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Abstract. This paper argues for the need to provide more flexibility in the level
of service offered by Grid-enable high-performance, parallel, supercomputing re-
sources. It is envisaged that such need could be satisfied by making separate Ser-
vice Level Agreements (SLAs) between the resource owner and the user who wants
to submit and run a job on these resources. A number of issues related to the mate-
rialization of this vision are highlighted in the paper.
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1. Introduction

Traditionally, the scheduling mechanisms used for the enactment of jobs on parallel su-
percomputer resources have been queue-based. Such mechanisms are essentially offer-
ing only one level of service, which can be summarized simply as ‘run the job when it
gets to the head of the queue’ (even though, in some cases, some jobs that are behind in
the priority queue may be assigned to unutilized processors, to ensure that there are no
idle processors, using a technique known as backfilling [1,2]).

The emergence of Grid Computing [3] has created new opportunities to support
compute and/or data intensive scientific applications, which, among other, may have
large computational resource requirements. However, at the same time, Grid computing
is built upon the notion of virtual organizations [4]. This is a group of individuals and/or
institutions who collaborate towards the solution of a particular problem through a set
of resource sharing rules. The key implication of this coordinated resource sharing [4]
is that the collaboration of the members of a Virtual Organization may span across dif-
ferent administrative domains. In the context of scheduling independent jobs of a large,
parallelizable application that makes use of the Grid, such a collaboration, across mul-
tiple administrative domains, would also require some coordination across the different
schedulers of the individual resources employed. Lack of coordination may annul all the
benefits from parallelism that one might expect when independent jobs are running, in
parallel, onto different resources.

To illustrate this problem, consider an application that can be represented by a Di-
rected Acyclic Graph (DAG). Different nodes of the graph represent individual jobs

1Corresponding Author: Rizos Sakellariou, School of Computer Science, University of Manchester, Oxford
Road, Manchester M13 9PL, United Kingdom; E-mail: rizos.sakellariou@manchester.ac.uk.



with computational requirements, whereas edges represent communication of data. In
the context of Grid computing, DAGs can be used to represent many applications that
belong to the important family of applications collectively known as scientific workflows
[5,6,7,8,9,10,11]. In order to exploit the task parallelism available in the DAG (by exe-
cuting independent nodes in parallel), let us assume that two different nodes are assigned
to different resources, each resource belonging to a different administrative domain and
using its own scheduler with its own queueing system. Since each job will start execution
when it reaches the head of the local queue (of the corresponding resource), it is possible
(because of different waiting times) that one job may finish execution before the other job
has even started. From a global point of view, this is equivalent to executing the two jobs
sequentially. In other words, there are no performance benefits due to the exploitation of
parallelism because of the different behaviour of the queue-based schedulers of the local
resources, which have acted without coordination and contrary to user expectations.

Advance Reservation of resources has been suggested as a means to guarantee that
tasks will run onto a resource when the user expects them to run [12,13]. Essentially,
advance reservation specifies a precise time that jobs may start running. This allows the
user to request resources from systems with different schedulers for a specific time inter-
val (e.g., start time, finish time), thereby obtaining a sufficient number of resources for
the time s(he) may need. Advance reservation has already received significant attention
and has been considered an important requirement for future Grid resource management
systems [14]. There has been already significant progress on supporting it by several
projects and schedulers, such as the Load Sharing Facility platform (LSF) [15], Maui
[16], COSY [17], and EASY [18,19].

However, advance reservation is again an extreme level of service since it specifies
a precise time when jobs can be made to run. This may cause several problems to the
resource owner, and there is some scepticism in the community, especially with respect
to the degree to which advance reservations contribute to improving the overall perfor-
mance of a scheduler [20]. For example, when an advance reservation is made, the sched-
uler must place jobs around this fixed job. Typically, this is done using backfilling [2],
which increases utilisation by searching the work queues for small jobs to plug the gaps.
In practice, this rarely works perfectly, and so the scheduler must either leave the re-
served processing elements empty for a time, or suspend or checkpoint active jobs near
to the time of the reservation. These processes are not instantaneous; e.g., checkpointing
a 64 processor Unified Weather Model job on an O3800 takes about 12 minutes, despite
a small total memory footprint of 3Gb; checkpointing 256 processor jobs can exceed one
hour. Suspension is faster, but can adversely affect the performance of the incoming job,
due to the cost of swapping out memory used by the suspended job when it is required
by the incoming job. Either way, there are gaps in the schedule, i.e., CPU time which is
not processing users’ work. As utilisation often represents income for the service owner,
there is a tendency to offset the cost of the unused time by charging for advance reser-
vation jobs at a considerably higher tariff. While it is possible to set tariffs high enough
to compensate, this brute-force solution is inefficient in terms of resources, and undesir-
able for both users, who pay higher prices, and for resource owners, who must charge
uncompetitive prices and watch utilization fall.

In recent years, there has been work aiming to explore the space between the two
aforementioned extreme levels of service, namely, ‘run this job whenever it gets to the
head of the queue’, or ‘run this job at this precise time’. The main idea is to provide differ-



ent levels of service by forging agreements between the different parties (user, resource
owner, etc). Such agreements are agreed on the basis of different constraints expressed
by the user and/or the resource owner and essentially specify a desired (and agreed) level
of service. The use of Service Level Agreements (SLAs) gives rise to a fundamentally
new approach for job scheduling on the Grid.

This paper provides an overview of the issues surrounding the design of a funda-
mentally new infrastructure for job scheduling on the Grid, which is based on the notion
of Service Level Agreements (SLAs), based on work carried out as part of a recently
completed project [21]. In the most general form, such SLAs are negotiated between a
client (user, superscheduler, or resource broker) and a provider (the owner of a resource
with its own scheduler), may contain information such as acceptable job start and end
times, and may be re-negotiated during runtime.

Some background and an overview of relevant work on SLAs as well as the ways
that they can be used on the Grid is given in Section 2. Section 3 describes the key
features of the envisaged architecture for job scheduling using SLAs on the Grid. Section
4 describes the key issues and challenges that need to be addressed for the materialization
of such an architecture. Sections 5 and 6 elaborate on approaches to address some of
these issues, namely the description of the terms in an SLA as well as the design of
heuristics for SLA scheduling, building on earlier work presented in [22,23,24]. Finally,
Section 7 concludes the paper.

2. Background and Related Work

An SLA can be described as a legally binding contract between the parties involved. The
agreement relates to a transaction for the provision of a service; as a result, the parties of
an SLA can be distinguished between providers and consumers of a service. The terms of
the SLA describe the expected level of service within which the service will be provided;
these have been agreed between service providers and service consumers.

It has been mentioned that forms of SLAs were in operation since the 1960s, “when
they were used as a method for buying minutes of computer machine time” [25]. In more
recent years, SLAs became more widespread as a means to make agreements when out-
sourcing IT functions [26], or when providing network services [27,28,29]. Most of these
agreements were paper-based and were drawn after some form of negotiation between
appropriate persons.

The shifting emphasis of the Grid towards a service-oriented paradigm — as well
as trends in application service delivery to move away from tightly coupled systems to-
wards structures of loosely coupled, dynamically bound systems [30] — led to the adop-
tion of Service Level Agreements as a standard concept by which work on the Grid can
be allocated to resources and enable coordinated resource management. In the context of
Grid and Web services, the current understanding of the community is that such an SLA
is essentially an electronic contract, which is expected to be negotiated fully automati-
cally (i.e., without any human intervention) by different processes and, as such, much be
machine readable and understandable.

As a result, there has been a significant amount of research, in recent years, on
various topics related to SLAs. Issues related to their overall incorporation into grid
architectures have been discussed in [31,32,33,34,35]. Issues related to the specification



of the SLAs have been considered in [36,37,38,39]. Issues specifically related to (and
motivated from) the usage of SLAs for resource management on the Grid have been
considered in [34,40,41,42,43,44,45]. Of particular importance has been the work on the
negotiation of SLAs. Since the early influential work on the Service Negotiation and
Acquisition Protocol (SNAP) [41], further work has argued for the need to take into
account the principles of contract law when negotiating SLAs in order to form legally
binding agreements [46], even considering how the consequences from the use of SLAs
may need to be taken into account by guidelines on electronic contracts [47]. Other
work has examined issues related to trust and security [48,49], or targeted more business
oriented case studies [50]. Later work has also drawn upon relevant research carried out
particularly in the context of agents [51,52], where several techniques have been used to
model negotiation, ranging from heuristics to game theoretic and argumentation-based
approaches [53]. Finally, a significant area of research relates to the economic aspects
associated with the usage of SLAs for service provision (e.g., charges for successful
service provision, penalties for failure, etc.); relevant work has been presented in [54,55,
56,57,58,59].

Work within the Grid Resource Allocation Agreement Protocol (GRAAP) Working
Group of the Open Grid Forum [60] (and earlier within its predecessor, the Global Grid
Forum) has led to the development of WS-Agreement (WS-A) [61], a specification for
a simple generic language and protocol to establish agreements between two parties.
Each of the two parties can be either an initiator of or a responder to the agreement. The
agreement structure is composed of several distinct parts, namely Name, Context and
Terms of Agreement. The latter is also divided in service description terms and guarantee
terms. Service descriptions terms mainly describe the functionality to be delivered under
the agreement. The guarantee terms define the assurance on service quality for each item
mentioned in the service description terms section of the WS-A. In the specific context
of job submission, which is the focus of this paper, such assurances may be defined as a
parameter (constant) or bounds (min/max) on the availability of part or the whole of the
resource. In WS-A, such assurances are referred to as service level objectives (SLOs);
in a domain specific to computation services provision, they are usually expressed as
values (e.g., SLO: CPUcount = 8). Each SLO may refer to one or more business values,
called a business value list (BVL). This list expresses different value aspects of a specific
SLO. The other two types of guarantee terms are Qualifying Conditions and Importance,
which have a similar function to SLO and BVL, respectively.

3. An Architecture for Job Scheduling on the Grid Using Service Level
Agreements

The key vision of this paper is that jobs, submitted for execution to high-performance
computing resources, are associated with an SLA. This SLA is negotiated between a
client (e.g., a user or a resource broker) and a provider (the owner of a resource with its
own local scheduler) and contains information about the level of service agreed between
the two parties, such as acceptable job start and end times.

An overall architectural view, materializing this vision, is presented in Figure 1.
There are three key ‘players’ underpinning this materialization. Users negotiate and
agree an SLA with a resource broker (or superscheduler, or coordinator). Brokers nego-



Figure 1. An overview of an architecture for SLA-based job scheduling.

tiate and agree an SLA with users; these SLAs may be mapped to one or more SLAs,
which are negotiated and agreed with local resources and their schedulers. Finally, local
schedulers need to schedule the work that is associated with an SLA which they agreed
to (the constraints associated with such an SLA, agreed by a resource, may be stored
locally in the resource, in some kind of a resource record). It is also noted that a single
SLA agreed between a user and a broker may ‘translate’ to multiple SLAs between the
broker and different local resources to serve the user’s request (for example, this could
be the case when the SLA between a user and a broker refers to a workflow application
with several tasks that are executed on different resources. In such case, the user may
want to set constraints for the workflow as a whole and the broker may have to translate it
to specific SLAs for individual tasks, following an approach similar to the one described
in [62]); to indicate the possible differences between these two types of SLA, the terms
meta-SLA and sub-SLA are used. Furthermore, as indicated in the figure, this SLA-based
view for job submission, may still allow the submission of jobs that are not not associ-
ated with an SLA; however, no guarantees about their completion time would be offered
in this case.

It should be stressed also that the primary objective of the architectural view pre-
sented in Figure 1 is to illustrate the fundamentally different interactions that may arise
as a result of the use of SLAs to make an agreement on the level of service expected
when jobs submitted. It is beyond the scope of this paper to argue for or against a par-
ticular type of architecture. For example, one may assume that a broker is associated



with a single cluster (as in the figure), within the same administrative domain, or with
many, across different administrative domains. Similarly, the broker may be more tightly
connected to the local schedulers (in which case, the broker may exercise more control
on the local schedulers and no SLA between the broker and the local schedulers may
be necessary), or no SLAs may be agreed between different brokers. However, besides
the pros and cons of different architectural choices, there are several common challenges
that need to be addressed; this is the main focus in the remainder of this paper.

4. Issues and Challenges with SLA-Based Job Scheduling

This section groups some of the key challenges that need to be addressed in order to
materialize an SLA-based vision for job submission and scheduling. These challenges
could be summarized as follows:

SLA vocabulary: The vision of SLA based scheduling assumes that the SLAs them-
selves are machine readable and understandable. This implies that any agreements, be-
tween the parties concerned, for a particular level of service need to be expressed in
a commonly understood (and legally binding) language. There has been early work on
generic languages for SLA description [38,39], but none related to the particular prob-
lem of the requirements associated with job submission and execution (on possibly high-
performance computing resources). Some of the issues that may arise in such cases, and
some of the trade-offs in the description of the vocabulary are discussed in the next sec-
tion.

Negotiation: It is envisaged that SLAs may be negotiated between machines and users
or only between machines. In this negotiation some commonly agreed protocol needs to
be followed. This protocol needs to take into account both the nature of the distributed
systems and networks which are used for the negotiation (for example, what if an offer
from one party is not received by the other party due to a network failure), and should
abide by appropriate legal requirements (for example, should the receipt of every pro-
posal for an agreement be acknowledged or not?). In addition, during negotiation, ma-
chines should be able to reason about whether an offer is acceptable and possibly they
should be able to make counter-offers. As already mentioned in Section 2 there has been
a significant amount of work on these topics. However, the relevant challenges on nego-
tiation are more of a generic nature rather than specific to the problem of using SLAs for
job scheduling.

Scheduling: Given that, currently, scheduling of jobs on high-performance compute re-
sources is mostly based on priority queues (with the possible addition of backfilling tech-
niques [1,2]), the use of SLAs would require the development of a new set of algorithms
for efficient scheduling, which would be based on satisfying the terms agreed in the SLA.
The existence of efficient scheduling algorithms would be of paramount importance to
estimate capacity and reason on the possible acceptance (by a local resource) of a new
request to make an SLA. Some approaches related to the development of such algorithms
are discussed further later on.



Constitutional Aspects: In the context of any SLA based provision, sooner or later, the
need for dispute resolution may arise. In addition, users may also be interested in the
reliability of specific brokers; for example, how likely (or unlikely) is that a broker will
honour an SLA (even if breaking the SLA would require the broker to pay a penalty).
This issue of modelling reputation may also be related to the approaches followed for
pricing and/or penalties when agreeing SLAs (for example: is there a flat charge for the
usage of resources? do the fees vary depending on particular circumstances?). Such is-
sues, might become more important as the envisaged usage of SLA-based job schedul-
ing grows. However, since relevant work is in its infancy, simple assumptions, without
neglecting the challenges that might arise later in this respect, could be made for a start.

A more detailed overview of the issues and trade-offs involved with particular choices
with respect to the first and the third challenge above is given in the following two sec-
tions.

5. Issues on the Expressiveness of SLAs

Experience from trying to incorporate SLAs in distributed grid computing has indicated
that this task is not as easy as defining a dictionary of terms, which are then placed
in some kind of an XML derived structure. For example, work within the Open Grid
Forum (OGF) to define an SLA specification, has lasted for years and there have been
several debates about what an SLA should contain and/or how it should look like. For
instance, one of the difficulties that had to be addressed related to how issues related to
the SLA document description would be decoupled from issues related to the negotiation
protocols.

It must be noted here, that an efficient SLA related environment, with guarantees for
a certain level of fault tolerance, may often include renegotiation [27,31,41] of the whole
or part of an SLA. In the context of SLA-based job scheduling, simulation studies [44]
have indicated that, at high resource load, a significant proportion of the agreed SLAs
may have to be renegotiated in order to avoid failure of an SLA. Such renegotiation may
have an overhead and may require the user’s participation at one or more stages between
the time when the initial agreement was made and when the work, specified in the SLA,
is completed. It would clearly undermine the overall vision of Grid, as an environment
based on the service-oriented paradigm and ultimately driven by principles similar to
those of autonomic systems [63,64], to require a possibly repeated user involvement
every time renegotiation is in order. One would expect some abilities of self-management
in this respect.

The trade-off (and the dilemma), here, is whether a much simpler SLA description
(which, however, may cause more often the need for renegotiation) is more (or less) de-
sirable than a more complex SLA description, which, however, enables the system to
deal more effectively (and possibly transparently from the user) with the need for renego-
tiation. In other words, simplicity in the SLA description itself at the expense of renego-
tiation overhead, or more efficient scheduling of the SLAs [44,24] at the expense of more
complex SLA descriptions? The idea first presented in [22,44] attempts to answer this
question by making SLAs (infinitely) more expressive. Such increased expressiveness in
SLAs is achieved by describing SLA terms as arbitrary analytical functions, as opposed
to the traditional approach of specifying SLAs [61] that uses constant values or ranges



for SLA terms. The authors in [22,44] have argued that the encapsulation of SLA terms
in analytical functions can potentially reduce the need for renegotiation of a service and
provide the extra flexibility needed for a wider spectrum of resource management deci-
sions. The motivation, an example and some issues related to this approach to make an
SLA more expressive will be described next.

In most cases of SLA-based resource management applications [33,65], the set of
guarantee terms is rigidly defined. Within such an SLA, it is known in advance, for ex-
ample, what the exact financial gain will be when an SLA is audited. There could be
reasons to believe that this arrangement is not flexible and carries too little information
for the provider bound by this SLA to perform its tasks successfully without the need for
renegotiation. The expressive capacity of an agreement can be improved by adding more
terms, but there is a practical limit on the SLA size, whilst most of the terms could easily
be described analytically. The latter description can provide an infinitely large set of term
configurations in SLA. Analytical functions can describe complex relationships between
SLA terms that could potentially be used by autonomic applications in providing qualita-
tively new levels of service, described in an SLA with a higher degree of expressiveness.
Such an SLA cover an infinitely large number of (agreed and acceptable) outcomes that
belong to the continuum defined by the system of analytical functions.

To illustrate all this, we use an example from [23]; this relates to the reservation of
resources for a computational job where using a different number of parallel processors
to run the job would still result in a successful SLA from the user point of view. Natu-
rally, the running time of such a (parallel) job would vary, depending on the parallelism
assigned to it by the scheduler (that is, the number of processors assigned). The use of an-
alytical functions means that the scheduler can now schedule and repeatedly reschedule
this job in order to meet the objectives of its associated SLA without the need for rene-
gotiation. Thus, the SLA terms relating to the size of the job (with respect to execution
time needed and how this may relate to CPUs used) may look like:

� Maximum number of CPU Nodes that can be used,
���	��
��
��� CPU Nodes reserved,

� ��
�������������������� �!� � � �	��
��
"�$#
� Reserved time for job execution, %'& � (*)&+ ��
��

where % �& is the projected time for the job to complete if it runs on a single CPU Node;
and

� �	��
��
�� is limited by the capacity of the resource. It can be seen that the reserved time
for job execution is described as a function of the number of CPU nodes reserved. If a
function was not used, then the SLA would have to include a single value for each of� ��
�� and %'& ; any attempt to deviate from these values would trigger the renegotiation
of the SLA.

Of course, the relation between %�& and
� ��
�� is, in reality, more complex than what

is described in the function used above. However, the point to make is that, even in this
simple case, where SLA terms describe a limited number of configurations (

� �,��
��
�� to be
precise), the number of possible renegotiations needed would be prohibitively high, had
all this been described in the traditional way as just a list of terms. Simulation shows
that, even in such a simple case, the negotiation overhead per job decreases dramatically
when the description in the SLA makes use of functions to link terms. It also suggests
that by describing more SLA terms as functions, it is possible to achieve maximum util-
isation with minimum negotiation. Moreover, novel scheduling algorithms may now be



deployed, something that was not possible before, precisely because of the renegotia-
tion cost. In [23], more examples of using an SLA with variable network bandwidth or
resource load are presented; including some consideration of pricing terms.

The main argument that can be made against this approach (of describing SLAs in
a more expressive manner) is the perceived complexity of the agreement. Indeed, for the
SLA terms that are defined by very complex functions that in turn depend on other SLA
terms, the agreement itself becomes a system of equations that may suffer from discon-
tinuities, may have holes in solutions or may have no solution at all. Such representa-
tions of SLA terms could potentially put a very heavy strain on clients and providers,
who would have to verify the SLA, check for contradictions, run away arguments and
other unpleasantries. However, many of the problems would be reasonably easy to detect
already and the complexity of the SLA could grow gradually with the readiness of envi-
ronment, without any changes to SLA itself. Furthermore, a conservative approach could
also be applied when negotiating SLAs. As in real life, if one party cannot understand all
the terms in a proposed agreement, there is no obligation to agree.

Another important point made in [23], which might be overlooked easily, relates to
the so-called set of universal terms. These are terms whose value is not known at the time
an SLA is formed; they can be combined with analytical functions to make the SLAs
more expressive. The most obvious argument in favour of the universal terms relates to
the ability to enable agreements on terms (to form an SLA), the status of which may not
be known at the time of making the agreement; yet, keeping the SLA in a concise form.
To give an example, the actual amount of network traffic that a job will incur may not be
known at the time an SLA is formed. Still, the existence of a universal term for network
traffic could be used, for instance, in the earlier example as part of the analytical function
describing the reserved time for job execution.

The use of universal terms makes it possible to create more speculative agreements,
which encompass more possible outcome scenarios and uncertainties in a single concise
SLA document, reducing further the need to renegotiate the agreement in the case of a
failure (that has happened or is anticipated). To give an example, one such universal term,
wall-clock time, was used in [24] to agree on the price for the service. The users were
prepared to pay a higher price if the job was executed sooner rather than later. Hence, the
price term, agreed as a function of the wall clock time (and other terms), enabled the SLA
to cover an infinite number of possible outcomes with respect to the time constraints.
This, in turn, enabled the scheduler to make more intelligent decisions in maximising
profit for its owner, since the total revenue depending on different schedules could be
calculated and taken into account. Such analysis would not be practical with traditional
SLAs (that is, SLAs that do not make use of functions as described here to allow for
more expressiveness), because the scheduler would have to renegotiate the pricing with
hundreds of users.

6. A Review of Issues on Scheduling SLAs

Despite the growing interest in Service Level Agreements, there has been surprisingly
little research published on the topic of using the information contained in the (agreed)
SLAs for planning and scheduling purposes (with the objective of satisfying the require-
ments of the SLAs successfully). In the context of SLA-based job scheduling, the very



idea of using SLAs is to alter the approach used to perform job scheduling. This means
that local schedulers of high-performance computing resources must now take into ac-
count not only functional properties of the submitted job (such as parallelism and ex-
ecution time) but also non-functional requirements expressed as terms and constraints
in SLA. Even though the existences of various constraints that need to be satisfied may
point to a constraint satisfaction problem, standard methods based on various forms of
(exhaustive) searching would not be practical in a grid environment where a lage number
of SLAs may have to be negotiated and scheduled quickly. Simple scheduling heuristics
could provide efficient scheduling solutions with negligible time overheads for a large
set of SLAs; a number of different scheduling heuristics was investigated in [24].

The principle behind these heuristics is based on how SLAs would be prioritised.
Scheduling, then, falls to a simple routine of picking jobs (in order of priority) from
the prioritised list and fitting them onto the resource, without rescheduling previous jobs
already allocated – a single iteration packing process.

The priority value, - , is computed using a function, whose generic form is as fol-
lows:

- �/.10 243*5
)

687:9 5�;�< (1)

- �/.>=@?A3B5
)

687/9 5�;�< (2)

where 5 � , 5DC is one of:
� Earliest job start time, E	F� Latest job finish time, EHG� Reserved time for job execution, % &� Number of CPU Nodes required,

� ��
��� Job size, measured in CPU-hours, I � � ��
���J % &� Job laxity, defined as %'K � E GML 3 E F 6 % & <
and 7 is a weighting coefficient that can be both positive and negative. Obviously, for
each heuristic, 5 � and 5�C are different, so the total number of heuristics that can be
created combining all the terms above with each other is 15. By sweeping across values
of 7 in equations 1 and 2 the best effort configuration can be found for each heuristic.

To test these SLA-aware scheduling heuristics the following scenario and SLA tem-
plate were used. In a simple model, which consists of a Client, a Provider and an Agree-
ment (SLA) between the two, the requests from clients (bound by an SLA) were sched-
uled by the local resource scheduler; the latter used different heuristics for the local
scheduling of these requests. The SLA in this case consisted of the following five terms:
(i) Earliest job start time, E F ; (ii) Latest job finish time, E	G ; (iii) Reserved time for job
execution, % & ; (iv) Number of CPU Nodes required,

� ��
�� ; and (v) Final price agreed,N�OQP�O
. It was assumed that two different pricing policies were used to calculate the in-

come for the Provider:
� flat rate: The charge for each SLA is the same, regardless of duration of the job,

number of CPUs used, etc.� pay as you go: The charge is proportional to the actual usage of the resource (that
is, the product of the time and the number of CPUs used).



heuristic SLA% CPU% RSUTWV$X Y G[Z R]\ ��
��H^ 97.0% 84.8% 0.48SUTWV$X Y G[Z R`_ ^ 96.8% 82.8% 0.06SUTWV$X Y FUZ R`_ ^ 96.1% 83.0% 0.28SUTWV$X Y G Z R$a & ^ 95.4% 88.0% -0.025SUTWV$X Y FUZ R$a & ^ 95.4% 87.0% 10.0SUTWV$X Y G Z R$abK ^ 95.3% 86.3% 0.015SUTWV$X Y FUZ R$abK ^ 95.3% 86.0% 1.15SUTWV$X Y G Z R Y F ^ 95.3% 85.5% -0.05SUTWV$X Y FUZ R]\ ��
�� ^ 92.7% 77.5% 4.5

Table 1. Evaluation of the performance of different SLA scheduling heuristics using a flat rate pricing policy.

heuristic SLA% CPU% RSUTWV`XcY G Z R,a & ^ 92.0% 94.0% -6.63SUTWV`XcY FdZ R,abK ^ 92.2% 93.9% 0.4SUTWV`XcY G Z R Y F ^ 91.9% 93.9% 2.0SUTWV`XcY G Z R,abK ^ 92.1% 93.7% -0.7SUTWV`XcY FdZ R,a & ^ 91.7% 93.7% 3.2SUTWV`XcY F Z R`\ ��
��H^ 85.0% 93.3% -0.63SUTWV`XcY G1Z R$_ ^ 89.7% 93.2% -0.3SUTWV`XcY F Z R$_ ^ 89.0% 92.8% 0.0SUTWV`XcY G Z R`\ ��
�� ^ 90.5% 89.3% -3.0

Table 2. Evaluation of the performance of different SLA scheduling heuristics using a flat rate pricing policy.

Nine of the fifteen heuristics that could be created following the approach described
above, were evaluated. The choice of these nine heuristics was based on experience from
results in [24]. Thus, the nine heuristics refer to all combinations that include at least one
of the terms E	G and E F . For the evaluation, we used a simple (synthetic) SLA workload
model whereby, for each SLA workload set generated, a scheduling solution existed that
resulted in a 100% resource utilisation for the SLAs in the set. For each of the two pricing
policies, 100 SLA workload sets were generated for a single experiment. The results
then were averaged over 100 experiments. On average, each SLA workload consisted of
around 380 SLAs. The latter were supposed to be scheduled on a homogeneous parallel
resource of 48 CPU nodes, which was available for 400 hours, creating thus a reference
frame of 48 J 400 in size. Each of the different SLA workloads was scheduled on the
resource of the same size using all nine different heuristics.

The averaged results are shown in Table 1 (for the ’flat rate’ pricing policy) and in
Table 2 (for the ’pay as you go’ pricing policy). The results show, for each heuristic
considered (first column): the average percentage of successfully scheduled SLAs out of
all the SLAs that could be scheduled in principle (SLA satisfiability – column 2); the
average percentage of hours the CPU was busy out of the total number of hours available
(CPU utilization — column 3); and the value of 7 that was chosen to maximize income
for each pricing policy (column 4). In each table, the results are sorted starting from the
heuristic that provides on average the highest income (clearly, in the case of the ‘flat rate’



pricing policy the income is proportional to SLA satisfiability, while in the case of the
‘pay as you go’ pricing policy the income is proportional to CPU utilization).

Our experiments revealed several interesting points:
� Depending on the pricing policy used it was possibly to achieve either high SLA

satisfiability (over 95% in the case of the ‘flat rate’ pricing policy) or high CPU
utilization (over 89% in the case of the ‘pay as you go’ pricing policy). It is
noted that these are average values; in individual cases (especially on a small-
scale reference frame), these percentages could be even higher. These are very
encouraging results considering the SLA scheduling problem, especially if we
take into account that scheduling was performed in a fraction of a second.� The performance of the heuristics appears to be related to the pricing policy used.
Thus, heuristics that achieve the highest percentage of SLA satisfiability using
the ‘flat rate’ pricing policy do not seem to achieve the highest percentage of
CPU utilization using the ‘pay as you go’ pricing policy and vice versa. This
observation is consistent with the results in [24] where it was found that the choice
of the pricing policy can change dramatically the effect of different heuristics. On
average, the heuristic based on E	G and EH& appears to perform best in both cases.� Optimizing for CPU utilization (as in Table 2) appears to provide more robust
results in the sense that the level of SLA satisfiability is not affected as much as
CPU utilization is affected when the objective is to optimize for SLA satisfiability
(as in Table 1).� When the job laxity reaches egf � h 9ji f C

of % & the time constraints of the job
appear to no longer affect the performance of any of the considered scheduling
heuristics.� On average, when the ratio of the average value of

� ��
�� to the size of the re-
source was, roughly, 1:8 most heuristics seemed to result in the highest utilisa-
tion.� The performance of some heuristics was very sensitive to the workload. For ex-
ample heuristics based on

� ��
�� and I change in a very nontrivial way with the
change of the distribution of CPU requests.

It must be said here that this was a limited study. Although it indicated that heuristics
could be used to provide good solutions to the scheduling problems, additional studies,
with varying workloads are highly desirable.

7. Conclusion

This paper argued for the need of a fundamental approach for job scheduling on (par-
allel) high-performance computing resources, based on service level agreements. This
approach appears to become more pertinent with developments in the context of Grids,
service-oriented architectures and autonomic computing. The paper highlighted a num-
ber of issues that need to be addressed in order to materialise such a novel approach.
Some work aiming to address some of these aspects, in particular related to the descrip-
tion of the SLA terms and their use in scheduling, was briefly presented. The authors’
view is that SLA based approaches for resource provision are highly promising; how-
ever, there is a need for further advances and research in the challenges indicated before
such approaches become common-place.
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