What is a Trace? A Runtime Verification

Perspective

Giles Reger! Klaus Havelund?

1University of Manchester, Manchester, UK

2 Jet Propulsion Laboratory, California Inst. of Technology, USA

ISoLa 2016 — Corfu, October 12, 2016

Runtime Verification Perspective

property)

verdict

monitor e

observe feedback

instrumentation

system

Where's the Trace?

Specification

@ Traces as models i.e. structures that satisfy properties

o Different levels of semantics, commonly trace semantics
e May not be (fully) formalised
e Different kinds of models (data, time)

v

Instrumentation

@ Defined as a set of instrumentation points

Instrumentation can be separate and automatic (e.g. AOP)

o
@ Instrumentation can be manual
o

Domain dependent (Java, C, Erlang, Python, Hardware)

v

Log File

@ May need to map information in log file to events

@ Might contain a lot of other information

@ May be spread between many files

The Logical Divide

Two Camps Divided

@ Specification -""'E_ e @ Instrumentation
Language ==.-===-.:-""'".=_:=- o Log Files
B VONitoring S &
o Formal and === A|gorithm E==8 e Hacky and
Abstract o L s T P A C t
e s oncrete
o Neat and Tidy ~Eeeeemeemam———
Yy o Often Messy

Two extremes (nobody is wrong, nobody is right)

@ Design a nice abstract specification language, implement a
monitoring algorithm and add some instrumentation

@ Start with the instrumentation, design a monitoring algorithm that
does something sensible, realise we have a specification language

Why do we care?

Tool Interoperability

@ Can tools operate on the same log files?

o Can tools interface with the same instrumentation?

@ If not, can we translate log files or update instrumentation?
@ How do we compare tools?

| A\

Tool Applicability
@ Traces exist in other places, can we apply readily apply RV there?
@ What do we need in a trace for RV?

| \

Theoretical Relationships

@ Question of relationship between specification languages needs
formal and common notions of trace. ..

The Remainder of this Talk

Three Questions
o Status: What kinds of traces do we have?

o Contents: What goes in a trace?
@ Format: How should we record log files?

Traces as Models

Dimensions

@ Finite (complete or prefix)

@ Quantitative or qualitative notion of time
Single or multiple events per time point
Data carrying events or propositional

°
°

@ Declared or universal alphabet

@ Time as data or inbuilt with pointwise or continious semantics
°

Non-event based structures i.e. interpreted functions

<

Formal Structures

@ Alphabet of event names ¥, trace is a finite sequence over &

@ Parametric events include data parameters i.e. a(2,3), leads to
parametric traces, also similar notion of data words

o Timed words (pair events with time), signal function (R — 2%)

@ Structured data (spatio-temporal logics, structured events (XML))

<

Instrumentation Methods

For Java
@ AOP: Aspect], Disl
e JVMTI (Agents)
o Reflection (e.g. JUnitRV)
e Java-MaC

| \

For C/C++
@ AOP: RMOR, AspectC++, InterAspect
@ Rewriting (E-ASCL, RiTHM)

| A

For Other Software

@ Dtrace

e Erlang tracing, more recently AOP

For Hardware

| \

@ Bus sniffing (e.g. BusMOP) is inherently event-triggered

o Directly access registers/signals as circuit, sample-based

Instrumentation Discussion

Is Instrumentation part of RV?

@ Where does the monitor end and instrumentation start?

o Clearly, instrumentation is a research activity but should it affect the
design of monitoring algorithms?

Suggestion: Monitor Interface
@ Introduce a standard interface between monitor and instrumentation
@ The interface defines the trace

o Advantage: introduces layer of abstraction that separates concerns,
allows for better re-usability of tools/benchmarks

e Disadvantages: difficult to perform optimisations such as inlining
and distribution of monitoring, assumes monitor is Outline

Other Sources of Traces

Who else talks about traces?

@ Web servers
@ Databases
@ System logging

4

Can we view those traces as our traces?

@ The problem of dealing with traces not recorded for RV

@ Often these traces are incomplete, how do we deal with this?

@ Traces may come from part way through a continuous run, how do
we deal with bootstrapping i.e. we don't know the past

A\

What goes in a trace?

What goes in an event?

e Event name (usually, necessary?)

@ Time-stamp (optionally)
@ Data parameters (optionally)
o Ordered or named? e.g. (2,5) vs [x =2,y = 5]
o Typed? Do they support operations?
o Structured? Do we know the structure?
o Defining equality between data values

How are they organised?

@ A (partial) ordering between events

What else do we need?

o Potentially need to give other information such as the alphabet or
domains of quantification separately

@ Sampling rate or data about uncertainty

@ Contextual information such as garbage collection

Tool Format : BeepBeep

Example

<trace>
<message>
<timestamp>1464984222599</timestamp>
<characters>
<character>
<id>0</id>
<status>FALLER</status>
<position>
<x>50.166668</x>
<y>38. 025</y>
</position>
<velocity>
<x>0.16666667</x>
<y>0.025000002</y>
</velocity>
</character>

v

Highlights

@ XML with some predefined tags

@ Specification language defined over XML events

Tool Format : OCLR-Check

<?xml version="1.0" encoding="ASCII"?>
<trace:Trace
xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:trace="http://wuw.svv.lu/offline/trace/Trace">
<traceElements index="1" event="//@events.0">
<timestamp value="1"/>
</traceElements>
<traceElements index="2" event="//@events.1">
<timestamp value="2"/>
</traceElements>

</trace>

Highlights

@ Traces are propositional
@ Comes with a Schema

Tool Format : MonPoly

@946686924

mgr_S (Alice,Kevin)
©@946688989

mgr_S (Bob,Lucy)
@946690031

mgr_S (Charlie,Mary)
©@946691392

mgr_S (Dave,Neil)
@946693111

mgr_S (Eve,0tto)
publish (Thomas,16)
approve (Eve,500)
0946693131

mgr_S (Felix,Peter)
publish (Ruby,149)
approve (Charlie,159)

| A\

Highlights

@ Timestamp declarations separate time points

@ Events within a time point are unordered

@ Parameters given as ordered list

Competition format: CSV

command, x, y
move, 3, 4
draw, 0, 4
move, 0, O
draw, 3, 4

Highlights
@ Single line per event
@ Optionally use a header to define column names
@ Very efficient parsing

@ How do we represent variable data values

@ Cannot easily represent structured data or metadata

Competition format: CSV

event, map, collection, iterator
updateMap, 6750210, ,

createColl, 6750210, 2081191879,
createlter, , 2081191879, 910091170
uselter, , , 910091170

updateMap, 1183888521, ,

Highlights
@ Single line per event

@ Optionally use a header to define column names

@ Very efficient parsing

y

Disadvantages

@ How do we represent variable data values

@ Cannot easily represent structured data or metadata

Competition format: CSV

updateMap, 6750210

createColl, 6750210, 2081191879
createlter, 2081191879, 910091170
uselter, 910091170

updateMap, 6750210

Highlights
@ Single line per event
@ Optionally use a header to define column names
@ Very efficient parsing

@ How do we represent variable data values

@ Cannot easily represent structured data or metadata

Competition format: CSV

updateMap, map, 6750210

createColl, map, 6750210, collection, 2081191879
createlter, collection, 2081191879, iterator, 910091170
uselter, iterator, 910091170

updateMap, map, 6750210

Highlights
@ Single line per event
@ Optionally use a header to define column names
@ Very efficient parsing

@ How do we represent variable data values

@ Cannot easily represent structured data or metadata

Competition format: XML

<log>
<event >
<name>createColl</name>
<field>
<name>map</name>
<value>6750210</value>
</field>
<field>
<name>collection</name>
<value>2081191879</value>
</field>
</event>
</log>

| N

Highlights

@ Lots of structure via tags

@ Can include metadata in tags

Competition format: XML

<log>
<event timestamp="1462810918">
<name>createColl</name>
<field>
<name>map</name>
<value>6750210</value>
</field>
<field>
<name>collection</name>
<value>2081191879</value>
</field>
</event>
</log>

| \

Highlights

@ Lots of structure via tags

@ Can include metadata in tags

Competition format: XML

<log>
<event>
<name>createColl</name>
<value>6750210</value>
<value>2081191879</value>
</event>
</log>

<

Highlights

@ Lots of structure via tags

Can include metadata in tags

Disadvantage: very verbose, even when compacted

Can validate against schema

\

Competition format: JSON
[
{

"createColl" : {
"map" : "6750210",
"collection" : "2081191879"
}

v

Highlights

@ Stores attribute-value pairs and arrays

@ More concise than XML

@ Can use arrays to model positional arguments

\

Competition format: JSON

[
{"updateMap" : ["6750210"]},
{"createColl" : ["6750210", "2081191879"1},
{"createlter" : ["2081191879", "910091170"]1},
{"uselter" : ["910091170"]1},
{"updateMap" : ["6750210"]}

Highlights

@ Stores attribute-value pairs and arrays
@ More concise than XML

@ Can use arrays to model positional arguments

What format should we use?

@ Probably JSON
o | prefer the condensed version but don't know the implications for
structured data
@ But CSV covers most use cases and is easy to work with
o | would prefer the no-header, unnamed version with separate
alphabet information

@ I'm not a fan of XML but other people are
@ So probably all three!!

| \

Another disadvantage of CSV

In the 1st competition MonPoly had to translate their multiple events per
time-point format using time-point (tp) and time-stamp (ts) fields. . .!

event, tp, ts, c, t, a

trans, 0, 32, 1797, 14581, 176
trans, 1, 32, 4187, 23430, 2144
trans, 2, 32, 1662, 46471, 2486

A\

A trace is a trace

o Like Brexit is Brexit, a trace is a trace!

@ Practically, we want similar notions for interoperability

@ Theoretically, we want similar notions to compare languages

<

More Challenges

o Concurrent and Distributed Systems

@ Rolling logs

@ Uncertainty

	The Question
	Status
	Contents
	Format

