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Abstract

Machine learning (ML) is being applied in a number of everyday contexts from image recognition, to natural language
processing, to autonomous vehicles, to product recommendation. In the science realm, ML is being used for medical
diagnosis, new materials development, smart agriculture, DNA classification, and many others. In this article, we describe
the opportunities of using ML in the area of scientific workflow management. Scientific workflows are key to today’s
computational science, enabling the definition and execution of complex applications in heterogeneous and often dis-
tributed environments. We describe the challenges of composing and executing scientific workflows and identify
opportunities for applying ML techniques to meet these challenges by enhancing the current workflow management
system capabilities. We foresee that as the ML field progresses, the automation provided by workflow management

systems will greatly increase and result in significant improvements in scientific productivity.
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|. Introduction

Scientific workflows are being used in a number of scien-
tific domains (Altintas et al., 2004; Deelman et al., 2017b;
Li et al., 2008; Poehlman et al., 2016; Usman et al., 2015).
They allow researchers to organize their computations,
describing them as directed, often acyclic graphs. These
graphs indicate the computational tasks that need to be
performed and their order as well as the data that flows
through these tasks (Deelman et al., 2017b; Jones, 2007;
Liu et al., 2015). Large-scale distributed computing infra-
structures are typically used for the execution of scientific
workflows. A number of different workflow management
systems have been designed over the last 20 years to deal
with various aspects of workflow management (Abramson
et al., 2008; Chase et al., n.d.; Deelman et al., 2015; Fah-
ringer et al., 2005; Goderis et al., 2007; Wolstencroft et al.,
2013). The workflow management functions can be defined
as a cycle of steps or phases: workflow composition,
resource provisioning, and workflow execution with poten-
tial workflow adaptation. Workflow composition deals
with workflow component and data selection as well as the
logical sequencing of tasks. Resource provisioning selects
and provisions resources needed to execute the workflow
tasks. Based on the results of the workflow execution, the
workflow may be modified resulting in a new entity, which
needs to be executed and managed.

As scientific workflows play an increasing role in sig-
nificant advances in science and engineering (most notably
the detection of gravitational waves by the laser interferom-
eter gravitational-wave observatory (LIGO) experiment
(Weitzel et al., 2017)) and workflow management becomes
more demanding, there is a need for more sophisticated
techniques to help with each phase. Artificial intelligence
(Al) techniques were examined as early as 2004 (Gil et al.,
2004) for their ability to help with the process of workflow
composition, execution, fault detection, and workflow
repair in a distributed environment—at that time the Grid.
The heart of the problem of these workflow management
functions was the lack of detailed knowledge about the
application components or the execution environment;
gaining up-to-date information about workflow execution
was difficult and in some cases impossible. The approach
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was thus to envision a set of knowledge bases that capture
implicit knowledge about the state of the application and of
the system. Reasoners would then invoke the appropriate
knowledge source to refine the user request to a specific
workflow, then reason about particular resources to use,
and classify failures. Unfortunately, such knowledge was
hard to obtain and consequently the reasoners for workflow
composition and management were very limited.

A number of different techniques and heuristics have
been developed to manage the workflow life cycle, which
include workflow composition (Gil et al., 2011; Goderis
et al., 2007; Goecks et al., 2010; Taylor et al., 2007),
resource provisioning (Byun et al., 2008; Malawski et al.,
2015b; Zhou et al., 2015), and various aspects of workflow
execution such as job scheduling (Durillo et al., 2012; Lee
et al., 2015.; Pietri and Sakellariou, 2014; Ramakrishnan
et al., 2007) and fault detection (Duan et al., 2005; Plan-
kensteiner et al., 2009; Samak et al. 2011b). With the
advances being made in machine learning, new opportuni-
ties are presenting themselves, providing potentially more
sophisticated and scalable methods that can generate better
performing workflows and possibly learn to create work-
flows based on prior knowledge. In this article, we explore
the opportunities that ML techniques can offer in the area
of scientific workflows. We discuss the current challenges
in each phase of the workflow life cycle (i.e. composition,
provisioning, execution) and describe how ML can be used
to address them (e.g. unexpected and anomalous behavior).
Finally, the article gives examples of how ML techniques
are used today in managing scientific workflows and
hypothesizes potential uses of these techniques to improve
the state of the art in workflow management.

2. Current challenges in scientific
workflows

In this section, we discuss the current challenges in man-
aging scientific workflows in distributed systems and how
ML techniques can be used to address these challenges.
Our focus is on the three main phases of the workflow life
cycle: workflow composition, resource provisioning, and
workflow execution.

2.1. Workflow composition

There are a number of ways to compose scientific work-
flows. In some cases, the workflows are composed graphi-
cally (Goderis et al., 2007; Missier et al., 2010; Taylor
et al., 2007), in some cases using a variety of well-known
languages (Deelman et al., 2015) or with the aid of new
languages (Albrecht et al., 2012; Kotliar et al., 2018; Qin
and Fahringer, 2012). However, the main problem of
designing or reusing an existing workflow still remains: the
challenge is in picking the right analysis for the data at hand
or for the desired result. In addition to selecting the right
analysis, the workflow component parameters may have to

be tuned for a particular problem. If no such analysis exists,
then a new workflow needs to be designed.

One approach for finding suitable workflows is to reuse
workflows from a repository, such as MyExperiment
(David De and Goble, 2009; DeRoure et al., 2007). The
workflows can be searched based on tags, contributors, and
systems they are written in among others. It is up to the user
to decide which workflows to select for use or reuse. How-
ever, one can imagine that ML can be used to learn what
workflows are relevant to the users based on their previous
searches or the type of data the user wants to analyze, or the
results that the user is looking for.

Taking this further, ML could be used to select a set of
“similar” workflows and then suggest new workflow com-
ponents that could be used to augment the workflow to
obtain the desired results. Today, there are systems such
as Wings (Gil et al., 2007, 2011), which enable users to
compose workflow templates. A Wings template represents
a skeleton of a workflow indicating the types of compo-
nents and data needed but not the exact data sets of com-
ponent implementations. Wings defines semantic
constraints about data sets and workflow components,
which can be used in component selection (filling out the
template) as well as in workflow validation. The semantic
information is also propagated to the results by providing
the metadata for the data sets generated by the workflow.

Finally, ML techniques could be used to compose an
entire workflow from scratch. This would require perform-
ing experiments to explore different workflow component
combinations that can execute successfully and work well
for particular data sets. However, this level of automation
may not be fully desirable. In previous work, Al planning
techniques for workflow composition were explored: the
workflow goals were the desired data products and the
operators were the application components (Blythe et al.,
2003; Gil et al., 2004). The planners also received the
current state of the distributed system. Although these tech-
niques were able to produce valid workflows, the target
scientists did not like the fact that the processes of compo-
nent selection and workflow composition were all auto-
mated. Scientists wanted to be able to reason about the
workflow and how to compose it themselves, often through
an exploratory process. However, ML techniques can help
fill in the details for high-level workflow structures. For
example, ML techniques can learn from previous workflow
executions to infer which parameters used by the workflow
components worked the best to obtain successful execu-
tions or desired results. At a more fine-grained level, ML
techniques could be used to reason about the right shape of
the workflow to enable a smaller workflow data footprint
(Singh et al., 2007).

2.2. Resource provisioning

After the workflow is composed, a user or a workflow
management system needs to decide what storage, network,
and computational resources are needed for the successful
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workflow execution. This decision involves figuring out
the types of resources (what types of operating system and
other software) are needed to support the execution of a
workflow component. Other resource characteristics such
as the amount of memory or CPU speed to use also need to
be taken into account (Pietri and Sakellariou, 2019).
Finally, the amount of each type of resources, storage, net-
work bandwidth needs to be decided, often requiring a
balance between different requirements and cost
(Malawski et al., 2015a, 2015b).

Various approaches have been taken to performance
modeling and prediction, which can guide resource selec-
tion decisions. Some involve developing analytical models
of applications executing on particular platforms, such as
is the case with Aspen (Spafford and Vetter, 2012). This is
particularly useful when the performance model needs to
provide quick results, or when the prediction about the
application performance is made in the context of a system
that is not available (yet to be designed or deployed). In
some cases, analytical models are not sufficient to provide
desired accuracy, for example, in cases where there is con-
tention for system resources, such as networks or I/O sys-
tems. In these cases, simulations are often used to model
the system and potentially the application in more detail.
An example of such a simulator is ROSS (Carothers et al.,
2002), which can simulate complex high-performance
interconnects and I/0. Simulations may take longer to run
than analytical models, so their usefulness for online pre-
dictions is often limited.

When it is possible to run the applications on the target
platforms, performance information can be collected and
analyzed using simple statistical methods (calculating
averages, standard deviations, etc.) (Deelman et al.,
2017a; Krol et al., 2016) or in combination with simple
analytical models (Pietri et al., 2014). However, in order
to use these metrics, one often needs to determine which
factors influence application performance and what effect
they have. In some cases, trial-and-error approaches are
employed. In Tovar et al. (2018), the authors provision
resources based on previously observed job needs, being
conservative in their approach to limit resource wastage.
When the resources turn out to be insufficient, the job is
given a larger amount of resources. The process is repeated
until the job successfully completes.

ML techniques promise to be able to learn patterns of
application and system behavior that can be more accurate
in predicting application performance (Jain et al., 2013;
Matsunaga and Fortes, 2010; Nemirovsky et al., 2017).
Such methodologies can be used to analyze past and current
workflow performance to identify the important parameters
that affect workflow behavior from a particular point of
view—for example, from the point of view of data source
selection for a task. In that case, one can learn which data
sources have high availability, what are the best parameter
settings to use for data transfers over particular networks,
and so on. Some parameters can be time dependent, for

example, the load at the data sources may be particularly
high during some time periods.

To discover parameters that determine workflow perfor-
mance, clustering type algorithms can be employed. One
can, for example, analyze class membership for both
“normal” and “faulty” clusters to understand the patterns
in the workflow executions. By analyzing the members of
the “normal” clusters, we can determine which parameters
to use for a task (e.g. degree of concurrency to use, para-
meters to set, amount of memory needed, and so on) and for
jobs such as how many processors, which resources to use
and which to avoid, how to configure data transfers and
more. By analyzing members of the “faulty” class, we can
learn which resource or combination of resources to avoid,
for example, avoiding using a data transfer path that is
experiencing packet loss or corruption, or an endpoint
experiencing disk failure. Hence, ML algorithms can pro-
vide recommendations for suitable or unsuitable resources
for a workflow, how to configure them, and so on.

ML techniques could also be used to guide other forms
of resource selection where multiple subsystems are
involved, which would require careful considerations of
subtle bottlenecks and interferences. For example, the sche-
duling of data transfer between tasks can too often create
bottlenecks between computation and communication
phases, and manual optimizations are often complex
(Huang et al., 2019). We can train ML models to classify
the workflow phases to optimize data movements, to
orchestrate I/O (Meng et al., 2014; Wang et al., 2015), and
to manage hierarchical storage (Dong et al., 2016) and data
staging (Subedi et al., 2018). Also, as in-situ execution
becomes more prevalent (Huang et al., 2019; Kwan-Liu,
2009; Subedi et al., 2018), ML can play an important role in
automating the placement of tasks to automatically find an
optimal trade-off.

2.3. Workflow execution

Workflow execution involves scheduling the tasks in a
workflow in the order they are supposed to execute on the
resources provisioned for the tasks. In some cases, the
workflow tasks may be scheduled just-in-time without an
additional prior provisioning step (Deelman et al., 2006).
Once the jobs are scheduled, they need to be monitored for
success or failure, resource consumption, or any sort of
anomalous behavior, which indicates some departure from
what is expected. Figure 1 shows how an example work-
flow that traverses several stages (left), and how different
types of cyberinfrastructure facilities provide resources for
the execution of the workflow (right).

As the workflow is executing, the analysis of the per-
formance data being generated needs to encompass two
aspects: (1) identification of workflow anomalies and task
performance bottlenecks by using the metrics and perfor-
mance data relevant to workflows and component applica-
tions, and (2) detection and localization of faults in the
multi-domain, distributed infrastructure by leveraging
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execution of the workflow tasks.

infrastructure-centric metrics. One can then build corre-
lated failure models across workflow- and infrastructure-
level metrics for troubleshooting and pinpointing sources
of failures (Gunter et al., 2011; Samak et al., 2011b, 2013).

If undesired or anomalous behavior is detected, the
workflow management system may decide to reschedule
jobs onto a different resource, select a different data
source or target storage system, decide to provision addi-
tional resources, or, in the most drastic case, decide to
compose a different workflow altogether. Today, these
decisions are made in a simplistic way, mostly through
trial-and-error or basic heuristics. A first step to improve
the quality of adaptation decisions is to be able to detect
anomalies in the first place (Mandal et al., 2016; Pratha-
mesh et al., 2016).

In today’s workflows, the problem of unexpected or
anomalous behavior during workflow execution is exacer-
bated by the use of complex distributed cyberinfrastructure
that often encounters both performance problems and
faults/errors that potentially span all levels of the sys-
tem—applications, middleware, and the underlying execu-
tion platform. While end-to-end monitoring of workflow
applications and systems is an essential building block to
detect such problems, current techniques for anomaly
detection are often based on thresholds and simple statistics
(e.g. moving averages) (Jinka and Schwartz, 2015) that
can: (1) fail to understand longitudinal patterns, (2) miss
opportunities for anomaly detection, and (3) seldom be
used for identifying the root cause of the anomalies. Exist-
ing statistical techniques can make assumptions about

underlying distributions for the metric values, which might
not hold in large-scale execution environments. Being uni-
variate in nature, these statistical models cannot capture
interactions between features. Hence, multivariate tech-
niques, in particular ML algorithms, are envisioned as an
appropriate approach for building failure models and for
detecting and diagnosing failures in large-scale workflow
executions on complex systems.

One potential approach is to apply ML algorithms in a
top—down approach beginning with workflow-level analy-
sis. This analysis can use high-level, aggregate workflow
performance metrics, such as the number of failed/com-
pleted tasks versus the total number of tasks in the work-
flow, to predict the overall behavior of a running workflow
by clustering statistically similar workflows into classes.
When the aggregate analysis of workflow-level metrics
reveals membership to an anomalous class, job-level anal-
ysis can be triggered. Job-level analysis can then detect
faults and bottlenecks using detailed job information such
as resource usages, data sizes, resource parameters, and
application-specific job parameters.

3. ML approaches in scientific workflows

While the previous sections touched upon the challenges
faced in managing scientific workflows in distributed sys-
tems, here we describe ML techniques that are being used
today to analyze the behavior of workflows at various lev-
els of abstraction (workflow, task, and infrastructure) using
different processing modalities (online and off-line). We
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also describe potential issues with using ML, such as col-
lecting the training data.

3.1. Workflow-level analysis

Workflow-level analysis explores the coarse-grained beha-
vior of jobs in the workflow: their runtime, success, failure,
and so on. Unsupervised clustering, in which the classes are
formed without prior information (“supervision™), to clas-
sify similar workflow runs and associate them with beha-
vioral classes is a potential ML approach that can be
employed for workflow-level analysis. Features selected
for each workflow can be either static or real time. The
static features are independent of a given execution, and
thus can be computed directly from the workflow descrip-
tions. Static features can include the average degree of job
dependencies or fan out, the average level of parallelism,
and the average degree of data dependencies. Real-time
features are dependent on a given execution and include
the percentage of jobs/tasks that executed successfully, the
percentage of jobs/tasks that failed, the average duration of
successful jobs/tasks, and the average duration of failed
jobs/tasks (before termination). Any metric that is available
both in the historical and real-time data can be a feature.

Researchers have used the efficient k-means clustering
algorithm (Amer and Goldstein, 2012; He et al., 2003;
MacQueen, 1967; Samak et al., 2011b; Wang et al.,
2014), with randomized initial centers and the (standard)
Euclidean distance metric to cluster workflows. More
sophisticated clustering algorithms should be investigated
and compared with prior approaches (Duda et al., 2012). In
particular, fuzzy c-means clustering (Hathaway and Bez-
dek, 1986; Pal et al., 1996) can be used to exploit some
class overlaps that have been found with the initial clus-
tering. Fuzzy clustering has the ability to capture non-
separable classes, without the expensive pre-processing
of features.

Clustering algorithms produce a set of classes, with
associated numerical models, which can be used for future
prediction. Using online processing, feature vectors can be
computed, and the cluster model can be used to compute a
degree of membership for each cluster. For example, a
workflow can be classified in real time to belong in a High
Failure Workflow (HFW) class with 90% membership,
while another workflow can be 60% HFW. Feature vectors
can be also computed at different points in the workflow
lifetime, generating a classification result. By tracking a
workflow’s degree of membership over time, triggers can
be generated when the membership in a given class crosses
a threshold. These triggers can be used by workflow man-
agement systems to signal the need to adapt the workflow
or the resources. The quality of clustering algorithms can
be evaluated by measuring inter-cluster homogeneity (min-
imum overall distance between objects from the same
class) and intra-cluster separation (maximum distance
between different clusters).

3.2. Task-level analysis

To better understand the source of the anomaly, task-level
analysis should be triggered when a possibly anomalous
workflow is found. This analysis should identify possible
causes of task failures and help identify performance bot-
tlenecks. The analysis can be aided by task performance
data and job-relevant metadata from a workflow perfor-
mance data repository. The workflow management system
collects task-level data as the workflow is executing.
Hence, the system can perform accurate labeling of the data
when task failures are observed. Based on the status of the
job containing the task, the workflow management system
can label a feature vector consisting of task-specific metrics
as “Failed” or “Successful.” As a result, one can assume to
have a significant portion of tasks’ performance data being
labeled. This allows the building of supervised learning
classifiers that distill task failures from historical labeled
training data, and those models can be used for classifying
task failures at runtime for fast detection.

Naive Bayes classifier has been shown to accurately
predict the failure probability of tasks for scientific work-
flows on the cloud using task performance data (Samak
etal., 2013). Others (Bala and Chana, 2015) have compared
logistic regression, artificial neural nets (ANN), Random
Forest and Naive Bayes for failure prediction of workflow
tasks in the cloud and concluded that the Naive Bayes’
approach provided the maximum accuracy. In Buneci and
Reed (2008), the authors have used a k-nearest neighbors
(k-NN) classifier to classify workflow tasks into
“Expected” and “Unexpected” categories using feature
vectors constructed from temporal signatures of task per-
formance data. In addition to applying the Naive Bayes
classifier, further research should be conducted to explore
a spectrum of classifiers for task performance data, which
can include k-NN, ANNSs, logistic regression, and Support
Vector Machines (SVM) (Lorena et al., 2011). The accu-
racy of the classification algorithms should be then evalu-
ated using paired criteria like precision and recall, and
combined criteria like the balanced classification rate,
which takes into account both true negative and true posi-
tive rates, and F-measure, which is the harmonic mean
between precision and recall.

Sometimes, performance bottlenecks can also be
detected using metrics that are gathered from the task meta-
data and provenance information, some of which might be
categorical in nature. In these cases, decision tree-based
classifiers can be used because they are suitable for fast
online inference of the “tree path” that led to the anomaly.
The features can include task information such as task type,
input size, parameters to the executable, as well as system
related information such as user name, site name, host IP,
job delay, and job exit code. The feature vectors can then be
fed to a learning classifier as the training set to generate a
model for predicting behaviors of interest. In previous work
(Samak et al., 2011a), regression trees were used as the
learning classifier, giving both prediction ability and fault



6 The International Journal of High Performance Computing Applications XX(X)

isolation results. Other partitioning algorithms should be
investigated for constructing decision trees (Breiman,
2017). These algorithms are able to build a tree, where
internal nodes are feature descriptions and tree leaves are
task states. Traversal of the tree from root to leaf for a given
input task can help identify bottlenecks.

3.3. Infrastructure-level analysis

The distributed, heterogeneous nature of the end-to-end
platform with multiple resource providers makes it harder
to collect labeled data systematically about anomalies and
failures in the infrastructure used to execute workflows. In
addition, the dynamic characteristics of the platform-
induced anomalies often manifest themselves in an
unknown manner. This makes it difficult to define anomaly
classes a priori. Hence, various unsupervised learning (UL)
techniques should be more suitable for infrastructure-level
data analysis.

Choosing an appropriate feature space needs to be the
first step in the process. Metrics like uptime, number of jobs
per machine, system throughput and latency, available stor-
age and network capacity, and so on play a critical role to
ensure workflows reach completion, and hence should be
present in relevant feature vectors. The next step is the
selection of appropriate UL strategies. Several researchers
have studied the use of UL techniques for anomaly detec-
tion in computing systems (Ibidunmoye et al., 2015). Three
broad UL strategies, and combinations thereof, have been
shown to work well in different scenarios: (1) nearest
neighbor-based techniques like those based on local outlier
factor (LOF), k-NN (Amer and Goldstein, 2012; Bhaduri
et al.,, 2011; Elomaa et al., 2002; He et al., 2003; Wang
etal., 2014), (2) clustering-based techniques using k-means
clustering combined with outlier factor (Amer and Gold-
stein, 2012; He et al., 2003; Wang et al., 2014), and (3) self-
organizing maps-based techniques (Dean et al., 2012;
Kohonen, 2001).

Selecting the appropriate UL technique for workflow
use cases is a non-trivial problem. While nearest
neighbor-based approaches produce more accurate models,
they are computationally more expensive than clustering-
based approaches (Goldstein and Uchida, 2016). Some
techniques work well to detect global anomalies (e.g.
k-NN) but fail to identify local anomalies. The strategy
should be to systematically explore this spectrum of UL
techniques, with particular emphasis on online techniques
that combine incremental clustering with dynamic LOF
calculations, which potentially balances accuracy and
detection time.

3.4. Cross-level analysis

Most research on performance anomaly detection using
ML techniques has dealt with either the system or the
application (Chandola et al., 2009; Ibidunmoye et al.,
2015). Correlating these two types of anomalies in a unified

framework is a relatively unexplored problem, albeit a very
important one. Correlations allow users to identify the
source of anomalies and performance bottlenecks by con-
volving failing or poorly performing workflow tasks with
infrastructure elements potentially responsible for the
anomalies. One approach can be to extend the UL tech-
niques developed above to cluster feature vectors and
identify outliers. Then the anomalous samples can be inves-
tigated to troubleshoot the sources of anomalies.

In addition to the infrastructure-level metrics, one will
need to include the relevant workflow- or task-level metrics
in the feature vectors. This will have an effect on how the
UL algorithms will scale because this would significantly
increase the number of metrics. In choosing the UL algo-
rithm, several variants of clustering-based algorithms
should be explored since they tend to scale better with
larger feature spaces and sample sizes. Reducing the
dimensionality of data using techniques such as principal
component analysis, factor analysis, and similarity identi-
fication (Jolliffe and Cadima, 2016; Fu, 2011; Steuer et al.,
2002) will help with scalability as well.

After detecting anomalous instances, the anomalous
metrics should be located for analyzing root causes of
performance deviations or failures. Since the feature vec-
tor contains both kinds of metrics, one approach can be to
use a simple but effective method based on the Student’s
t-test (Weiss and Weiss, 2012) statistical method. This
method exploits the underlying property that normal data
instances occur in high probability regions in a stochastic
model, while anomalies occur in low probability regions.
If comparison with prior samples of a metric results in
significant differences, it can signify the presence of an
anomaly. For every metric in the anomalous feature vec-
tor, one can calculate the ¢-transfer to fit the ¢-distribution
to calculate the metric anomaly value (MAV) (Wang
et al., 2014), and then sort the MAVs to locate the suspi-
cious metrics. Correlated anomalies will manifest as high
MAYV values for multiple metrics, which can help trouble-
shoot the sources of the anomaly.

3.5. Onlineloff-line analysis

The ML-based methods will need to analyze both online
and off-line performance and provenance data, and they
can be integrated following the principles of the
“Lambda architecture” (LA) (Kiran et al., 2015). LA is
a generic, linearly scalable, and fault-tolerant data pro-
cessing architecture that is able to serve a wide range of
queries and computations on both fast-moving (stream-
ing) data and historical data (batch). Large volumes of
performance and provenance data can be analyzed with
both batch- and stream-processing techniques. The
stream processing component, the “speed layer,” can
encapsulate the ML approaches for online analysis,
while batch-processing can be leveraged for the heavy-
weight off-line ML techniques at the “batch layer” ana-
lyzing data across multiple workflows.
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Figure 2. Overview of the workflow management, monitoring, and analysis systems.

For comprehensive introspection and analysis of per-
formance and provenance data, off-line ML-based
approaches need to be developed to enable longitudinal
analysis across multiple workflow executions. Such a type
of analysis can be computationally intensive since it inte-
grates and correlates data from multiple workflows,
thereby enabling discovery of patterns across workflows.
Several supervised and semi-supervised learning
approaches (SVM, Random Forest, Bayesian classifiers,
etc.) have been shown to be effective in identifying sys-
tem and application anomalies. All these techniques rely
on the availability of high-quality labeled data to train the
ML models to be used later for classification of test cases.
Hence, one should use carefully labeled performance and
provenance data obtained from workflow executions
on isolated and controlled environments to train the
ML-based analysis algorithms.

A significant challenge for online analysis is to develop
algorithms that are lightweight yet provide accurate detec-
tion of anomalies when operating on high-volume, real-
time, streaming data. A two-pronged approach can be
employed for online analysis of a single workflow execu-
tion. Deploying the ML models developed using off-line
techniques on production cyberinfrastructure is one option.
One can then evaluate the accuracy of those models in
production for predicting faults and detecting anomalies.
The other option can be to explore the application of
low-overhead, streaming versions of ML techniques like
streaming mini-batch k-means and logistic regression
directly on streaming data. We can leverage the state-of-
the-art data stream processing engines and libraries includ-
ing Apache Spark Streaming (Spark, 2014) and Apache
MOA/SAMOA (Kourtellis et al., 2019) and the best off-
line ML models for online analysis. While off-line ML
models can be used to guide online analysis, the results
of the online analysis, capturing specific characteristics of
workflow ensemble run, can also be used to tune and
update the off-line ML models. Such feedback loops

between off-line and online approaches will be essential
to improve the accuracy of each.

3.6. Training data collection

In order to train robust ML models that can be used for
scientific workflows, one needs to collect a large and
diverse set of data from workflows, not just individual users
but from large collaborations as well. One will need to
develop new capabilities to instrument the scientific work-
flow to automatically collect and store various metrics for
the end-to-end workflow that can be used for ML training
data, including information about (a) the input, intermedi-
ate, and output data products; (b) application codes that
constitute the workflow; and (c) the resource envelope or
the infrastructure the workflow is executing in.

Novel architectures are needed for triaging and collating
data from a variety of tools responsible for workflow and
infrastructure performance monitoring and the collection of
various metrics that can be used for ML training. Figure 2
provides a conceptual framework for such a data collection
architecture. The expanded set of metrics collected from
multiple sources of data can be triaged at a message bus
that can be used for off-line and online analysis as
described in Section 3.5. The data collected can also be
used as an audit trail for the workflow execution and can
help in capturing provenance of both the application pro-
cesses and the infrastructure used for processing.

Collecting provenance information for workflows is
critical, as provenance data provide an audit trail by which
the integrity of the data can be judged (Simmbhan et al.,
2005, 2006; Zhang et al., 2011). Data provenance collec-
tion in a cloud or another multi-provider environment,
common for workflow execution today, is challenging due
to the need for cross-layer correlation of data from multiple
layers and sources (Muniswamy-Reddy et al., 2009, 2010).
Part of provenance data collection includes data about spe-
cific virtual and physical resources used for the execution
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of workflow tasks as well as storage and transfer of initial,
intermediate, and final workflow data products, all of
which can be used as learning features to train ML models.
This information can be used to identify data sets that were
produced by hardware that became faulty or infrastructure
that was in some way compromised and whose outputs
therefore cannot be trusted. Collecting this information
requires specific mechanisms and trust structures by which
the data can be acquired, attributed and stored.

4. Conclusions

The community is just at the beginning of exploring ML
techniques in the scientific workflow space. There are
many opportunities that are outlined in this article. If we
successfully leverage and potentially develop new ML
techniques for workflows, doing science will become as
easy as using a smartphone app. As a result, scientific
productivity will increase and the population of scien-
tists that use computational methods for their work will
grow as well. New workflow systems will be able to
understand the user’s previous requests, discover the
related data and structure the computations needed to
deliver the desired results. However, providing this level
of automation may make the introspection of the pro-
cesses used to obtain the results more difficult. It would
also potentially make reproducibility more difficult.
Nevertheless, it can potentially provide a means of com-
parison of different scientific methods and their simila-
rities and differences to other approaches.
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