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Abstract—There is an increasing interest in applications where
sensors or other devices (acting as publishers) may generate
data that are processed and analyzed by specialized software
components (acting as subscribers to this data) that extract useful
information in a variety of scientific or industrial settings. As a
result of the large volumes of data that are often generated, Cloud
infrastructures may be used to handle the data links between
publishers and subscribers. Assuming that a certain number of
virtual machines of some given bandwidth have been booked for
this purpose, the problem that this paper considers is how to
allocate data links to the virtual machines so that the amount
of data received by subscribers is maximized. An Integer Linear
Programming formulation of the problem and two heuristics are
presented, which are evaluated in a range of experiments.

I. INTRODUCTION

The publish/subscribe model (shortened as pub/sub) has
been a popular paradigm for many applications exchanging
messages. In recent years, the advent of the Internet-of-Things
(IoT) and other data streaming applications where sensors
may continuously provide data that have to be processed and
analyzed has given prominence to the data-centric aspects of
the pub/sub model [1]. In brief, the pub/sub model should
be viewed as a model that allows simple modelling of the
interaction(s) between a set of data providers (publishers)
and a set of (possibly only partially) interested data sinks
(subscribers) [2].

Traditionally, the pub/sub model has been widely used to
accomplish various messaging tasks. The move towards data-
centric applications and requirements in conjunction with the
development in recent years of Cloud Computing offer en-
terprises the possibility to run pub/sub-based applications and
services on external clusters. Some Infrastructure-as-a-Service
(TaaS) providers already propose generic pub/sub engines (e.g.,
PubNub or Azure Service Bus). In other research, the Cloud is
used to build integrated pub/sub middleware solutions [1]. To
support this, it is safe to assume that some virtual machines
(VMs) are provided to the clients to run their application and
satisfy their pub/sub requirements; obviously, the number of
VMs depends on what they paid.

The above developments, most notably the data-centric
nature of pub/sub applications and the availability of Cloud
platforms for (some components or whole) application execu-
tion, give rise to the following interesting problem. Assuming
that a fixed number of VMs, each VM with a certain bandwidth
capability, has been booked to transmit data from publishers
to subscribers interested in this data, how do we allocate

transmissions in a way that we maximize satisfaction of
subscribers? The satisfaction of subscribers may be expressed
in different forms but in this paper we equate satisfaction
with the amount of data received. As a result, our question
becomes a problem of allocating the pub/sub data links on a
fixed set of VMs, in a way that the amount of data received
by subscribers is maximized. In the rest of the paper, we
denote this problem by the shorthand MAXDATARCVD. The
amount of data generated by providers may exceed what can
be received by subscribers or the capacity of the available
VMs: such cases make the problem more challenging to solve.

To the best of our knowledge, this problem has not been
investigated as such in the literature. The closest work to our
paper is by Setty et al. [3], who considered strategy allocations
to optimize cost by deploying the smallest possible number
of VMs in similar pub/sub settings. The MAXDATARCVD
problem we consider can be viewed as a dual problem. In
other words, given publishers (that publish at a certain rate),
subscribers (that receive data from certain publishers) and
machines (their number and capabilities are fixed), how can
we allocate the links so that we maximize the amount of data
received by subscribers?

In view of the above, this paper makes the following
contributions: (i) it provides a formulation of this data link
allocation problem and expresses it in a way that can be solved
through Integer Linear Programming (ILP); (ii) as ILP-based
solutions may be costly, it proposes two new heuristics to solve
the problem; and, (iii) it carries out an experimental evaluation
that assesses the behaviour of an ILP-based solution and
demonstrates that the heuristics can achieve good performance
(compared to the optimal ILP-based solution) but much faster,
with reasonable computation time and scalability properties.

The rest of the paper is structured as follows. Section II
briefly overviews related work. In Section III, a formal model
of the problem and its Integer Linear Programming formula-
tion are presented. In Section IV, two heuristics are proposed
to solve the problem. An experimental evaluation is carried
out in Section V. Finally Section VI concludes the paper and
gives some perspective of this work.

II. RELATED WORK

The paper touches upon a number of areas where there is
extensive work in the literature. Middleware solutions for the
IoT that are based on the pub/sub model have received some



attention [4], [5], [6]. A lot of work exists in relation to stream-
ing applications that make use of some pub/sub system [7], [8].
The problem we are considering goes beyond this research,
as it takes it into account in order to focus on an allocation
problem specified (and affected) by pub/sub properties. In
some way, MAXDATARCVD resembles the Multiple Knapsack
Problem (MKP). In MKP, we have a set of items, each having
a profit and a weight, and a set of bins, each having a capacity.
The goal is to allocate the items to the bins trying to respect
the capacity constraint while maximizing the profit. MKP is a
generalisation of the Knapsack Problem, where there is only
one bin, and it is an NP-complete problem [9]. The differ-
ences between MKP and MAXDATARCVD are discussed in
Section III. There are polynomial-time approximation schemes
for some instances of MKP and its variants [10]. What is
interesting with respect to the problem considered in the paper
is that heuristic approaches have also been considered for MKP
[11], [12] and some branch-and-bound based solutions exist
that focus on a small number of bins [13], [14]. We are going
to build upon some of this work in Section IV.

III. MODEL AND ILP FORMULATION

We consider a bipartite graph G = (P, S, E') with P being
the set of publishers and S being the set of subscribers. Each
publisher p; has a rate r;, which is the rate with which it
generates data; we refer to this rate as input rate. We also
consider a set of (virtual) machines M. Each machine my has
a bandwidth capacity by. Subscribers are interested in data
provided by only certain publishers; an edge (i.e., a data link)
connects every such pair of publisher/subscriber. A publisher
may generate data for many subscribers and a subscriber may
be interested in data provided by different publishers. The set
of all edges is E.

As stated in the introduction, our goal is to allocate the
different edges to the different machines in a way that we
do not exceed the bandwidth capacity of each machine and
we maximize the amount of data received by publishers. We
are, therefore, looking for an allocation o as a function from
E' C Eto M, with E' C E. In addition, as an edge allocated
to a (virtual) machine implies receiving and sending data, for
all edges of each machine the sum of incoming data (the input
rate of publisher for each edge) and outgoing data (based again
on input rate of the publisher of this edge, as we assume the
machines will not do any filtering of the data) must be less
than or equal to bandwidth capacity, leading to:
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where P,(my,) denotes the set of publishers p; such that there
exists s; € S such that p;s; € E' and E,(my) is the set of
edges allocated to my.

An example is given in Figure 1, which represents an
allocation of edges onto machines. Publishers are shown on
the left-hand side, each with an input rate r;. Subscribers are
shown on the right-hand side. Edges denoted by a solid line are
allocated (¢ E’) to a machine (represented by the rectangles

Figure 1. An illustration of a schedule for MAXDATARCVD.

in the middle of the figure), edges with a dashed line are not
(for example pgsg ¢ E’). The constraints in this schedule are:

o (7”'1 + Tg) —+ (7’1 + 27‘2) § bl.

. (7"1 +?"4) + (7‘1 +7’4) < bs.

o (ra+rs)+ (ra+7s5) < bs.

Note that the bandwidth usage of a schedule depends, for
each publisher, on the number of machines on which its edges
are scheduled. If all the allocated edges of a publisher are on
the same machine, the input rate of this publisher contributes
to bandwidth usage only once. If the edges are allocated on
several machines, the input rate contributes to the bandwidth
usage of each machine separately, thus, increasing the impact
of this publisher on the overall bandwidth consumption. For
example, in Figure 1, publisher p;, whose data is sent to
mq and me, contributes to the bandwidth usage of these two
machines, whereas ps, for instance, contributes to bandwidth
usage of only m;. The fact that the bandwidth consumption of
a publisher depends on how edges are scheduled is where the
difference between MAXDATARCVD and MKP stands. In our
problem, the "items" to allocate are the edges, their "profits"
are the input rates of the publishers, but their "weights" are not
constant. Depending on the placement of other "items" (edges
with the same publisher) the "weights" may change.

Having defined the constraints, we can now introduce the
formal definition of our problem, MAXDATARCVD, which
simply becomes the search of such a scheduling that maxi-
mizes the amount of data received, i.e. the sum of the input
rates of allocated edges.

Problem 1 (MAXDATARCVD). Given G = (P,S,E) a
bipartite graph with a given incoming rate r;, M a set of
virtual machines with, for each virtual machine my, bandwidth
capacity by, return E' € E and an allocation o which

maximize
E Ti.
pis;EE’

The MAXDATARCVD problem can be converted into an
Integer Linear Programming (ILP) problem with linear size



O((|E|+|P])|M]). Keeping the previous definition, we define
the following decision variables:

« For each edge p;s; € E/ and each machine my, we have
x; j.x € {0,1}; in the final schedule o (p;s;) = my, if and
only if Ti gk = 1.

e For each publisher p; and each machine my, we have
Vi € {0,1}; yir, = 1 if and only if there is an edge
pis; such that o(p;s;) = my.

The expression to maximize is therefore:

E Ti§kTi
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miEeM

under the constraints:
. Vpisj e E, Z
ke[1,|M]]
. VPZ € P7 Ti 5,k < Yi k-

J, pis; EE,kE[L,|M|]

> vkt Y Jh;k) < b.

ie[LP]] pis;€E

Tige < 1.

o« Vmy € M, 1;

IV. HEURISTICS

As ILP solutions may be too costly, this section introduces
two heuristics to solve the problem (an evaluation of an ILP
solution is given in Section V). In the following, given a
publisher p; (respectively, a subscriber s;), we denote by S; the
set of subscribers that have an edge in E with p; (respectively,
P; is the set of publishers that have an edge in F with s;).

Algorithm 1: GS
Input: A bipartite graph G = (P, S, E), incoming rates
{r1,...,7p}, a set of machines M and
f:E—>R
Output: E' € F and an allocation o
Sort P by decreasing number of edges ;
Sort M by decreasing bandwidth capacity ;
E,o=0,;
while F £ () and M # ) do
p; + Pop(P) ;
my, < Pop(M) ;
if by, > 2 x r; then
be < b —1i ;
while by, > r; and S; # () do
sj < Pop(S;) ;
Add p;sj to E' 5 o(pis;) = my 3
by, = by — 1y ;
if b > 0 then
L Push(my, M) ;

if |:S;| > 0 then
L Push(p;, P) ;

return £’ o ;

The first heuristic, GS (GreedyScheduler, see Algorithm 1)
relies on a greedy allocation of edges. The principle is to

sort the publishers by number of edges in descending order,
take the first one (that is the publisher with most edges) and
allocate as many edges as possible onto the machine with
the largest bandwidth capacity. After that, if not all edges of
this publisher have been scheduled, this publisher is pushed
back to P after updating its number of edges. Similarly, if the
bandwidth capacity of the machine is not zero after allocating
some work onto it, this machine is also pushed back to M. At
each step of the while loop, two operations are performed: the
allocation of at least one edge (an edge is allocated as soon at
it is visited and thus the overall cost of this operation in the
overall execution is O(|E|)) and the insertion of a machine
or a publisher into a sorted list (respectively O(log|M|) and
O(log |P])). Thus, as there are at most |E| steps, the overall
complexity is O(|E|(log|M| + log |P|)) if |P|,|M| < |E|.
Otherwise, the cost of the initial sorting of publishers and
machines has to be taken into account.

The second heuristic, MKPBS (MKP-Based-Scheduler, see
Algorithm 2), is based on the proximity between MAXDATAR-
cvD and MKP. The principle is to use an MKP solver to
schedule the publishers onto different machines. We do this
in two main phases. First we consider a publisher and all its
edges as one entity (we schedule all of them on one machine
or we schedule none of them). In this case, the items are
the publishers (and its edges); then, for each publisher, the
profit is given by its number of edges multiplied by its input
rate and the weight is its input rate multiplied by its number
of subscribers plus one. After this first phase we have a first
schedule (possibly empty). During the second phase, we reuse
an MKP solver, but this time we only allocate publishers and
then we deal with edges one by one. We consider publishers
as items with a profit equal to their input rates multiplied by
their number of edges (best-case scenario if all are scheduled)
and a weight equal to twice their input rate (the initial cost
to send data and the cost for at least one scheduled edge).
This gives us a repartition of publishers. We then use this
repartition to schedule edges, using Knapsack sub-problems.
The instances are built as follows: items are edges (profit and
weight are equal to the input rate) and the capacity is the
bandwidth capacity of the machine minus the input rates of
the allocated publishers. This Knapsack instance gives us a
schedule for some of the edges. Note that in some cases, there
are allocated publishers with no scheduled edges. In such a
case, we remove the publisher from the allocation (and then
increase the bandwidth) and try to greedily schedule edges
from the other allocated publishers. We then repeat the second
phase until there is no publisher allocated by the MKP solver.

In the following, we denote by MKPSolver the MKP
solver and by KPSolver the Knapsack solver we use. For
the implementation we use a branch-and-bound exact solver
as Knapsack solver (at each call, the number of items is
rather small). The algorithm is called MulKnap (this is in
fact a more general solver designed for MKP) and has been
proposed by David Pisinger [13] (the code can be found on his
webpage). For the MKP solver we rely on a greedy heuristic,
GreedyMKP (MulKnap has a long computation time for our



Algorithm 3: MKPSolver

Algorithm 2: MKPBS

Input: A bipartite graph G = (P, S, E), incoming rates

{r1,...,mp|}, a set of machine M and
fEFE—>R
Output: E’' € F and an allocation o
E,o=0,;

foreach p; € P do
| ajweight = (S| + 1)r; 5 ai.profit = |Si|r; ;
Iy, Ly <
MK PSolver({ay, ..
foreach m; € M do
foreach p; € I;, do
by < b — (|SZ| + 1)ry s
Add S; to E' ; 0(S;) = my;
Remove p; from P ;

.,a‘p|},{bl7~--’b|M|});

while P # () and M # () do
foreach p; € P do

L a;. weight = 2r; ; a;.profit = |S;|r; ;
.[17...,I|M‘ —

MK PSolver({ay, ..
if Vmy, I, = () then

| P=0;
else

.,a|p‘},{b1,...,b|M‘}) 5

foreach m; € M do
foreach a; € I do
foreach s; € S; do
L L a;.weight =7, a;-.profit =r;;

I+

KPSolver({...,a},...}, by —
foreach o, € I do
Add p;s; to E' 5 o(pis;) = my;
Remove s; from S; ;
b = bk, — i ;
if p; ¢ P,(my) then

L Add p; to Pg(mk) by =br — 1

Zaielk Ti) ;

foreach p; € P,(my) do

if S; # 0 and r; < by, then
sj < Pop(S;) ;
Add p;sj to E' 5 o(pisj) =my ;
by =br — i ;

foreach p; € P do
if S; = () then
L Remove p; from P ;

foreach m; € M do
if b, = 0 then
L Remove by, from M ;

return £, o ;

Input: Items A = {a4,...,a,}, capacity

C=A{c,...,q}
Output: For each k € [1,1] a set I}, € [1,n] of allocated
items

Sort A by decreasing a;.profit/a;. weight ;
Sort C' by decreasing capacity ;
foreach ¢, € C do
I =0
foreach a; € A do
if a;.weight < ¢ then
L L Ik%IkU{ai} ;

A(*A\Ik,

return [,..., [ ;

instances), proposed by Martello and Toth [11], that has a good
behaviour in practice. Basically, this heuristic sorts the items
by decreasing rentability (profit/weight, that is, in our case,
equivalent to sorting by decreasing number of edges) and the
bins by decreasing capacity. Then, one bin after another, one
item after another, GreedyMKP allocates an item if its weight
is smaller than the current capacity of the concerned bin (see
Algorithm 3).

It is not straightfoward to evaluate the complexity of
MKPBS. Using GreedyMKP, the cost of each MKP sub-
instance is simply |M||P|. The number of times that we call
GreedyMKP is at most O(|E/|) times, as at each call at least
one edge is allocated. Meanwhile, the cost of other operations
is strongly correlated to the cost of KPSolver. The problem
can be solved in pseudo-polynomial time O(nc) where n is
the number of items and c the capacity. Thus, the cost of
solving all Knapsack instances during one step can be bound
by O((max by)|E|) and the overall worst-case complexity of
MKPBS is O(|E|((max by)|E| + |M||P])).

V. EXPERIMENTAL EVALUATION

The objectives of the experimental evaluation are to: (i)
investigate under what conditions ILP may give answers
within some reasonable computation time; (ii) evaluate the
performance of GS and MKPBS in comparison to the optimal
ILP result and to an upper bound we describe below; and
(iii) assess computation time and scalability of both GS and
MKPBS.

We use a small instance of a synthetic dataset in order to
avoid long execution times for the ILP solution as we wish to
compare ILP results with the results provided by our heuristics.
The number of subscribers, |.S], is set to 100 and two different
values for the number of publishers, |P|, are used: 100 and
1000. We assume all subscribers get data from exactly 5 pub-
lishers (the number of edges is therefore 500, independently of
the number of publishers). We also suppose identical machines
(with a varying number of machines, | M), all with the same
bandwidth (bandwidth units are assumed to be the same with



Vmy, by, = 200

Vmy, by, = 500

50 times for [M]| =5

Homogeneous | 7 times for [M| =10 | 50 times for every | M|
no other values tried
0 times for [M| =5 15 times for [M] =5
Low Variance no other values tried 39 times for |M| = 10

no other values tried

HighVariance

49 times for |[M| =5
11 times for [M| = 10
no other values tried

48 times for [M| =5
46 times for |M| = 10
0 times otherwise

Table T

NUMBER OF TIMES THE ILP PROGRAM FINDS A SOLUTION WITHIN THE
TIME LIMIT FOR DIFFERENT VALUES OF BANDWIDTH AND DISTRIBUTION
OF INPUT RATES WHEN |P| = |S| = 100.

Vg, bn = 200 Vg, br = 500
45 times for [M| = 10
Homogeneous | 37 times for [M| =15 | 50 times for every | M|
50 times otherwise
29 times for [M]| =5 34 times for [M| =5
Low Variance no other values tried 49 times for |M| = 15
50 times otherwise
49 times for [M| =5 49 times for [M[ =5
HighVariance | 18 times for |[M| = 10 50 times otherwise
no other values tried

Table IT
NUMBER OF TIMES THE ILP PROGRAM FINDS A SOLUTION WITHIN THE
TIME LIMIT FOR DIFFERENT VALUES OF BANDWIDTH AND DISTRIBUTION
OF INPUT RATES WHEN |P| = 1000 AND |S| = 100.

input rate). We consider three distributions for the input rate of
publishers: equal to 10 (Homogeneous), uniformly distributed
from 8 to 19 (LowVariance) and uniformly distributed from
1 to 19 (HighVariance). For each combination, we run the
experiment 50 times (each time generating a new set of edges
E) and we take the average value.

The performance of the algorithms is expressed in terms of
the average percentage of data received, which is the amount
of data received by the subscribers divided by the sum of the
input rates of all edges (including non-allocated edges). To
have an upper bound for comparison, we take the minimum
value of the sum of the bandwidths of all machines and the
sum of the input rates of all edges.

For the solution of the ILP problem, the program we use
is the CPLEX optimizer provided by IBM [15]. CPLEX
also exploits parallelism that we use to run the computa-
tion on a 24 processor (MIRIEL node, composed of two
Dodeca-core Haswell Intel Xeon E5-2680 v3 at 2.50 GHz)
of PlaFRIM?2 [16].

A. Analysis of the ILP Behaviour

For the first set of experiments, we try ILP using our
synthetic dataset and assuming machines of bandwidth 200
and 500. We vary the number of machines, |M|, from 5 to
50 in steps of 5. In order to avoid long computation times,
we set a time limit of one hour for the ILP program to find a
solution.

Tables I and II show the number of times that the ILP
program finds a solution within the time limit. As expected,
ILP cannot be used to solve MAXDATARCVD efficiently, even
for small or homogeneous cases. Even with a small number of

machines the problem presents sufficient combinatorial com-
plexity that routinely leads to an explosion of the computation
time. When the number of machines increases and there is
more bandwidth available it appears that the computation time
may become reasonable; this is easily explained as in this
case it is easier and more likely to find an optimal solution.
We observe this behaviour when the value of bandwidth per
machine is 500.

B. Performance of GS and MKPBS

In the following, we compare GS and MKPBS with the
optimal results we have from ILP. As already mentioned,
performance is expressed in terms of the percentage of data
received, which is the amount of data received by the sub-
scribers divided by the sum of the input rates of all edges
(including non-allocated edges).

Average Percentage of Data Received

1o
Number of Machines |M|

B ILP e~ GS - MKPBS ~#- UpperBound

Figure 2. Average percentage of received data for ILP, GS and MKPBS. All
machines have bandwidth equal to 500 and |P| = |S| = 100.
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Figure 3. Average percentage of received data for ILP, GS and MKPBS. All
machines have bandwidth equal to 500, |P| = 1000 and |S| = 100.

We focus first on the Homogeneous distribution with band-
width equal to 500 as it is the configuration where ILP is
most successful for both |[P| = 100 and |P| = 1000. The
results are presented in Figures 2 and 3. Both GS and MKPBS
perform very close to the optimal solution computed by ILP.
Most specifically, MKPBS is always almost optimal in the
case where |P| = 1000, |S| = 100 (Figure 3). This last result
can be explained by the fact that with few subscribers per
publisher, the instance become closer to an MKP instance: if
a publisher has only one or two edges, it is more likely to



have all its edges scheduled on the same machine and get an
optimal solution. However, the heuristics perform very well
with a more dense distribution of subscribers too (Figure 2).
To give a clearer indication of the results from the figures,
some points are extracted and shown in Tables III and IV.

M| =5 | |[M]=10 | |[M]|=15
ILP 44.11% 85.58% 100%
GS 42.99% 83.69% 100%
MKPBS | 43.78% 84.95% 100%
Table TIT

AVERAGE PERCENTAGE OF DATA RECEIVED FOR SPECIFIC VALUES OF
|M|. ALL MACHINES HAVE BANDWIDTH EQUAL TO 500 AND
|P| = |S| = 100 (SEE FIGURE 2)

[M|=5 | [M|=10 | |[M|=15 | |[M|=20
ILP 34.30% 60.56% 85.56% 100%
GS 33.29% 59.07% 83.49% 100%
MKPBS | 34.04% 60.50% 85.50% 100%
Table TV

AVERAGE PERCENTAGE OF DATA RECEIVED FOR SPECIFIC VALUES OF
|M|. ALL MACHINES HAVE BANDWIDTH EQUAL TO 500, | P| = 1000 AND
|S| = 100 (SEE FIGURE 3)

Besides comparison between heuristics and ILP, we observe
that more publishers also imply more bandwidth consumption.
This is why for the same number of machines, in the case of
|P| = 1000 a smaller percentage of received data is obtained.
Note also that the performance of both MKPBS and GS does
not appear to be linked to the variance of input rates, as can
be seen in Figure 4 (only the case |P| = 100 is shown to be
compared against results for Homogeneous in Figure 2).

LowVariance

HighVariance

100~

Average Percentage of Data Received

Number of Machines |M|
- GS A MKPBS - UpperBound

Figure 4. Average percentage of received data, depending on the distribution
of input rates for GS and MKPBS. All machines have bandwidth equal to
500 and |P| = |S| = 100.

Finally, we also examine the influence of the value of
bandwidth. Figure 5 shows the results where |P| = 1000,
|S| = 100 and the bandwidth of each machine is 200.
Compared to the results in Figure 3, it can be seen that the
average percentage of data received for 10 or 15 machines is
about 2.5 times less, a value proportional to the difference
in bandwidth. The same remark applies to the case where
|P| = 100 (Figure 6). It is also interesting to note that in both
Figures 5 and 6, the performance difference between MKPBS
and GS is more pronounced.

100~

Average Percentage of Data Received

10 20
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Number of Machines [M|

& ILP ~— GS A MKPBS ~#- UpperBound

Figure 5. Average percentage of received data for ILP, GS and MKPBS. All
machines have bandwidth equal to 200, |P| = 1000 and |S| = 100.
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Figure 6. Average percentage of received data for GS and MKPBS. All
machines have bandwidth equal to 200, |P| = 100 and |S| = 100.

C. Computation Time

The following studies the computation time of both GS and
MKPBS. All results come from a C implementation running
on a Intel® Core™ i7-4600M processor. Results for all input
rate distributions and with a bandwidth per machine equal to
500 are shown in Figures 7 and 8.

In principle, both heuristics are fast: below 1ms on average.
However, GS appears to be faster and more consistent in terms
of performance. The peaks in the performance of MKPBS
can be attributed to the number of calls to KPSolver and
MKPSolver. When there are enough machines, the initial call
to MKPSolver has a strong chance to find a good schedule;

Homogeneous LowVariance HighVariance

0.12-

Computation time (ms)

0 0 20 30 4 500 0 20 3 4 500 0 20 3 40 50
Number of Machines |M|
—~— GS 4 MKPBS

Figure 7. Average computation time in ms for GS and MKPBS. All machines
have bandwidth equal to 500 and |P| = |S| = 100.



Homogeneous LowVariance HighVariance

Computation time (ms)

0 1o 20 3 40 SO0 10 2 % 4 500 10 2 30 4 50
Number of Machines [M|
—~— GS 4 MKPBS

Figure 8. Average computation time in ms for GS and MKPBS. All machines
have bandwidth equal to 500, |P| = 1000 and |S| = 100.

several calls may be necessary when the amount of available
bandwidth (correlated with the number of machines) is limited
(the peak is before reaching the value of |M| for which
MKPBS is able to schedule all edges). After this instability
phase, the computation time slightly increases as the number
of machines increases (consistent with the complexity of
MKPSolver); a similar behaviour for MKPBS can be noted
(consistent to the log | M| factor in its worst-case complexity).
Meanwhile, the number of publishers has the main impact
on computation time, which differs by about an order of
magnitude between Figures 7 and 8.

Finally, it appears that a reduction of the bandwidth of each
machine increases the magnitude of instability of MKPBS but
it has no effect on GS as can be seen in Figure 9.

Homogeneous LowVariance HighVariance

Computation time (ms)

L e oy

6 1o 20 3 40 SO0 10 2 3 4 500 10 2 30 40 50
Number of Machines |M|
—~— GS -4 MKPBS

Figure 9. Average computation time in ms for GS and MKPBS. All machines
have bandwidth equal to 200 and |P| = |S| = 100.

D. Scalability

In this section, we study the scalability of GS and MKPBS.
To do so, we multiply the amount of bandwidth and numbers
of publishers, subscribers, edges per subscriber and machines
by 10. This results in |S| = 1000, |E| = 50000 and |P| =
1000 or 10000 while each machine has a bandwidth of 2000
or 5000.

The performance of the two heuristics for the Homogeneous
distribution and |P| = |S| = 1000 is shown in Figure 10.
Overall, the two heuristics perform very close to the upper
bound. The difference between GS and MKPBS is small,
almost negligible, even though the latter has often a small

Bandwidth = 2000

Bandwidth = 5000

100- oo

Average Percentage of Data Received
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Figure 10. Average percentage of data received for GS and MKPBS for
different value of bandwidth per machine. | P| = 1000, |S| = 1000 and each
subscriber has 50 edges.
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Figure 11. Average computation time in ms for GS and MKPBS. All machines
have bandwidth equal to 5000, | P| = 1000, |S| = 1000 and each subscriber
has 50 edges.

advantage, less than 0.1% (50 edges). For |P| = 10000 and
|S| = 1000, the performance gap slightly increases, to around
0.2% (100 edges).

To evaluate scalability in terms of computation time, we
consider two cases, |P| = 1000 and |P| = 10000. In the first
case (Figure 11), the computation time is about two orders
of magnitude larger than the computation time in Figure 7
(where everything is 10 times smaller and the total number
of edges is 100 smaller), suggesting that |F| is a dominant
factor, in line with the complexity of the two heuristics. Note

Homogeneous LowVariance HighVariance
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Figure 12. Average computation time in ms for GS and MKPBS. All machines
have bandwidth equal to 5000, | P| = 10000, |.S| = 1000 and each subscriber
has 50 edges.
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Figure 13. Average computation time in ms for GS and MKPBS. All machines
have bandwidth equal to 2000, | P| = 1000, |.S| = 1000 and each subscriber
has 50 edges.

also that MKPBS keeps its unstable behaviour for a small
number of machines but for a large number its computation
time becomes similar to GS. In the second case, | P| = 10000
(Figure 12), the computation time difference with the results
in Figure 8 (where, again, everything is 10 times smaller and
the total number of edges is 100 smaller) is smaller than two
orders of magnitude. This is because in Figure 8 |E| < |P|,
which means that the impact of |P| (and |M|) increases on
computation time (cf. complexity analysis in Section IV). It
is also interesting that GS in Figure 12 has a clear advantage,
particularly as the number of machines increases.

Finally, we show the results for |P| = |S| when the band-
width per machine is 2000 (see Figure 13). The differences
with the results of Figure 9 (| P| = | S|, bandwidth per machine
set to 200) are of the same nature to the ones pointed above
when comparing Figure 11 (| P| = |S|, bandwidth per machine
set to 5000) and Figure 7 |P| = |S|, bandwidth per machine
set to 500): computation times differ by about two orders
of magnitude and MKPBS suffers from the same instability
(until there are enough machines and hence enough available
bandwidth). Furthermore, it is interesting that comparing Fig-
ure 13 with Figure 11 (whose only difference in terms of value
settings is the value of bandwidth), it appears that only the
computation time of MKPBS is affected.

Summary: Concluding this experimental section, it has
been demonstrated that both GS and MKPBS achieve a near-
optimal amount of received data compared to the optimal
solution in small instances with Homogeneous distribution. In
addition, both heuristics compute a solution very fast and scale
well when the size of instances increase, while the amount of
data received gets closer to the upper bound. In the context of
these experiments, GS appears as a better option for instances
of an important size; the very small loss in received data
(compared with MKPBS) is compensated by a significantly
faster and more stable execution time.

VI. CONCLUSION

This paper investigates the problem of optimizing data sent
using a pub/sub model and allocation of data links onto
virtual machines. A formal problem, MAXDATARCVD, and an
integer linear programming formulation have been provided.

Two heuristics, a greedy one (GS) and one inspired by MKP
(MKPBS) are introduced and experimentally studied. Both
heuristics provide solutions of very good quality in the context
they are tested. They also both exhibit short computation times
and they appear to scale well as the problem size increases.

There are several ways to extend this paper. For example,
the distribution of edges may vary (not all subscribers have the
same number of edges) or different patterns for the input rates
may be considered. One may also look into heterogeneous
machines or additional aspects of network edges (e.g., related
to security or different types of traffic). Scenarios where only
an overall bandwidth is booked, which has to be repartitioned
across machines may also be considered. Another direction
is to define a separate function for the satisfaction of each
subscriber (possibly depending on different types of data) not
simply take the sum of data received.
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