P ⊑ ¬M

RR ⊑ CM

CM ⊑ M

RR ≡ ∃h.TS ⊔ ∀v.H

∃v.⊤ ⊑ M}

with O |= P ⊑ ⊥

– this has led to investigation of lemmatised justifications

• some justification contain superfluous parts

– that distract the user

– consider example and identify superfluous parts

– identifying these can help user to focus on the relevant parts

– this has led to investigation of laconic and precise justifications

University of
Manchester

43

What was left out...

That’s it, mostly.

But there is loads more interesting stuff: there are

• other than tableau-based algorithms

• other than standard reasoning problems & services

• ...

University of
Manchester

44

Hypertableau in a Nutshell

Observation: in most tableau algorithms/systems, we normally use

• absorption to handle GCIs:

– essential pre-processing step for reasoner’s performance, but

– can introduce un-necessary disjunctions, e.g., A ⊓ ∃r.C ⊑ B

is a Horn clause B(x) : − A(x) ∧ R(x, y) ∧ C(y),

but its absorption A ⊑ ∀r.¬C ⊔ B involves a disjunction

– hence what is good in most of the cases is sometimes harmful

 binary/ternary absorption was introduced, but cumbersome

• traditionally, “ancestor” blocking: we only check ancestors for “blocking candidates”

Hypertableau [Motik et. al] avoids both

University of
Manchester

45

Hypertableau in a Nutshell

Hypertableau: works in several steps:

1. translate knowledge base (carefully) into a normal form using structural transformation

2. translate the result into FOL clauses of the form∧
Ri(x, y) ∧

∧
Ai(x) ⇒

∨
Si(x, y) ∨

∨
Bi(x) ∨

∨
yi ≃ yj . . .

3. apply hypertableau rules to an ABox, most importantly

if ABox matches body of a clause, then add head

(other rules to deal with ≃, ≥, and ⊥)

◦ use “anywhere” blocking: consider all “older” individuals as blocking candidates

Absorption superfluous since built-in, handles Horn KBs in a deterministic way.

University of
Manchester

46

Another Approach: Automata-based Algorithms for DLs – Motivation

Observation: to obtain decision procedure, we need to ensure termination.

For tableau algorithms, we

• use blocking to ensure termination

• use unravelling to construct tree models

Also, they are often non-deterministic (e.g., ⊔-rule). Hence

• ensuring and proving termination can be hard work

• proving soundness as well

• obtaining optimal algorithms can be difficult for deterministic complexity classes

• implementing requires backtracking/backjumping: implementer must work hard as well

University of
Manchester

47

Another Approach: Automata-based Algorithms for DLs – Sketch

A recipe for an automata-based algorithm:

1. Learn about (alternating) (two-way) (counting) (tree) automata and

pick a suitable class X of automata,

i.e., suitable for your logic & with decidable emptiness problem

2. Prove that your logic has a tree model property,

i.e., the right one for X

3. Construct, for KB = (C0, T , . . .), an X automaton AKB such that

L(AKB) = {τ | τ is a tree model of KB}.

4. Check that |AKB| is finite decidability of KB satisfiability

5. Check that |AKB| is O(. . . |KB|) and use known complexity of testing emptiness of

X automata to obtain upper bound for KB satisfiability

University of
Manchester

48

What was Left out on tableau algorithms for expressive DLs

Ô query answering: in addition to “retrieve all ABox individuals a with O |= a : C, more

powerful query languages are considered

Ô here: ALCQI ,

in SOTA DL reasoners FaCT ++, Pellet, and Racer: SROIQ, ALCQI plus

– transitive roles: if Trans(R), then RI must be transitive,

– role hierarchies: if R ⊑ S, then I must satisfy RI ⊆ SI ,

– complex role inclusions: e.g., owns ◦ hasPart ⊑ owns

– nominals: individual names can be used as (singleton) concepts

– etc.

 the DL underlying OWL2

. . . extension of ALCQI tableau algorithm and proofs tedious and sometimes difficult

(nominals)

University of
Manchester

49

Other related interesting things

Ô concrete domains to describe “concrete” properties such as age, height, weight, etc.

. . . extension of ALCQI tableau algorithm only possible for restricted cases

Ô combining DLs and rules

Ô combining DLs and description graphs for the representation of structured objects

Ô fast (sub-Boolean) DLs

– different compromise for trade-off between expressive power and comp. complexity

– EL++ designed for huge TBoxes: SnoMed CT defines approx. 400,000 concepts

– DL-Lite designed for huge ABoxes/data

Ô ontology editors such as SWOOP or Protégé 4 that use a DL reasoner

Ô computational complexity of DLs

Ô modules of ontologies for re-use, etc.

University of
Manchester

50

That’s it!

I hope you have enjoyed the class

and

learned a lot.

I will be available for further questions,

in person, via email or Blackboard.

Thanks for your attention!

University of
Manchester

51

