COMP61132: Modal and Description Logics

Week 5

Uli Sattler

- 1. Tableau: straightforward but cumbersome application of tableau rules
 - should clarify/raise questions regardings these rules...any?
 - 2. Proof: not quite straightforward argumentation required I saw some good reasoning!
 - some difficulties regardings all/some models:
 - in a coherent ontology \mathcal{O} , each concept name is satisfiable w.r.t. \mathcal{O}
 - hence for each A, there is a model $\mathcal I$ in which $A^{\mathcal I} \neq \emptyset$
 - -...it might be the case that you need different models for A and B (but not in \mathcal{ALC})

Discussion of Coursework II

3. Algorithm:

- advanced difficulty, required background reading & hard thinking for the PSpace argument
- crucial observations: for an acyclic TBox \mathcal{T} ,
 - the abs-GCI-rule suffices!
 - we can define role depth of a concept C in \mathcal{T} : recursively replace in C all lhs with rhs of axioms in \mathcal{T} , then count max. role depth
 - for any generated individual a, the maximum role depth in concepts a: C is strictly smaller than this depth for its ancestors.
 - -hence the tree depth is bounded by maximum role depth, i.e., linearly in \mathcal{T} and concept size in \mathcal{A} .
- 4. Ontology: any difficulties/insights/questions?

Naive implementation of \mathcal{ALC} tableau algorithm is doomed to failure:

It constructs a

- set of ABoxes,
- each ABox being of possibly exponential size, with possibly exponentially many individuals (see binary counting example)
- in the presence of a GCI such as $\top \sqsubseteq (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcap D_n)$ and exponentially many individuals, algorithm might generate double exponentially many ABoxes
- \leadsto requires double exponential space or
 - use non-deterministic variant and backtracking to consider one ABox at a time
- \leadsto requires exponential space

Soundness, completeness, and termination of \mathcal{ALCI} tableau algorithm.

...see slides 38 - 41 from last session

- 1. Add one further constructor to \mathcal{ALCI} : number restrictions
- 2. Look at undecidable extensions: role chain inclusions and others
- 3. Justifications: what are they?
- 4. Finally: other interesting stuff that we can't cover properly

Number restrictions

- a standard constructor in DLs, rather rare in MLs
- given that
 - $\exists r.C$ is "at least 1 r-successor is a C" and
 - -orall r.C is "at most 0 *r*-successor is not a *C*"
- why not also allow for
 - $\geq nr.C$ is "at least $n \ r$ -successors are Cs" and
 - $\leq nr.C$ is "at most n r-successors are Cs"
- many examples from applications
 - cars have exactly 4 wheels (at least 4 and at most 4)
 - bicycles have exactly 2 wheels

University of

Manchester

— ...

Further add qualifying number restrictions ($\geq nr.C$) and ($\leq nr.C$):

 $\begin{array}{l} (\geqslant nr.C)^{\mathcal{I}} := \ \{x \in \Delta^{\mathcal{I}} \mid \#\{y \mid \langle x, y \rangle \in r^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}}\} \geq n\} \\ (\leqslant nr.C)^{\mathcal{I}} := \ \{x \in \Delta^{\mathcal{I}} \mid \#\{y \mid \langle x, y \rangle \in r^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}}\} \leq n\} \end{array}$

 \mathcal{ALCQI} is \mathcal{ALCI} extended with qualifying number restrictions.

Observation: ALCQI ontologies do not enjoy the finite model property:

$$C_0:=
eg A, \quad \mathcal{T}:=\{ op \sqsubseteq \exists R.A \sqcap (\leqslant 1R^-. op)\}$$

 C_0 is satisfiable w.r.t. \mathcal{T} , but only in infinite models

A tableau algorithm for \mathcal{ALCQI} ontologies

Obvious: 2 new rules for tableau algorithm

 $\begin{array}{ll} \geq \text{-rule:} & \text{If } x \colon (\geqslant nr.C) \in \mathcal{A} \text{, } x \text{ is not blocked, and } x \text{ has} \\ & \text{less than } n \text{ } r \text{-neighbours } y_i \text{ with } y \colon C \in \mathcal{A} \\ & \text{then create } n \text{ new individuals } y_1, \dots, y_n \text{ and replace } \mathcal{A} \text{ with} \\ & \mathcal{A} \cup \{(x,y_i) \colon r, \ y_i \colon C \mid 1 \leq i \leq n\} \end{array}$

 \leq -rule:

If $x: (\leqslant nr.C) \in \mathcal{A}$, x is not indirectly blocked, x has n + 1 r-neighbours y_0, \ldots, y_n with $y_i: C \in \mathcal{A}$, and for each i, j with y_j is not an ancestor of y_i , set $\mathcal{A}_{i,j} = \mathcal{A}[y_j/y_i]$ Then replace \mathcal{A} with the set of all those $\mathcal{A}_{i,j}$ **Problem:** Consider what the tableau algorithm does for

satisfiability of $C_0 = (\geqslant 3r.B) \sqcap (\leqslant 2r.A)$ w.r.t. the empty TBox

\Rightarrow algorithm does not terminate due to yoyo effect

Solution: Use explicit inequality \neq to prevent yoyo effect

Solution: Use explicit inequality \neq to prevent yoyo effect:

>-rule: If $x: (\geq nr.C) \in \mathcal{A}$, x is not blocked, and x has less than n r-neighbours y_i with $y_i \colon C \in \mathcal{A}$ then create n new individuals y_1, \ldots, y_n and replace \mathcal{A} with $\mathcal{A} \cup \{(x,y_i) \colon r, \; y_i \colon C \mid 1 \leq i \leq n\} \cup \{y_i
eq y_i \mid 1 \leq i < j \leq n\}$

 \leq -rule: If $x: (\leq nr.C) \in \mathcal{A}$, x is not indirectly blocked, x has n+1 r-neighbours y_0,\ldots,y_n with $y_i\colon C\in\mathcal{A}$, and for each i, j with y_i is **not** an ancestor of y_i and $y_i \neq y_j \not\in \mathcal{A}$ set $\mathcal{A}_{i,i} = \mathcal{A}[y_i/y_i]$ and **Then** replace A with the set of all those $A_{i,j}$

• we assume that inequality $y_i \neq y_j$ is implicitly symmetric Note:

• an interpretation \mathcal{I} satisfies $a \neq b$ if $a^{\mathcal{I}} \neq b^{\mathcal{I}}$

Extend definition of a clash to NRs: an ABox \mathcal{A} contains a clash if

- $\{x \colon A, x \colon \neg A\} \subseteq \mathcal{A}$ for some x, A
- or if
 - $-x\colon (\leqslant\! nr.C)\in \mathcal{A}$ and
 - -x has more than n r-neighbours y_0, \ldots, y_n with $y_i \neq y_j$ for all $i \neq j$.

Does this suffice? No:

$$\{a\colon (\leqslant\!1r.A)\sqcap(\leqslant\!1r.
eg\!\!\!\neg A)\sqcap(\geqslant\!\!\!3r.B)\}$$

is inconsistent, but the algorithm would answer "consistent"

Reason: if $(\leqslant nr.C) \in \mathcal{L}(x)$ and x has an r-neighbour y, we need to know whether y is a C or not

A tableau algorithm for \mathcal{ALCQI} ontologies

Solution: add a third new rule:

 $\begin{array}{ll} \text{choose-rule:} & \text{If } x \colon (\leqslant nr.C) \in \mathcal{A}, \ x \text{ is not indirectly blocked}, \\ x \text{ has an } r \text{-neighbour } y \text{ with } \{y \colon C, \ y \colon \mathsf{NNF}(\neg C)\} \cap \mathcal{A} = \emptyset \\ \text{Then replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{y \colon C\} \text{ and } \mathcal{A} \cup \{y \colon \mathsf{NNF}(\neg C)\} \end{array}$

Does this suffice? No ...

z would block *y* but we cannot construct a model from this ...and $\neg A$ is unsatisfiable w.r.t. \mathcal{T} , i.e., our algorithm is still incorrect!

A tableau algorithm for \mathcal{ALCQI} ontologies

Solution: use double-blocking:

y is directly blocked if there are ancestors x, x', and y' of y with

- ullet x is predecessor of y,
- x' is predecessor of y',

$$ullet \, {\mathbb E}(\langle x,y
angle) = {\mathbb E}(\langle x',y'
angle)$$
,

•
$$\mathcal{L}(x) = \mathcal{L}(x')$$
, and $\mathcal{L}(y) = \mathcal{L}(y')$.

 $\circ \mathcal{L}(x')$

 $x \circ \mathcal{L}(x)$

 $y \circ \mathcal{L}(y)$

Lemma:

Let $\mathcal O$ be an \mathcal{ALCQI} ontology. Then the

- 1. the algorithm terminates when applied to $\boldsymbol{\mathcal{O}}$
- 2. if the rules generate a clash-free & complete ABox, then ${\cal O}$ is consistent
- 3. if \mathcal{O} is consistent, then the rules generate a clash-free & complete ABox
 - **Proof:** 1. termination is mostly standard, but requires care because \leq -rule removes individuals
 - 2. soundness is more complicated: we unravel a c. & c.-f. ABox into an infinite tree model, copying blocking individuals.
 - 3. completeness is standard using a model and mapping π .

That was hard!

- the tableau algorithm for \mathcal{ALC} wasn't complicated...despite blocking and GCI rules
- extending it to inverse roles was (almost) straighforward:
 - -r-neighbours instead of r-successors
 - equality-blocking instead of subset-blocking
- extending it to number restrictions was hard
 - 2 new obvious rules, one for $\leq n \; r.C$ and $\geq n \; r.C$
 - an explicit inequality relation to prevent yoyo-effect
 - another new rule to ensure that we count correctly for $\leq n \; r.C$
 - double (equality) blocking instead equality blocking

Optimising the ALCQI Tableau Algorithm: Optimised Blocking

```
For \mathcal{ALCQI}, the blocking condition is:
```

```
y is blocked by y' if
```

for x the predecessor of y, x' the predecessor of y'

1. $\mathcal{L}(x) = \mathcal{L}(x')$ 2. $\mathcal{L}(y) = \mathcal{L}(y')$ 3. (x, R, y) iff (x', R, y')

→ blocking occurs late→ search space is huge

Optimising the ALCQI Tableau Algorithm: Optimised Blocking

For \mathcal{ALCQI} , the blocking condition is:

y is blocked by y' if

for x the predecessor of y, x' the predecessor of y'

 $\begin{array}{ll} 1.\ \mathcal{L}(x) = \mathcal{L}(x') & 1.\ \mathcal{L}(x) \cap RC = \mathcal{L}(x') \cap RC \\ 2.\ \mathcal{L}(y) = \mathcal{L}(y') & 2.\ \mathcal{L}(y) \cap RC = \mathcal{L}(y') \cap RC \\ 3.\ (x, R, y) \ \text{iff} \ (x', R, y') & 3.\ (x, R, y) \ \text{iff} \ (x', R, y') \end{array}$

for "relevant concepts RC"

→ blocking occurs late
 → search space is huge

- → blocking occurs earlier→ search space is smaller
- ... details are beyond the scope of this course

Optimising the ALCQI Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and tries other possibility

Optimising the ALCQI Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and tries other possibility

Optimising the ALCQI Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and tries other possibility

Optimising the \mathcal{ALCQI} Tableau Algorithm: Backjumping

Remember If a clash is encountered, non-deterministic algorithm backtracks

i.e., returns to last non-deterministic choice and tries other possibility

Optimising the \mathcal{ALCQI} Tableau Algorithm: SAT Optimisations

Finally: \mathcal{ALCQI} extends propositional logic \rightsquigarrow heuristics developed for SAT are relevant

Summing up:optimisations are possible at each aspect of tableau algorithm
can dramatically enhance performance
 \rightsquigarrow do they interact?
 \rightsquigarrow how?
 \rightsquigarrow which combination works best for which "cases"?
 \rightsquigarrow is the optimised algorithm still correct?

... are tableau algorithms all there is?

So far, we have extended \mathcal{ALC} with

- inverse role and
- number restrictions
- ...which resulted in logics whose reasoning problems are decidable
- ...we even discussed decision procedures for these extensions

Next, we will discuss some undecidable extension

- \mathcal{ALC} with role chain inclusions
- \bullet \mathcal{ALC} with number restrictions on complex roles

OWL 2 supports axioms of the form

- $r \sqsubseteq s$: a model of $\mathcal O$ with $r \sqsubseteq s \in \mathcal O$ must satisfy $r^\mathcal I \subseteq s^\mathcal I$
- trans(r): a model of \mathcal{O} with trans $(r) \in \mathcal{O}$ must satisfy $r^{\mathcal{I}} \circ r^{\mathcal{I}} \subseteq r^{\mathcal{I}}$, where $p \circ q = \{(x, z) \mid \text{ there is } y : (x, y) \in p \text{ and } (y, z) \in q\}$, i.e., a model \mathcal{I} of \mathcal{O} must interpret r as a transitive relation
- $r \circ s \sqsubseteq t$: a model of \mathcal{O} with $r \circ s \sqsubseteq t \in \mathcal{O}$ must satisfy $r^{\mathcal{I}} \circ s^{\mathcal{I}} \subseteq t^{\mathcal{I}}$ subject to some complex restrictions

...why do we need restrictions?

...because axioms of this form lead to loss of tree model property and undecidability

Often, we prove undecidability of a DL as follows:

- 1. fix reasoning problem, e.g., satisfiability of a concept w.r.t. a TBox
 - remember Theorem 2?
 - if concept satisfiability w.r.t. TBox is undecidable,
 - then so is consistency of ontology
 - then so is subsumption w.r.t. an ontology
 - ...

2. pick a decision problem known to be undecidable, e.g., the domino problem

- 3. provide a (computable) mapping $\pi(\cdot)$ that
 - \bullet takes an instance D of the domino problem and
 - ullet turns it into a concept A_D and a TBox \mathcal{T}_D such that
 - ullet D has a tiling if and only if A_D is satisfiable w.r.t. \mathcal{T}_D

i.e., a decision procedure of concept satisfiability w.r.t. TBoxes could be used as a decision procedure for the domino problem

The Classical Domino Problem - a picture

Definition: A domino system $\mathcal{D} = (D, H, V)$

- ullet set of domino types $D=\{D_1,\ldots,D_d\}$, and
- ullet horizontal and vertical matching conditions $H\subseteq D imes D$ and $V\subseteq D imes D$

A tiling for \mathcal{D} is a (total) function:

 $egin{aligned} t: \mathbb{N} imes \mathbb{N} o D ext{ such that} \ & \langle t(m,n), t(m+1,n)
angle \in H ext{ and} \ & \langle t(m,n), t(m,n+1)
angle \in V \end{aligned}$

Domino problem: given \mathcal{D} , has \mathcal{D} a tiling?

It is well-known that this problem is undecidable [Berger66]

We can express various obligations of the domino problem in \mathcal{ALC} TBox axioms:

1 each object carries exactly one domino type D_i

 \rightsquigarrow use unary predicate symbol D_i for each domino type and make sure that all elements carry at least 1 domino type, but not two domino types

② every element has a horizontal (X-) successor and a vertical (Y-) successor $\top \Box \exists X. \top \sqcap \exists Y. \top$

③ every element satisfies D's horizontal/vertical matching conditions:

Does this suffice?

I.e., does D have a tiling iff there is a D_i satisfiable w.r.t. the axioms from 1 to 3?

- \bullet if yes, we have shown that satisfiability of \mathcal{ALC} is undecidable
- so no...what is missing?

Encoding the Classical Domino Problem in \mathcal{ALC} with role chain inclusions

(4) for each element, its horizontal-vertical-successors coincide with their vertical-horizontal-successors and vice versa

 $X \circ Y \sqsubseteq Y \circ X$ and $Y \circ X \sqsubseteq X \circ Y$

Lemma: Let \mathcal{T}_D be the axioms from ① to ④. Then \top is satisfiable w.r.t. \mathcal{T}_D iff \mathcal{D} has a tiling.

- since the domino problem is undecidable, this implies undecidability of concept satisfiability w.r.t. TBoxes of ALC with role chain inclusions
- due to Theorem 2, all other standard reasoning problems are undecidable, too
- Proof: 1. show that, from a tiling for D, you can construct a model of \mathcal{T}_D
 - 2. show that, from a model \mathcal{I} of \mathcal{T}_D , you can construct a tiling for D (tricky because elements in \mathcal{I} can have several X- or Y-successors but we can simply take the right ones, see picture)

What other constructors can us help to express ④?

• counting and complex roles (role chains and role intersection):

 $\top \sqsubseteq (\leq 1X.\top) \sqcap (\leq 1Y.\top) \sqcap (\exists (X \circ Y) \sqcap (Y \circ X).\top)$

• restricted role chain inclusions (only 1 role on RHS), and counting (an all roles):

• various others...see coursework

Are Standard Reasoning Problems/Services Everything?

So far, we have talked a lot about standard reasoning problems

- consistency
- satisfiability
- entailments
- ... is this all that is relevant?
- Next, we will look at 1 reasoning problem that
 - cannot be polynomially reduced to any of the above standard reasoning problems
 - is relevant when working with a non-trivial ontology
 - ...justifications!

Imagine you are building, possibly with your colleagues, an ontology \mathcal{O} , and

 $\bullet \ensuremath{\mathcal{O}}$ is non-trivial, say has 500 axioms, or 5,000, or even more

(S1) a class C is unsatisfiable w.r.t. \mathcal{O}

(S2) 27 classes C_i are unsatisfiable w.r.t. \mathcal{O}

- Claim: it is possible that $\mathcal{O} \setminus \{\alpha\}$ is coherent, but \mathcal{O} contains 27 unsatisfiable classes
- ... even for a very sensible, small, harmless axiom lpha

(S3) \mathcal{O} is inconsistent

- Claim: it is possible that $\mathcal{O} \setminus \{\alpha\}$ is consistent, but \mathcal{O} is inconsistent
- ...even for a very sensible, small, harmless axiom lpha
- ? what do you do?
- ? how do you go about repairing \mathcal{O} ?
- ? which tool support would help you to repair \mathcal{O} ?

Imagine you are building, possibly with your colleagues, an ontology \mathcal{O} , and

- \mathcal{O} is non-trivial, say has 500 axioms, or 5,000, or even more
- (S4) $\mathcal{O} \models \alpha$, and you want to know why
 - e.g., so that you can trust ${\cal O}$ and α
 - -e.g., so that you understand how \mathcal{O} models its domain
 - ? what do you do?
 - ? how do you go about understanding this entailment?
 - ? which tool support would help you to understand this entailment?
 - ? would this tool support be the same/similar to the one to support repair?

In all scenarios (S*i*), we clearly want to know at least the reasons for $\mathcal{O} \models \alpha$, which axioms can I/should I

(S1) change so that $\mathcal{O}' \not\models C \sqsubseteq \bot$?

(S2) change so that \mathcal{O}' becomes coherent?

(S3) change so that \mathcal{O}' becomes consistent?

(S4) look at to understand $\mathcal{O} \models \alpha$?

Definition: Let \mathcal{O} be an ontology with $\mathcal{O} \models \alpha$. Then $\mathcal{J} \subseteq \mathcal{O}$ is a justification for α in \mathcal{O} if • $\mathcal{J} \models \alpha$ and • \mathcal{J} is minimal, i.e., for each $\mathcal{J}' \subsetneq \mathcal{J}$: $\mathcal{J}' \nvDash \alpha$

An Example

Consider the following ontology \mathcal{O} with $\mathcal{O} \models C \sqsubseteq \bot$:

$$\mathcal{O} := \{ C \sqsubseteq D \sqcap E \quad (1) \\ D \sqsubseteq A \sqcap \exists r.B_1 \quad (2) \\ E \sqsubseteq A \sqcap \forall r.B_2 \quad (3) \\ B_1 \sqsubseteq \neg B_2 \quad (4) \\ D \sqsubseteq \neg E \quad (5) \\ G \sqsubseteq B \sqcap \exists s.C \} \quad (6)$$

Find a justification for $C \sqsubseteq \bot$ in \mathcal{O} . How many justifications are there? **Claim:** discuss the following claims:

- 1. for each entailment of \mathcal{O} , there exists at least one justification
- 2. one entailment can have several justifications in $\boldsymbol{\mathcal{O}}$
- 3. justifications can overlap
- 4. let \mathcal{O}' be obtained as follows from \mathcal{O} with $\mathcal{O} \models \alpha$:
 - for each justification \mathcal{J}_i of the n justifications for α in \mathcal{O} , pick some $\beta_i \in \mathcal{J}_i$
 - ullet set $\mathcal{O}':=\mathcal{O}\setminus\{eta_1,\ldots,eta_n\}$

then $\mathcal{O}' \not\models \alpha$, i.e., \mathcal{O}' is a repair of \mathcal{O} .

5. due to monotonicity of DLs, if \mathcal{J} is a justification for α and $\mathcal{O}' \supseteq \mathcal{J}$, then $\mathcal{O}' \models \alpha$. Hence any repair of α must touch all justifications.

```
Let \mathcal{O} = \{\beta_1, \dots, \beta_m\} be an ontology with \mathcal{O} \models \alpha.

Get1Just(\mathcal{O}, \alpha)

Set \mathcal{J} := \mathcal{O} and Out := \emptyset

For each \beta \in \mathcal{O}

If \mathcal{J} \setminus \{\beta\} \models \alpha then

Set \mathcal{J} := \mathcal{J} \setminus \{\beta\} and Out := Out \cup \{\beta\}

Return \mathcal{J}
```

- Claim: loop invariants: $\mathcal{J} \models \alpha$ and $\mathcal{O} = \mathcal{J} \cup \mathsf{Out}$
 - Get1Just(,) returns 1 justification for α in \mathcal{O}
 - ullet it requires m entailment tests

Other approaches to computing justifications exists, more performant, glass-box and black-box.

(S4) 1 justification suffices, but which? A good, easy one...how to find?

(S1-S3) require the computation of all justifications, possibly for several entailments

• even for one entailment, search space is exponential

[(S2)] requires even more:

- ullet who wants to look at x imes 27 justifications? Where to start?
- A justification \mathcal{J} (for α) is **root** if there is no justification \mathcal{J}' (for β) with $\mathcal{J}' \subsetneq \mathcal{J}$
- start with root justifications, remove/change axioms in them and
- reclassify: you might have repaired several unsatisfiabilities at once!
- Check example on slide 38: both justifications for $C \sqsubseteq \bot$ are root, contained in 2 non-root justifications for $G \sqsubseteq \bot$
- ullet repairing $C \sqsubseteq \bot$ repairs $G \sqsubseteq \bot$

- recent, optimised implementations
 - behave well in practise
 - can compute all justifications for all atomic entailments of existing, complex ontologies
- recent surveys show that existing ontologies have entailments
 - with large justifications, e.g., over 35 axioms and
 - with numerous justifications, e.g., over 60 justifications for 1 entailment
 - $\, {\rm for} \, \, {\rm which} \, \, {\rm justifications} \, \, {\rm can} \, \, {\rm be} \, \, {\rm understood} \, \, {\rm well} \, \, {\rm by} \, \, {\rm domain} \, \, {\rm experts}$

• there are hard justifications that need further explanation

$$\begin{array}{ll} -\operatorname{e.g., \ consider \ } O = \{ \begin{array}{cc} P \sqsubseteq \neg M & \text{ with } \mathcal{O} \models P \sqsubseteq \bot \\ RR \sqsubseteq CM \\ CM \sqsubseteq M \\ RR \equiv \exists h.TS \sqcup \forall v.H \\ \exists v.\top \sqsubseteq M \} \end{array}$$

- this has led to investigation of lemmatised justifications

- some justification contain superfluous parts
 - that distract the user
 - consider example and identify superfluous parts
 - identifying these can help user to focus on the relevant parts
 - this has led to investigation of laconic and precise justifications

That's it, mostly.

But there is loads more interesting stuff: there are

- other than tableau-based algorithms
- other than standard reasoning problems & services

• ...

Observation: in most tableau algorithms/systems, we normally use

- absorption to handle GCIs:
 - essential pre-processing step for reasoner's performance, but
 - can introduce un-necessary disjunctions, e.g., $A \sqcap \exists r.C \sqsubseteq B$ is a Horn clause $B(x) : -A(x) \land \mathcal{R}(x,y) \land C(y)$, but its absorption $A \sqsubseteq \forall r. \neg C \sqcup B$ involves a disjunction
 - hence what is good in most of the cases is sometimes harmful
 - \rightsquigarrow binary/ternary absorption was introduced, but cumbersome
- traditionally, "ancestor" blocking: we only check ancestors for "blocking candidates"

Hypertableau [Motik et. al] avoids both

Hypertableau: works in several steps:

- 1. translate knowledge base (carefully) into a normal form using structural transformation
- 2. translate the result into FOL clauses of the form

 $\bigwedge R_i(x,y) \land \bigwedge A_i(x) \Rightarrow \bigvee S_i(x,y) \lor \bigvee B_i(x) \lor \bigvee y_i \simeq y_j \dots$

3. apply hypertableau rules to an ABox, most importantly

if ABox matches body of a clause, then add head

(other rules to deal with \simeq , \geq , and \perp)

o use "anywhere" blocking: consider all "older" individuals as blocking candidates

Absorption superfluous since built-in, handles Horn KBs in a deterministic way.

Observation:to obtain decision procedure, we need to ensure termination.For tableau algorithms, we

- use blocking to ensure termination
- use unravelling to construct tree models

Also, they are often non-deterministic (e.g., ⊔-rule). Hence

- ensuring and proving termination can be hard work
- proving soundness as well
- obtaining optimal algorithms can be difficult for deterministic complexity classes
- implementing requires backtracking/backjumping: implementer must work hard as well

A recipe for an automata-based algorithm:

- 1. Learn about (alternating) (two-way) (counting) (tree) automata and pick a suitable class *X* of automata, i.e., suitable for your logic & with decidable emptiness problem
- 2. Prove that your logic has a tree model property, i.e., the right one for X
- 3. Construct, for $KB = (C_0, \mathcal{T}, \ldots)$, an X automaton \mathcal{A}_{KB} such that

 $L(\mathcal{A}_{KB}) = \{ \tau \mid \tau \text{ is a tree model of } KB \}.$

- 4. Check that $|A_{KB}|$ is finite \rightsquigarrow decidability of KB satisfiability
- 5. Check that $|A_{KB}|$ is $O(\dots |KB|)$ and use known complexity of testing emptiness of X automata to obtain upper bound for KB satisfiability

- → query answering: in addition to "retrieve all ABox individuals a with $\mathcal{O} \models a : C$, more powerful query languages are considered
- \rightarrow here: ALCQI,
 - in SOTA DL reasoners FaCT ++, Pellet, and Racer: SROIQ, ALCQI plus
 - -transitive roles: if Trans(R), then $R^{\mathcal{I}}$ must be transitive,
 - role hierarchies: if $R \sqsubseteq S$, then \mathcal{I} must satisfy $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$,
 - complex role inclusions: e.g., owns o hasPart \sqsubseteq owns
 - nominals: individual names can be used as (singleton) concepts
 - -etc.
 - \rightsquigarrow the DL underlying OWL2

... extension of ALCQI tableau algorithm and proofs tedious and sometimes difficult (nominals)

- → concrete domains to describe "concrete" properties such as age, height, weight, etc. ... extension of ALCQI tableau algorithm only possible for restricted cases
- \rightarrow combining DLs and rules
- → combining DLs and description graphs for the representation of structured objects
- → fast (sub-Boolean) DLs
 - different compromise for trade-off between expressive power and comp. complexity
 - $-\mathcal{EL}++$ designed for huge TBoxes: SNOMED CT defines approx. 400,000 concepts
 - DL-LITE designed for huge ABoxes/data
- → ontology editors such as SWOOP or Protégé 4 that use a DL reasoner
- → computational complexity of DLs
- \rightarrow modules of ontologies for re-use, etc.

That's it!

I hope you have enjoyed the class and learned a lot.

I will be available for further questions, in person, via email or Blackboard.

Thanks for your attention!