Process Synchronisation eaemss.s»

Background: Concurrent access to shared data may

result in data inconsistency. Mechanisms are
required to maintain data consistency.

/

static int i;

| process or thread A /1 process or thread B

i =0;
while (i < 100) {
i ++)

i =0;
while (i > -100) {
i--

stemout. println("A wins"); g/slem out.println("B wns");

Variable i isshared - reference and assignment are each atomic.
Will process A or B win?

Will they ever finish?

If one finishes, will the other also finish?

Doesit help A to get a head start?

Definitions

Synchronisation: The use of atomic operations to ensure the
correct operation of cooperating processes.

Mutual exclusion: Mechanisms that ensure that only one
process is doing certain things at one time.

Critical section:A section of code in which only one process
may be executing at a given time (eg, where shared dataiis accessed?).
No other process may be executing in its critical section.

Example: Too much milk!!!

Ti

=y

[T
CELVVVO®ROO®

me Person 1 Person 2 Person 3

00 sl eeping sl eepi ng Check fridge-no mlk
15 wakes up . sl eepi ng Leaves for |ecture
30 ch.fridge-no milk sleeping Travel | ing

45 | eave for store wakes up Arrive at University
00 arrive at store check-no mlk Go to Lect. Theatre
15 bought mlk | eave for store | ecture

30 return home arrive at store lecture

45 bought milk Lect.ends-goto store
00 return hone arrive at store

15 bought m |k

145 return hone

%rnaphor% (Bacon 9.4, 9.5; 9.6 for information)

Problem: Ensure that when one process is executing in its
critical section no other processis allowed to execute in
its critical section. If several requests occur at once, one
process should proceed. Processes must wait outside
critical section.

Semaphore: An integer variable, say S, that can be
accessed viatwo operations:

« Wait(S):
while (S<=0) do { }; // no op.-wait
S-;

e Signal(S):
St+: How toinitialise S?

Semaphores - Examples

Example (two processes sharing A[100]; Sinitialised to 1):

Vi t(9); Vit (9);
r1=A[100] ; r2=A[100] ;
rl++; r2++;
A[100] =r 1; A[100] =r 2;
Signal (S); Signal (S);

Semaphores as a general synchronisation tool:

Initialise: S1=0; S2=0; 1=0;

AR L * B/ VAR ORY
Wait(S1); Wi t (S2) ; for(j=0;j<10;j ++)
1=1*2; | =1 +5; | ++;

Signal (S1);

Signal (S1); Signal (S2);

Dml OCkS (Bacon 17.2, 17.3; 17.4 for information)
Two or more processes are waiting indefinitely
for something (an event?) that can be provided
by only one of the waiting processes.

Example (semaphores)

Example (traffic
S1, S2 initialised to 1

gridlock)

/1 process A Il process B

wai t (S1); wai t (S2);
wait (S2); wai t (S1);
simgnal (S1); sl“c;;nal (s2);
signal (S2); signal (S1);

Starvation: A process may be overlooked repeatedly.
» With starvation there is always a way to resolve the situation.
» With deadl ock, once deadlock occurs it cannot be resolved.

Deadlock detection can be very complicated!!!

The Dining Philosophers e s

Five philosophers sitting around a circular table spend their time eating
and thinking. There are only five forks (or chopsticks if you prefer!):
when a philosopher gets hungry hasto pick up two forks (chopsticks):
one to hisimmediate right and one to his left (but only one at atime
and not afork/chopstick aready held by a neighbour).

? »

&

Semaphor e chopstick[5];//or fork!
I/l init. array elements to 1
while(1) {
wai t (chopstick[i]);
wai t (chopsti ck[(i +1)mod 5]);
/1 eat

/1 philosopher i

si gnal (chopstick[i]);
si gnal (chopstick[(i+1)nmod 5]);
/1 think
}

/1 How to avoid a deadl ock?

