
1

Process Synchronisation (Bacon 9.1, 9.2)

Background: Concurrent access to shared data may
result in data inconsistency. Mechanisms are
required to maintain data consistency.

st at i c i nt i ;
/ / pr ocess or t hr ead A / / pr ocess or t hr ead B
 i = 0; i = 0;
 whi l e (i < 100) { whi l e (i > - 100) {
 i ++; i - - ;
 } }
 Syst em. out . pr i nt l n(" A wi ns") ; Syst em. out . pr i nt l n(" B wi ns") ;

• Variable i is shared - reference and assignment are each atomic.
• Will process A or B win?
• Will they ever finish?
• If one finishes, will the other also finish?
• Does it help A to get a head start?

Definitions
• Synchronisation: The use of atomic operations to ensure the

correct operation of cooperating processes.
• Mutual exclusion: Mechanisms that ensure that only one

process is doing certain things at one time.
• Critical section:A section of code in which only one process

may be executing at a given time (eg, where shared data is accessed?).
No other process may be executing in its critical section.

Example: Too much milk!!!
Time Person 1 Person 2 Person 3
 8: 00 sl eepi ng s l eepi ng Check f r i dge- no mi l k
 8: 15 wakes up s l eepi ng Leaves f or l ect ur e
 8: 30 ch. f r i dge- no mi l k s l eepi ng Tr avel l i ng
 8: 45 l eave f or st or e wakes up Ar r i ve at Uni ver si t y
 9: 00 ar r i ve at st or e check- no mi l k Go t o Lect . Theat r e
 9: 15 bought mi l k l eave f or s t or e (l ect ur e)
 9: 30 r et ur n home ar r i ve at s t or e (l ect ur e)
 9: 45 bought mi l k Lec t . ends- got o st or e
10: 00 r et ur n home ar r i ve at s t or e
10: 15 bought mi l k
10: 45 r et ur n home

Problem: Ensure that when one process is executing in its
critical section no other process is allowed to execute in
its critical section. If several requests occur at once, one
process should proceed. Processes must wait outside
critical section.

Semaphore: An integer variable, say S, that can be
accessed via two operations:

• Wait(S):
whi l e (S<=0) do { } ; / / no op. - wai t

S- - ;

• Signal(S):
S++;

Semaphores (Bacon 9.4, 9.5; 9.6 for information)

How to initialise S?

Semaphores - Examples
Example (two processes sharing A[100]; S initialised to 1):
… …
Wai t (S) ; Wai t (S) ;
r 1=A[100] ; r 2=A[100] ;
r 1++; r 2++;
A[100] =r 1; A[100] =r 2;
Si gnal (S) ; Si gnal (S) ;

Semaphores as a general synchronisation tool:
Initialise: S1=0; S2=0; I=0;
 … / * A * / … / * B * / … / * C * /
Wai t (S1) ; Wai t (S2) ; f or (j =0; j <10; j ++)
I =I * 2; I =I +5; I ++;
Si gnal (S1) ; Si gnal (S1) ; Si gnal (S2) ;
 … … …

Deadlocks (Bacon 17.2, 17.3; 17.4 for information)

Example (semaphores)
S1, S2 i ni t i al i sed t o 1
/ / pr ocess A / / pr ocess B
wai t (S1) ; wai t (S2) ;
wai t (S2) ; wai t (S1) ;
 … …
si gnal (S1) ; s i gnal (S2) ;
s i gnal (S2) ; s i gnal (S1) ;

Example (traffic
gridlock)

Two or more processes are waiting indefinitely
for something (an event?) that can be provided

by only one of the waiting processes.

Starvation: A process may be overlooked repeatedly.
• With starvation there is always a way to resolve the situation.
• With deadlock, once deadlock occurs it cannot be resolved.

Deadlock detection can be very complicated!!!

Imagine…
arrows=cars...

The Dining Philosophers (Bacon 17.5)

Five philosophers sitting around a circular table spend their time eating
and thinking. There are only five forks (or chopsticks if you prefer!):
when a philosopher gets hungry has to pick up two forks (chopsticks):
one to his immediate right and one to his left (but only one at a time
and not a fork/chopstick already held by a neighbour).

Semaphor e chopst i ck[5] ; / / or f or k!

/ / i ni t . ar r ay el ement s t o 1

whi l e(1) { / / phi l osopher i

 wai t (chopst i ck[i]) ;

 wai t (chopst i ck[(i +1) mod 5]) ;

/ / eat

 si gnal (chopst i ck[i]) ;

 si gnal (chopst i ck[(i +1) mod 5]) ;

/ / t hi nk

 }

/ / How t o avoi d a deadl ock?

