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Abstract. The Grid provides facilities that support the coordinated use
of diverse resources, and consequently, provides new opportunities for
wide-area query processing. However, Grid resources, as well as being
heterogeneous, may also exhibit unpredictable, volatile behaviour. Thus,
query processing on the Grid needs to be adaptive, in order to cope with
evolving resource characteristics, such as machine load. To address this
challenge, an architecture is proposed that has been empirically evaluated
over a prototype Grid-enabled adaptive query processor instantiating it.

1 Introduction

Grid query processing is particularly relevant where there is a need to integrate
information and analysis from different sources for specific periods of time, and
to e-Science applications, the owners of which, contrary to the typical e-business
scenario, lack the computational capacity to run some of their tasks and con-
duct in-silico experiments. Especially for the latter case, Grid query process-
ing, like many Grid computations, is likely to place a significant emphasis on
high-performance and scalability. Traditionally, query processors often attain
scalability and improved performance by relying on the benefits of parallelism.
Pipelined parallelism has been examined and adopted to different extents in
wide-area query processing [15]. Complementarily, query processing can benefit
significantly from partitioning the operators within a query execution plan across
multiple nodes, a form of parallelism commonly referred to as intra-operator or
partitioned [13)], in which all the clones of an operator evaluate a different portion
of the same dataset in parallel. GridDB [16] and OGSA-DQP [1] are examples
of Grid-enabled database systems that support access to Grid computations and
databases, and exploit parallel heterogeneous infrastructures to meet demanding
application requirements.

A basic difficulty in efficiently executing a query on the Grid is that the
unavailability of accurate statistics at compile time and evolving runtime con-
ditions (such as CPU loads and network bandwidth) may cause load imbalance
that detrimentally affects the performance of static techniques for partitioned
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parallelism. Hence, a challenge for the query processor is to define intra-operator
data-partitioning that takes into account these changes. Failing to do so in an
efficient way may annul the benefits of parallelism. Just as in homogeneous,
controlled environments (e.g., clusters of similar nodes), a slowdown in even a
single machine that is not followed by the correct rebalancing, causes the whole
system to underperform at the level of the slow machine [2]. To tackle this, the
system needs not only to be able to capture these changes as they occur in a
wide-area environment, but also to respond to them in a comprehensive, timely
and inexpensive manner by devising and deploying appropriate repartitioning
policies.

Adaptive load balancing becomes more complicated if the parallelised oper-
ations store intermediate state or have incoming queues, like the hash join and
exchange query operators (we call such operators stateful). Assume, for example,
that a query optimizer constructs a plan in which there is a hash join parallelised
across multiple sites. A hash function applied to the join attribute defines the
site for each tuple. In this case, any data repartitioning of unprocessed tuples
needs to be accompanied by repartitioning of the hash tables that had already
been created within the hash joins.

This paper presents a comprehensive, effective and efficient solution to the
problem above. It dynamically rebalances intra-operator parallelism across Grid
nodes for both stateful and stateless operations and, in particular, it makes the
following contributions:

— It proposes an architecture for adaptive query processing (AQP) that is char-
acterised by the following features: it is non-centralised, it is service-oriented,
and its components communicate with each other asynchronously according
to the publish/subscribe model. Thus it can be applied to loosely-coupled,
autonomous environments such as the Grid.

— It presents an implementation of the architecture through extensions to the
OGSA—DQ distributed query processor for the Grid [I], demonstrating
the practicality of the approach. The resulting prototype has been empiri-
cally evaluated and the results show that it can yield significant performance
improvements, in some cases by an order of magnitude, in representative ex-
amples. In addition, the overhead remains reasonably low, which is important
when adaptivity is not required.

The remainder of the paper is structured as follows. The extensions to the
static OGSA-DQP system in order to transform it into an adaptive one are pre-
sented in Section 2l Section B demonstrates adaptations to workload imbalance.
Related work is in Section M, and Section [l concludes the paper.

2 Grid Services for Adaptive Query Processing

OGSA-DQP has been implemented over the Globus Toolkit 3 Grid middle-
ware. It provides two types of Grid Services to perform static query process-

! OGSA-DQP is publicly available in open-source form from www.ogsadai.org.uk/dqp.
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Fig. 1. An adaptive architecture for dynamic workload balancing

ing on the Grid, GDQS (Grid Distributed Query Service) and GQES (Grid
Query Evaluation Service). A GDQS contacts resource registries that contain
the addresses of the computational and data resources available and updates
the metadata catalog of the system. It accepts queries from the users, which are
subsequently parsed, optimised, and scheduled employing intra-operator paral-
lelism (e.g., [11]). The query plan consists of a set of subplans that are evaluated
by GQESs. A GQES is dynamically created on each machine that has been se-
lected by the GDQS’s optimiser to contribute to the execution. GQESs contain
the query execution engine, which adopts the iterator pipelining model of exe-
cution [I3]. Data communication is encapsulated within an enhanced exchange
operator [12], as described later. Inter-service transmission of data blocks is han-
dled by SOAP/HTTP. Remote databases are accessible from the scan operators
as GDSs (Grid Data Services) exposed by the generic wrappers developed in
the OGSA-DALI project (www.ogsadai.org.uk). Also, arbitrary Web Services can
play the role of typed foreign functions and be invoked from queries (with the
operation call operator being responsible for the execution).

Adaptive GQESs (AGQESs) instantiate a novel architecture for AQP that
distinguishes between the monitoring (i.e. feedback collection), feedback assess-
ment, and response stages of adaptations. Each AGQES comprises four compo-
nents (Figlll): one for implementing the query operators, thus forming the query
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engine (which is the only component in static GQESs), and three for adaptivity.
The extraction of monitoring information is based on self-monitoring operators,
as reported in [I0]. As such, the query engine is capable of producing raw, low-
level monitoring information (such as the number of tuples each operator has
produced so far, and the actual time cost of an operator). The MonitoringEvent-
Detector component collects such information and acts as a source of notifications
on the dynamic behaviour of distributed resources and of query execution. The
Diagnoser performs the assessment phase, i.e., it establishes whether there is an
issue with the current execution (e.g., workload imbalance). The Responder de-
cides whether and how to react. Its decisions may affect not only the local query
engine, but any query engine participating in the evaluation. The adaptivity
components can subscribe to each other and communicate asynchronously via
notifications. Note that the above approach implies that the GDQS optimiser
need not play any role during adaptations, and the distributed AGQESs encap-
sulate all the mechanisms required to adjust their execution in a decentralised
way.

3 Adapting to Workload Imbalance

3.1 Approach

The execution of a plan fragment over a fixed set of resources is considered to
be balanced when all the participating machines finish at the same (or about the
same) time. Workload imbalance may be the result of uneven load distribution
in the case of homogeneous machines, but in the case of heterogeneous machines
and the Grid, it might be the result of a distribution that is not proportional
to the capabilities of the machines employed (both because the machines are
different and because their capabilities are subject to dynamic changes). To
achieve workload balance during execution we configure the AGQESs in the
following way. The MonitoringEventDetector is active in each site evaluating a
query fragment, and receives raw monitoring events from the local query engine.
There also needs to be one activated Diagnoser and one Responder that subscribe
to the MonitoringEventDetectors (Figll).

Monitoring. The query engine generates notifications of the following two
types:

— M1, which contains information about the processing cost of a tuple. Such
notifications are generated by the exchange operators that form the local root
of subplans (i.e, exchange producers) and include (i) the cost of processing an
incoming tuple in milliseconds; (ii) the average waiting time of the subplan
leaf operator for this tuple, which corresponds to the idle time that the
relevant thread has spent; and (iii) the current selectivity.

— M2, which contains information about the communication cost of an outgo-
ing buffer of tuples. Such notifications are generated by exchanges that form
the local root of subplans, and include: (i) the cost of sending a buffer in
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milliseconds; (ii) the recipient of the buffer; and (iii) the number of tuples
that the buffer contains.

These low-level notifications are sent to a MonitoringFEventDetector compo-
nent, which:

— groups the notifications of type M1 by the identifier of the operator that
generated the notification, and the notifications of the type M2 by the con-
catenated identifiers of the producer and recipient of the relevant buffer;

— computes the running average of the cost over a window of a certain length,
discarding the minimum and maximum values; and

— generates a notification to be sent to subscribed Diagnoser, if this average
value change by a specified threshold thresM.

The default configuration is characterised by the following parameters. The
monitoring frequency for the query engine is one notification for each 10 tuples
produced (for M1) and one notification for each buffer sent (for M2); the low level
notifications from the query engine are sent to the local MonitoringEventDetec-
tor; the window over which the average is calculated (in the MonitoringEventDe-
tector) contains the last 25 events; and the threshold thresM to generate notifica-
tions for Diagnosers is set to 20%. This means that the average processing cost
of a tuple needs to change by at least 20%, before the Diagnoser is notified. All
these values and thresholds are configurable for any component, but determining
an optimal setting has left for future work.

Assessment. The assessment is carried out by the Diagnoser. The Diagnoser
gathers information produced by MonitoringEventDetectors to establish whether
there is workload imbalance. Assume that a subplan p is partitioned across n ma-
chines, and that p;, i = 1...n, is the subplan fragment sent to the ith AGQES.
The MonitoringEventDetectors notify the cost per processed tuple ¢(p;) for each
such subplan, as explained earlier. Also the Diagnoser is aware of the current
tuple distribution policy, which is represented as a vector W = (w1, wa, ..., wy),
where w; represents the proportion of tuples that is sent to p;. To balance
execution, the objective is to allocate a workload w; to each AGQES that is
inversely proportional to ¢(p;). The Diagnoser computes the balanced vector
W' = (wy,ws,...,w,). However, it only notifies the Responder with the pro-
posed W' if there exists a pair of w; and w; for which |wi1;wi| exceeds a threshold
thresA. This is to avoid triggering adaptations with low expected benefit.
The cost per tuple for a subplan ¢(p;) can be computed in two ways:

— A1, which takes into account only the notifications of type M1 that are
produced by the relevant subplan instance; or

— A2, which additionally takes into account the notifications of type M2 that
are produced by the subplans that deliver data to the relevant subplan in-
stance, and contain the communication costs for this delivery.

The default configuration is characterised by the following parameters. The
threshold thresA to generate notifications for Responders is set to 20%; and
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the communication cost between subplans in the same machine (i.e., when the
exchange producer and consumer reside on the same machine) is considered zero.

Response. For operator state management, the system relies on an infrastruc-
ture that has been developed mainly to attain fault tolerance. The description
of the fault-tolerance features is out of the scope of this paper; details can be
found in [18]. Here, we briefly discuss those features that are used for state repar-
titioning. Exchanges comprise two parts that can run independently: exchange
producers and exchange consumers. The producers insert checkpoint tuples into
the set of data tuples they send to their consumers. They also keep a copy of the
outgoing data in their local recovery log. When the tuples between two check-
points have finished processing and are not needed any more by the operators
higher up in the query plan, the checkpoints are returned in the form of ac-
knowledgment tuples. In practice, the recovery logs contain, at any point, the
tuples that have not finished being processed by the evaluators to which they
were sent, and thus include all the in-transit tuples, and the tuples that make
up operator states. This provides an opportunity to repartition state across con-
sumer nodes by extracting the tuples stored in the recovery logs, and applying
the data repartitioning policy to these tuples as well.

The Responder receives notifications about imbalance from the Diagnoser in
the form of proposed enhanced workload distribution vectors W'. To decide
whether to accept this proposal, it contacts all the evaluators that produce data
to estimate the progress of execution in line with [7]. If the execution is not close
to completion, it notifies the evaluators that need to change their distribution
policy, and the Diagnosers that need to update the information about the current
tuple distribution (i.e, W «— W"). The data distribution can change in two ways:

— R1, where the tuples in the recovery logs (i.e., the tuples already buffered to
be sent, and the tuples already sent to their consumers but not processed)
are redistributed in accordance with the new data distribution policy. We
call this redistribution retrospective.

— R2, where the buffered tuples and the recovery logs are not affected. We call
this redistribution prospective.

In the R1 case, operator state is effectively recreated in other machines. This
may be useful when adaptations need to take effect as soon as possible, and is
imperative for redistributing tuples processed by stateful operators (to ensure
result correctness).

3.2 Evaluation

The experiments presented in this section show the benefits of redistributing
the tuple workload on the fly to keep the evaluation balanced across evaluators,
which results in better performance. The main results can be summarised as
follows:

— in the presence of perturbed machines, performance (i.e., response time)
improves by several factors and the magnitude of degradation, in some cases
by an order of magnitude;
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— the overhead remains low and no flooding of messages occurs; and
— the system can adapt efficiently even to very rapid changes.

Two example queries are used:

Q1: select EntropyAnalyser(p.sequence)
from protein sequences p

Q2: select i.0RF2 from protein sequences p,
protein interactions i where i.ORF1=p.0RF;

The tables protein sequences and protein interactions, along with the En-
tropyAnalyser Web Service operation, are from the OGSA-DQP demo database
and they contain data on proteins and results of a bioinformatics experiment,
respectively (the protein sequences used in the experiments is slightly modi-
fied to make all the tuples the same length to facilitate result analysis). Q1 re-
trieves and produces 3000 tuples. It is computation-intensive rather than data-
or communication-intensive. However, as shown in the experiments, Q1 is chosen
in such a way that data communication and retrieval do contribute to the total
response time. This contribution is even more significant in Q2, which joins pro-
tein sequences with protein interactions, which contains 4700 tuples. So, Q1 and
Q2 are complementary to each other: in the former, the most expensive operator
is the call to the WS, and in the latter, a traditional operator such as join.

The adaptations described can be applied to an arbitrarily large number of
machines. However, as the purpose of the current evaluation is to provide useful
insights into the behaviour and effectiveness of the adaptivity policies rather
than into how the complete system functions, a carefully controlled experimen-
tation environment is required. Thus two machines are used for the evaluation
of EntropyAnalyser in Q1, and the join in Q2, unless otherwise stated. The data
are retrieved from a third machine. All machines run RedHat Linux 9, are con-
nected by a 100Mbps network, and are autonomously exposed as Grid resources.
The third machine retrieves and sends data to the first two as fast as it can. The
iterator model is followed, but the incoming queues within exchanges can fit the
complete dataset. Due to the pipelined parallelism, the data retrieval is com-
pleted independently of the progress of the WS calls and joins. For each result,
the query was run three times, and the average is presented here. Finally, we
have used two methods to create artificial load leading to machine perturbation:
(i) programming a computation to iterate over the same function multiple times,
and (ii) inserting sleep() calls.

Performance Improvements. This set of experiments demonstrates the ca-
pability of AGQESs to degrade their performance gracefully when machines ex-
perience perturbations. Thus, they exhibit significantly improved performance
compared to static GQESs. In the first experiment, we set the cost of the WS
call in Q1 in one machine to be exactly 10 times more than in the other, and
the responses are prospective (response type R2). The first row of Table [Ilshows
how the system behaves under different configurations. More specifically, the
columns in the table correspond to the following cases:
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Table 1. Performance of queries in normalised units

Query- no ad /ad /nonoad /ad [/

Response no imb imb imb imb
Q1 - R2 1 1.059 3.53 1.45
Q1-R1 1 1.15 3.53 1.57
Q2 - R1 1 1.11 1.71 1.31

— no ad / no imb: there is no imbalance between the performance of the two
services, and adaptivity is not enabled;

— ad / no imb: there is no imbalance between the performance of the two
services, and adaptivity is enabled;

— no ad / imb: one WS call is ten times costlier than the other, thus there is
imbalance between the two services, and adaptivity is not enabled; and

— ad / imb: there is imbalance, and adaptivity is enabled.

The results are normalised, so that the response time corresponding to no ad
/ mo imb is set to 1 unit for each query. The percentage of degradation due to
imbalance is given by the difference of the normalised performance from 1. The
“unnecessary” adaptivity overhead is the overhead incurred when adaptivity is
not needed (i.e., there is no imbalanceﬂ, which can be computed by the difference
between the second and the third columns of Table [l (1st row). This difference
is 5.9%. When one WS is perturbed and there are no adaptivity mechanisms,
the response time of the query increases 3.53 times (4th column in Table [IJ).
For this type of query, the cost to evaluate the WS calls is the highest cost.
However, it is not dominant, as there is significant I/O and communication
costs. Thus, a 10-fold increase in the WS cost results in a 3.53-fold increase in
the query response time. The adaptive system manages to drop this increase to
1.45 times, performing significantly better than without adaptivity (45% increase
when adaptivity is enabled as opposed to 253% when it is disabled).

The 2nd row in Table[Ilshows the results when the experiment is repeated, and
the adaptation is retrospective (type R1 of response). The increase in response
time when the adaptivity is not enabled (no ad / imb) remains stable as expected
(3.53 units). However, the average overhead (ad / no imb) is nearly three times
more (15.3% of the execution). This is because it is now more costly to perform
log management, as the tuples already sent to remote evaluators need to be
discarded and redistributed in a tidy manner. Because of the larger overhead,
the degradation of the performance in the imbalanced case (ad / imb) is larger
than for prospective response (1.57 times from 1.45).

The same general pattern is observed for Q2 as well, using the second method
to create imbalance artificially. In this case, the perturbation is caused in one

2 Without adaptivity, the machines finish at the same time (the difference is in the
order of fractions of seconds). This, in general, cannot be attained in a distributed
setting. In more realistic scenarios, adaptivity is very rarely “unnecessary”, even
when distributed services are expected to behave similarly, but these experiments
aim to show the actual overhead.
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Fig. 2. (a) Performance of Q1 for prospective adaptations; (b) Performance of Q1 for
different adaptivity policies

machine by the insertion of a sleep(10msecs) call before the processing of each
tuple by the join. The 3rd row of Table [l shows the performance when the
adaptations are retrospective. The overhead is 11%, and adaptivity, in the case
of imbalance, makes the system run 1.31 times slower instead of 1.71.

Varying the Size of Perturbation. We reran Q1 for the cases in which the
perturbed WS is 10, 20 and 30 times costlier, and adaptations are prospective.
Fig. Pla) shows that the improvements in performance are consistent over a rea-
sonably wide range of perturbations. When the WS cost on one of the machines
becomes 10, 20 and 30 times costlier, the response time becomes 3.53, 6.66 and
9.76 times higher, respectively, without dynamic balancing. With dynamic bal-
ancing, these drop to 1.45, 2.48 and 3.79 times higher, respectively, i.e., the
performance improvement is significant consistently.

Effects of Different Policies. Thus far, the assessment has been carried out
according to the type A1, in which communication cost is not taken into account.
The next experiment takes a closer look at the effects of different adaptivity poli-
cies. Three cases are examined: (i) when the Diagnoser does not take into account
the communication cost to send data to the subplan examined for imbalance,
and no state is recreated (type Al of assessment combined with type R2 of re-
sponse); (ii) when the Diagnoser does not take into account the communication
cost to send data to the subplan examined for imbalance, and state is recreated
(type Al of assessment combined with type R1 of response); and (iii) when the
Diagnoser does take into account the communication cost to send data to the
subplan examined for imbalance, and no state is recreated (type A2 of assess-
ment combined with type R2 of response). In essence, when the communication
cost is not considered (assessment A1), an assumption is made that the cost for
sending data overlaps with the cost of processing data due to pipelined paral-
lelism. We believe that such an assumption is valid for this specific experiment,
and indeed, this is verified by the experimental results discussed next.
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Fig. 3. (a) Performance of Q2 for retrospective adaptations; (b) performance of Q1 for
prospective adaptations and double data size

The performance of the three configurations for Q1 is shown in Fig. 2I(b).
Although all of them result in significant gains compared to the static system,
some perform better than others. From this figure we can observe: (i) that taking
pipelining into consideration (by performing the assessment of type Al) has an
impact on the quality of the decisions and results in better repartitioning (see
the difference between the leftmost and the rightmost bar in each group); and (ii)
that retrospective adaptations (R1 response) behave better than the prospective
ones for bigger perturbations (see the difference between the leftmost and the
middle bar in each group). The latter is also expected, as the overhead for recre-
ating state remains stable independently of the size of perturbations, whereas
the benefits of removing tuples already sent to the slower consumers, and re-
sending them to the faster ones increases for bigger perturbations. Also, from
Fig. 2(b), it can been seen that the bars referring to retrospective adaptations
remain similar with different sizes of perturbation, which means that the size of
performance improvements increases with the size of perturbations. This hap-
pens for two complementary reasons: (i) the higher the perturbation, the more
tuples are evaluated by the faster machine, in a way that outweighs the increased
overhead for redistributing tuples already sent or buffered to be sent; and (ii) for
any of these perturbations, only a very small portion of the tuples is evaluated
by the slower machine, which makes the performance of the system less sensitive
to the size of perturbation of this machine.

Experiments with Q2 lead to the same conclusions. Fig. [B(a) shows the be-
haviour of the join query when the sleep() process sleeps for 10, 50 and 100 msecs,
respectively, and adaptations are of type Al of assessment and R1 of response.
As already identified in Fig. 2I(b), retrospective adaptations are characterised by
better scalability, and their performance is less dependent on the perturbation.

Varying the dataset size. From the figures presented up to this point, ret-
rospective adaptations outperform the prospective ones, but suffer from higher
overhead. The reason why prospective adaptations exhibit worse performance
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Fig. 4. Performance of Q1 for retrospective adaptations

is that a significant proportion of the tuples have been distributed before the
adaptations can take place. Intuitively, this can be mitigated in larger queries.
Indeed, this is verified by increasing the dataset size of Q1 from 3000 tuples to
6000, and making one WS call 10, 20 and 30 times costlier than the other, and
the adaptations are prospective. Fig.Bl(b) shows the results, which are very close
to those when adaptations are retrospective (i.e., Fig. B(b) for Q1 and Fig. Bl(a)
for Q2 compared to Fig. [2(a)), and lead to better performance improvements.

Varying the number of perturbed machines. Fig.[d complements the above
remarks by showing the performance of Q1 for different numbers of perturbed
machines when adaptations are retrospective (three machines have been used for
WS evaluation in this experiment). Again, perturbations are inserted by making
one WS call 10, 20 and 30 times costlier than the other (Fig. @(a), (b) and (c),
respectively). Due to the dynamic balancing property, the performance degrades
very gracefully in the presence of perturbed machines. As explained in detail
earlier, the performance when adaptivity is enabled, is very similar for different
magnitudes of perturbation, when there is at least one unperturbed machine.
Thus the plots corresponding to the case of enabled adaptivity are similar for up
to two out of three perturbed machines. Note that the relative degradation (i.e.,
difference from value 1 in the figures) can be improved by an order of magnitude.

Overheads. This set of experiments investigates overheads. We run Q1 when
there is no WS perturbation. As shown from Table[ll the overhead of prospective
adaptations is 5.9%. This value is the average of two cases. When the adaptivity
mechanism is enabled but no actual redistribution takes place, the overhead is
6.2%. However, due to slight fluctuations in performance that are inevitable in
a real wide-area environment, if the query is relatively long-running, the system
may adapt even though the WSs are the same. For prospective adaptations, a
poor initial redistribution may have detrimental effects, since by the time the
system realises that there was no need for adaptation, the stored tuples may al-
ready have been sent to their destination. Nevertheless, on average, the system
behaves reasonably with respect to small changes in performance and incurs a
5.6% overhead. The ratio of the number of tuples sent to the two machines is
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Fig. 5. Performance of Q1 under changing perturbations

slightly imbalanced: 1.21. The overhead is slightly smaller than when no actual
redistribution occurs as there are benefits from the redistribution.

When the adaptations are retrospective, the overhead is significantly higher,
as already discussed. However, the ratio of the tuples is close to the one indicating
perfect balance: 1.01. From the above, it can be concluded that retrospective
adaptations, even if they are not necessary for ensuring correctness, may be
employed when perturbations are large. However, it is felt that the overheads
imposed for both types of distribution are reasonable and are worthwhile given
the scale of expected gains during perturbations.

We also examined the behaviour of the system for Q1, when the WS cost on
one machine is 10 times greater than on the other, and the frequency of generating
raw monitoring events from the query engine varies between 0 (i.e., no monitoring
to drive adaptivity), and 1 notification per 10, 20 and 30 tuples produced. Both
the adaptation quality and the overhead incurred were rather insensitive to these
monitoring frequencies (figure omitted due to space limitations). This is because
(i) the mechanism to produce low-level monitoring notifications has been shown to
have very low overhead [10], and (ii) the adaptivity components filter the notifica-
tions effectively. On average, between 100 and 300 notifications are generated from
the query engine, but the MonitoringEventDetector needs to notify the Diagnoser
only around 10 times, 1-3 of which lead to actual rebalancing. Thus the system is
not flooded by messages, which keeps the overhead low.

Rapid Changes. The final set of experiments aims to show the dynamic na-
ture of the system. Thus far, the perturbations have been stable throughout
execution. A question arises as to whether the system can exhibit similar per-
formance gains when perturbations vary in magnitude over the lifetime of the
run. In these experiments the perturbation varies for each incoming tuple in a
normally distributed way, so that the mean value remains stable. Fig. [l shows
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the results when the differences in the two WS costs in Q1 vary between 25 and
35 times, between 20 and 40 times, and between 1 and 60 times The leftmost
bar in each group in the figure corresponds to a stable cost, which is 30 times
higher (e.g., bar A1-R2, 30times in Fig. 2(b) for prospective adaptations), and
is presented again for comparison purposes. We can see that the performance
with adaptivity is modified only slightly, which enables us to claim that the
approach to dynamic balancing proposed in this paper can adapt efficiently to
rapid changes of resource performance.

4 Related Work

Query processing on the Grid is a special form of distributed query processing
over wide-area autonomous environments. Work in this area has resulted in many
interesting proposals such as ObjectGlobe [5], but has largely ignored the issues
of intra-query adaptivity. Adaptive query processing is an active research area
[4]. However, proposals usually focus on centralised, mostly single-node query
processing, and do not yet provide robust mechanisms for responding to changes
in the resource performance, which is important especially when an arbitrarily
large number of autonomous resources can participate in the query execution,
as it is the case in Grid query processing.

As an example that does consider distributed settings, [I4] deals with adap-
tations to changing statistics of data from remote sources, whereas our proposal,
complementarily, focuses on changing resource behaviour. Moreover, sources in
[14] only provide data, and do not otherwise contribute to the query evaluation,
which takes place centrally. Eddies [3] are also used in centralised processing of
data streams to adapt to changing data characteristics (e.g., [6]) and operator
consumption speeds. When Eddies are distributed, as in [19], such consump-
tion speeds may indicate changing resources. Nevertheless, our approach is more
generic as (i) it is not clear how distributed Eddies [19] can extract the statistics
they need in a wide-area environment, and how they can keep the messaging
overhead low; (ii) Eddies cannot handle all kinds of physical operators (e.g., tra-
ditional hash joins); and (iii) redistribution of operator state is not supported.
Adapting to changing data properties has also been considered in distributed
query processing over streams [g].

In general, workload balancing has been thoroughly examined in parallel
databases, but only assuming a context where participating machines either
share resources such as disks and memory, or are inter-connected by fast ded-
icated networks in such a way that data communication is simple and not ex-
pensive. As OGSA-DQP is deployed in a different setting, the infrastructure for
traditional workload balancing needs to be revisited. For data and state repar-
titioning, the most relevant work is the Flux operator for continuous queries
[I7]. The Flux approach has been implemented at the operator level, whereas,
our approach is based on loosely coupled components, which can be more easily
extended. Rivers [2] follow a simpler approach, and are capable of performing
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data (but not state) repartitioning. State management has also been considered
in [9], but only with a view to allowing more efficient, adaptive tuple rerouting
within a single-node query plan.

5 Conclusions

The volatility of the environment in parallel query processing over heterogeneous
and autonomous wide-area resources makes it imperative to adapt to changing
resource performance, in order not to suffer from serious performance degrada-
tion. This paper proposes a solution for dynamic workload balancing through
data and operator state repartitioning. This solution is instantiated in the con-
text of a more generic architectural framework implemented through extensions
to the Grid-enabled open-source OGSA-DQP system. The implementation is
particularly appealing for environments such as the Grid, as it is based on
loosely-coupled components, engineered as Grid Services, which communicate
asynchronously and support the publish/subscribe model. The results of the
empirical evaluation are promising: performance is significantly improved (by an
order of magnitude in some cases), while the overhead remains low enough to
allow the benefits of adaptation to outweigh the cost in a wide range of scenarios.
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