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Abstract

This report has been extracted from an end of year report written during the first year of PhD study.
For this reason it may seem oddly edited in places. The report gives an extensive overview of the area of
specification inference, focussing on grammar inference, specification mining and genetic techniques.

Disclaimer. The majority of this report was written a while ago (Summer 2011) and some of my
opinions are sure to have changed in that time. Therefore, any opinions expressed in this report are not
necessarily those I currently hold.



Chapter 1

Introduction

The purpose of this report is to present the information I have gathered about the field of Specification
Inference. In this chapter I attempt to explain why the area of specification inference is interesting.

Organisation

As this report was extracted from a different report the organisation may seem odd in places. There are
two main chapters in this report - Chapter 3 outlines specification inference techniques based on grammar
inference and specification mining, whereas Chapter 4 presents specification inference techniques utilising
genetic algorithms. Chapter 2 is mainly full of definitions, it can be skipped.

1.1 Motivation

For a topic of research to be interesting it must be applicable - solve an existing problem that somebody
cares about. Most people working in the area of Grammar Inference1 use the problem of inferring a model
from some data as motivation enough - finding ways to infer more expressive models from less informative
data. However, many applications have been successful. People working in Specification Mining 2 usually
begin by motivating these techniques by stating that most systems currently developed do not come
with full specifications, and that specifications that do exist are often incomplete or out-of-date. This
first motivation for specification inference in general is Program Understanding. So that a developer can
improve, check and communicate the behaviour of a system it is important that they fully understand
what the actual behaviour of that system is. Modern systems are often large and complex and automatic
techniques for abstracting the actual behaviour of a system can reduce the effort and margin for error
in program development. When we construct systems we usually want to make sure they do what they
are supposed to do. To check if a program does what it is supposed to do we must have some model or
description of what that is. This is another motivation for specification inference techniques - Checking
Program Correctness. Another use for inferred specifications are in locating errors - if we know that a
program exhibits undesired behaviour a model of what it actually does can help find the problem. Inferred
specifications can either be used to help methods in testing or formal verification. Sometimes to ensure
correctness, but more often efficiency, it is necessary to restrict or control the behaviours of systems. To
do this we need a complete formal understanding of the correct behaviours of the system - this is where
an inferred specification can be used. Therefore a third motivation for specification inference techniques
is that of Controlling Programs. This builds on program understanding and checking program correctness

1An inductive learning approach - see Chapter 3
2A more pragmatic technique for inferring models based on an extraction rather than construction - see Chapter 3
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- to control a program we must understand what it should do and if it is doing it. Beyond these three
motivations there may be other fields within computer science that could make use of a specification of
intended behaviour for some system - for example, in the field of computer security intrusion detection
systems have recently become more reliant on models of expected and unexpected behaviour. In Section
3.5 I consider further uses for inferred specifications, with references from the literature - these can be
taken as further motivation for specification inference techniques. In the following I explore one area of
application in a little more detail and discuss whether all the problems have been solved.

The Software Development Process

To consider a potential application of an inferred specification I consider the software development pro-
cess. Figure 1.1 illustrates how specification inference techniques can be used to improve the software
development process. The first use is in checking if a program is written well. This is usually carried out
using informal and possibly inconsistent programming standards and code checks. However, a program-
mer has a number of rules in mind when writing code. By inferring a specification from the program
which captures these rules, it is possible to check whether they have been applied consistently. Such a
specification inference technique must be able to deal with these inconsistencies and only extract rules
that usually hold rather than always hold. The next use is in replacing legacy systems. This can be very
time consuming and expensive - especially if the system specification is incomplete, which it will almost
definitely be if it has been modified to take account of new functionality. A specification inferred from the
old system could be used to direct the design of the new system and then to test the new system once it
has been constructed. In this case a specification inference technique must be able to infer specifications
which are expressive and readable enough to be workable as design documents. Another use is in the
ongoing development of a system - particularly when making small changes. Small changes to the system
made when optimising code or adding small pieces of functionality can have large repercussions on the
rest of the code. Currently regression test suites are used to check that these small changes have not
broken any properties of the system. An alternative approach would be to infer a specification before and
after the change and check for changes in the specification of the system. Finally, specification inference
can be used as a feedback tool. A client will typically give a software developer a list of requirements
and the developer will generate a prototype to present back to the client. An inferred specification can
be used as a ‘free’ form of feedback which the client can use to explore the existing functionality of the
system and check against their requirements. For this approach specification inference should focus on
specification of observable behaviour, rather than implementation details.

So what is there left to do?

So far I have shown that specification inference is useful and desired. However, people have been working
on this problem for half a century - so is there anything left to do? I discuss what has been achieved so
far in Chapter 3 but summarise some high level conclusions here

� The specification inference problem is NP-hard (for many intuitive descriptions of the problem)

� There exist approaches which can weaken this hardness

� Grammar Inference techniques for inferring models for regular languages, in the form of finite state
machines, are very advanced. Techniques for inferring more expressive models exist but are still
underdeveloped

� Grammar Inference techniques have only been used to infer program specifications in a small number
of instances. However, where they have been used they have been successful

2



Figure 1.1: Specification Inference and the Software Development Process

� Specification Mining techniques are relatively new and still focus on reasonably limited specifications

� There exist few approaches that infer parametric specifications (trace specifications with free vari-
ables) and those that do have certain limitations

So there is a high level problem to be solved, which has been attacked considerably to uncover a number
of interesting and approachable subproblems. More importantly, there exist many areas of application
which have not been explored - therefore there exist many problems which may be addressed using these
techniques.
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Chapter 2

Preliminaries

This chapter covers necessary preliminary material, which a reader familiar with these topics may skip
over. I begin by discussing formal program specifications (Section 2.1) and then give some preliminary
definitions on languages, grammars and automata (Section 2.2). I finish by discussing the related areas
of testing (Section 2.3) and instrumentation (Section 2.4).

2.1 Formal Program Specification

This section discusses formal program specifications, attempting to briefly capture some intuition about
what a program specification is. At this point I note that I am primarily interested in trace specifications.

2.1.1 What is a Formal Program Specification

A formal program specification is a mathematical model that specifies some intended or forbidden be-
haviour of a program. Here we focus on functional behaviour in the form of allowed states, but a specifi-
cation may capture non-function behaviour such as performance.

Figure 2.1: Abstractly modelling programs

To consider how this behaviour may be mod-
elled let us first consider how we might model a
program. At runtime, a program receives inputs,
generates outputs and updates a memory (Figure
2.1). We can choose to model a program at two
levels of abstraction - either through observable be-
haviour, or internal behaviour. We can model the
state of a program by a ‘snapshot’ of its memory,
letting two states be equivalent if they capture the
same memory snapshots - abstractly a memory is a
mapping of addresses or program variables to val-
ues. We can assume that the memory captures the
inputs to the program and that an output will be the result of the program being in some state. A pro-
gram will, typically, have the expressive power of a Turing Machine and although the number of actual
possible states a program can take is bounded by the machine’s physical memory the possible states a
program can be in is infinite.

When considering observable behaviour then the program transitions between states based on inputs,
and states are observed via the outputs they emit. When considering internal behaviour the program
transitions between states based on some internal state-modifying operations, we can additionally assume
a set of non-state-modifying operations that can be used to observe internal state. The feasible transitions
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are captured statically by the program’s source code. Additional information can be added to this model
- for example the amount of time it takes to perform certain operations, the times between inputs or
communication links.

Let the behaviour of a program to be given by the states the program passes through. We can then
either specify some behaviour by placing a predicate on the allowed/disallowed states of the program.
This predicate can either be on the memory snapshot captured by the state, or, as a state can be
described by the transitions leading to that state, on a sequence of transitions. Based on this intuition I
define the following high-level distinction between specifications - a specification is either a state or trace
specification.

� State specifications. A state specification is a function P : State→ D that assigns, to each state, a
verdict from the verdict domain D. Among other things, these are also known as state invariants.

� Trace specifications. A trace specification is a function P : Trace → D that assigns, to each
trace, a verdict from the verdict domain D. Among other things, these are also known as protocol
specifications, typestate properties or interaction invariants.

It should be noted that here I talk about formal program specifications, there are of course infor-
mal program specifications, and these are generally more common. An informal program specification
might detail the expected behaviour of the program given a certain input or discuss certain sequences of
operations that should not occur, but will generally not cover all behaviours.

Finally, we can draw a distinction between positive (or validation) specifications describing desired
behaviour and negative (or violation) specifications describing undesired behaviour. These will not nec-
essarily be the complement of each other for a number of reasons - for example, they may be incomplete
(containing some ‘don’t care’ behaviours). Additionally, the specification language of the specification
may not be complete under complement, that is the complement of a specification may not be in the
specification language.

2.1.2 Specification Languages

Specifications must be written in a specification language, which will have a certain expressive power
limiting the behaviours that can be expressed in that language. For some domains we are also concerned
with the completeness, soundness and complexity of related decision procedures for that language. These
properties of the specification language may not only effects the number of properties which can be
specified in the language but also the usability and related effectiveness of the written specifications. A
specification language must have well-defined syntax and semantics - although in some cases, for example
graphical languages, this can be very difficult to capture. Based on descriptions in [66] I describe a number
of approaches taken to specifying program behaviour.

Model-Based. Where an abstract model of the program is constructed that describes program states
and state changing operations. Operations are defined axiomatically using pre and post conditions-
for example, a stack pop function might be specified axiomatically by precondition |stack| > 0 and
postcondition |stack| = |stack′| + 1. Examples of specification languages for model-based specifications
are VDM or Z. These specifications are often part of a larger software development process making use of
refinement or retrenchment techniques to progress from an abstract specification of program behaviour
to a concrete implementation.
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Finite-State-Based. A program is described using a finite number of states and labelled transitions
between these states that represent state-changing actions that the program can perform - a common
formalism is a Deterministic Finite Automata. This approach can also capture disallowed transitions using
a notion of non-accepting states. Finite-state based specifications have been very popular as their related
decision procedures are tractable. Dwyer et al. [42] have described a number of common specifications that
are useful to consider when reasoning about usable finite-state based specifications. Some specifications
that have a finite-state based structure but capture internal data (such as Extended Finite State Machines)
represent specifications with infinite states (if the domains of internal data are infinite) but are still referred
to as finite-state based. Note that the advantage of finite-state based specifications is that it is possible
to consider all paths through the specification and, even though there may be a state-explosion, check
that two finite-state specifications capture the same paths.

Process Algebra State-Based. Concurrent programs can be captured elegantly in process algebra
such as Communicating Sequential Processes (CSP) and Calculus of Communicating Systems (CCS) which
can be presented as labelled-transition systems (LTS). In finite-state based specifications equivalence is
usually defined in terms of trace-equivalence, the traces which are accepted, labelled-transition systems
have a richer sense of conformance in the form of bisumulation which checks whether two processes can
simulate each other.

Hybrid. To capture systems with discrete and continuous components a hybrid specification consists
of discrete states with continuous behaviour. These are particularly useful for describing systems from
engineering and the physical sciences.

Algebraic. A program can be specified completely algebraically using a set of axioms. An algebra
consists of a set of symbols denoting values of some type and a set of operations on this set. For example,
the specification of a stack pop function might include the axiom pop(push(Stack,Object)) = Object.
Given appropriate semantics, axioms can be used as rewrite rules in a process called term-rewriting to
reduce sentences from the algebraic language into some canonical form.

2.1.3 Summary

A formal program specification is a mathematical definition that renders the behaviour of the program
as unambiguous as possible. There exist many specification languages with varying levels of usefulness
in different domains. In this report I am, unless otherwise stated, concerned only with finite-state based
specifications.

2.2 Languages, Grammars and Automata

This report makes extensive reference to formal languages, grammars and automata. To avoid these
definitions being spread throughout the report I have gathered these together here. I begin by discussing
formal languages in general (Section 2.2.1) and then grammars (Section 2.2.2) and automata (Section
2.2.3). A good introductory text to this material is [70].

2.2.1 Languages and the Chomsky Hierarchy

A word is a (possibly infinite) sequence of symbols taken from some alphabet and a language is a set of
words. Let Σ be an alphabet of symbols, a word w over Σ is a sequence of symbols from Σ. The set of all
finite words is given by Σ∗ and the set of all infinite words is given by Σω. The empty word is given by ε
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and |w| gives the length of w. A language L over Σ is a set of finite words LΣ ⊆ Σ∗. An ω-language Lω over
Σ is a set of infinite words LωΣ ⊆ Σω. The alphabet Σ is omitted where obvious from context. A language
can be defined by a model, typically a grammar G or automata A, that can generate (or accept) all
words in that language. We denote the language of a modelM as L(M). The expressiveness of different
languages is given by the Chomsky Hierarchy [22] and different forms of grammars and automata can be
related to this, I given an overview of this hierarchy in Table 2.1. The least expressive form of languages in
this hierarchy are regular languages, as captured by regular expressions, finite state automata and regular
grammars. A proper subset of the regular languages are the finite languages consisting of only a finite
number of words.

Level Language Automata Logic

0 Recursively-Enumerable Turing Machine Typed λ-calculus
1 Context-Sensitive Linear-bounded non-deterministic Turing

Machine
First Order Logic

2 Context-Free Non-deterministic Pushdown Automata Combinatory logic
3 Regular Finite State Automata Combinatory logic

restricted to I

Table 2.1: The Chomsky Hierarchy, based partly on [76]

I make the following definitions about languages in general (taken from [123])

� The prefixes of L are Pref(L) = {w | wu ∈ L}

� The suffixes in L of a word w are Lw = {u | wu ∈ L}

� The short prefixes of L are Sp(L) = {w ∈ Pref(L) |6 ∃u ∈ Σ∗ : Lw = Lu ∧ |u| < |w|}

� The kernel of L is N(L) = {ε} ∪ {wa ∈ Pref(L) | w ∈ Sp(L) ∧ a ∈ Σ}

The prefixes and suffixes of a language should be obvious. The short prefixes of a language are all those
prefixes such that there is no shorter word with the same set of suffixes. The kernel of a language is the
set of all prefixes that are one symbol longer than a shortest prefix, and the empty string. Later (Section
3.2.1) we will see that the short prefixes of a regular language represent the states of a DFA and that the
kernel captures the transitions of a DFA.

2.2.2 Grammars

A grammar is a set of productions consisting of terminals and non-terminals. The terminals of a grammar
are drawn from the grammar’s alphabet and non-terminals are meta-symbols used to rewrite a start symbol
into a string of terminals by applying the productions. For example, given the production aA → b the
string aAb could be rewritten as bb. If a grammar can generate the same string in more than one way it
is said to be ambiguous.

Definition 1 (Grammar). A grammar is a 4-tuple 〈N,Σ, P, S〉, where N is a finite set of non-terminals,
Σ is a finite set of terminals, P is a finite set of productions of the form p : (Σ∪N)∗N(Σ∪N)∗ → (Σ∪N)∗

and S ∈ N is a start symbol.

We can define different forms of grammars, such as regular grammars or context-sensitive grammars,
by replacing restrictions on the kinds of productions that are allowed. An unrestricted grammar may
represent a recursively-enumerable language. The constraints are as follows:
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� Context-Sensitive grammars may only have productions with a single non-terminal on the lefthand-
side. For example, the language anbn can be given by S → aSB | ab.

� Regular grammars may only have productions with a single non-terminal on the lefthandside and
either the empty string, a single terminal or a single terminal followed by a non-terminal on the
righthandside. For example, the language ab∗c can be given by S → aT, T → bT | c.

The above demonstrates two common shorthand notations used in writing grammars - firstly, where two
productions have the same lefthandside they may be written together by placing a | between the two
righthandsides and secondly, the kleene star can be used to represent a (possibly empty) sequence of the
same symbol(s).

2.2.3 Automata

Automata are machines that have states and may make transitions between states based on receiving
(or generating) symbols from some alphabet. Here I discuss different forms of automata with different
expressive power.

Finite State Automata

A finite-state automata (FSA) or finite-state machine (FSM) can accept or generate a regular language. A
FSA may be deterministic if given a symbol a unique transition is available or non-deterministic otherwise.
A FSA is complete if given a symbol it may always make a transition, and incomplete otherwise. What
should happen for incomplete FSA is not usually defined, however two common approaches are to allow
skip behaviour where the FSA stays in the same state or next behaviour where the FSA goes to some
failing state.

Definition 2 (Deterministic Finite Automata (DFA)). A DFA is a 5-tuple A = 〈Q,Σ, δ, q0, F 〉 where Q
is a finite set of states, Σ a finite alphabet, δ : Q × Σ → Q a transition function, q0 an initial state and
F ⊆ Q a set of accepting states.

A word w ∈ Σ∗ is accepted by a DFA if and only if δ(q0, w) ∈ F where the transition function δ is
lifted to words by δ(q, ε) = q and δ(q, aw) = δ(δ(q, a), w).

Definition 3 (Nondeterministic Finite Automata (DFA)). A NDFA is a 5-tuple A = 〈Q,Σ, δ, q0, F 〉
where Q is a finite set of states, Σ a finite alphabet, δ ⊆ Q × Σ × Q a transition relation, q0 an initial
state and F ⊆ Q a set of accepting states.

A word w ∈ Σ∗ is accepted by a NDFA if and only if δ(q0, w, S) and S ∩ F 6= ∅ where the transition
function δ is lifted to words by δ(q, ε, {}) and δ(q, aw, S) iff δ(q, a, T )∧S =

⋃
p∈T : R st. δ(p, w,R). There

exist algorithms for converting from NDFA to DFA, minimising DFA and telling whether two DFA are
equivalent. A DFA with N states can be encoded as a binary string of length O(NlogN).

When modelling finite state machines we may want to take outputs into account as well as inputs,
these are often call finite state transducers as they transduce/transform input into output. These do not
explicitly capture a notion of acceptance, instead a finite state transducer can be characterised by the
words that it outputs.

Definition 4 (Moore Machine). A moore machine is given by a 6-tuple 〈Q,Σ,Λ, q0, δ, γ〉 where Q is
a finite set of states, Σ is a finite input alphabet, Λ is a finite output alphabet, q0 is an initial state,
δ : Q× Σ→ Q is a transition function and γ : Q→ Λ is an output function.
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Definition 5 (Mealy Machine). A mealy machine is given by a 6-tuple 〈Q,Σ,Λ, q0, δ, γ〉 where Q is a finite
set of states, Σ is a finite input alphabet, Λ is a finite output alphabet, q0 is an initial state, δ : Q×Σ→ Q
is a transition function and γ : Q× Λ→ Q is an output function.

Lastly I should note that the fact that these machines only have a finite number of states is important
for reasons discussed above (Section 2.1.2).

Probabilistic Finite State Automata

The following definitions come from [37]. A probabilistic language is a distribution over Σ∗, that is
LP : Σ∗ → [0, 1] and

∑
u∈Σ∗ LP (u) = 1.

Definition 6 (Probabilistic Finite Automata (PFA)). A PFA is a 5-tuple 〈Σ, Q, φ, ι, τ〉 where Σ is a
finite alphabet, Q is a finite set of states, φ : Q × Σ × Q → [0, 1] is the transition probability function,
ι : Q→ [0, 1] is the initial probability distribution, τ : Q→ [0, 1] is the final probability function.

A PFA must satisfy
∑

q∈Q ι(q) = and ∀q ∈ Q : τ(q) +
∑

a∈Σ

∑
q′∈Q φ(q, a, q′) = 1. We can lift φ

to words u by φ(q, ε, q′) =

{
1 if q = q′

0 otherwise
and φ(q, ua, q′) =

∑
q′′∈Q φ(q, u, q′′)φ(q′′, a, q′). A state q is

accessible if ∃q′ : ι(q′) > 0 ∧ ∃u ∈ Σ∗ : φ(q′, u, q) > 0. So that a PFA represents a distribution it must
satisfy the constraint that for all accessible q we have that ∃u ∈ Σ∗,∃q ∈ Q : φ(q, u, q′)τ(q′) > 0. This
states that the probability of reaching a final state from any accessible state is strictly positive.

A state q is initial if ι(q) > 0 and final if τ(q) > 0. The probability of generating word u is therefore
given by P (u) =

∑
q,q′∈Q ι(q)φ(q, u, q′)τ(q′). A probabilistic language is regular if it can be generated by

a PFA. A PFA is deterministic if for every state there exists at most one transition out of that state for
each symbol in the alphabet with a probability larger than zero.

Definition 7 (Hidden Markov Model)). A discrete HMM is a 5-tuple 〈Σ, Q,A,B, ι〉 where Σ is a finite
alphabet, Q is a finite set of states, A : Q×Q→ [0, 1] is a probability transition distribution, B : Q×Σ→
[0, 1] is a emission probability distribution and ι : Q→ [0, 1] is an initial probability function.

A path v on a HMM is a word on Q∗ the probability of a HMM emits the word u whilst taking the
path v is given by

P (u, v) =

 ι(v1)
∑l−1

i=1[B(vi, ui)A(vi, vi+1)]B(vl, ul) if l = |u| = |v| > 0
1 if |u| = |v| = 0
0 otherwise

The probability of a HMM emitting u by any path is therefore P (u) =
∑

v∈Q∗ P (u, v). Dupont [37]
showed that a HMM is equivalent to a PFA with no final probabilities, that is ∀q ∈ Q : τ(q) = 0.

More Expressive Automata

Here I detail a few more variants of more expressive automata. As automata become more expressive
there are more possible variants and therefore definitions are more likely to change in the literature. I
present examples here.

Definition 8 (Pushdown Automata (PDA)). A PDA is a 7-tuple 〈Q,Σ,Γ, δ, q0, Z0, F 〉 where Q is a finite
set of states, Σ is a finite input alphabet, Γ is a finite stack alphabet, δ ⊆ (Q × Σ × Γ × Q × Γ∗) is a
transition relation, q0 is a start state, Z0 is a start symbol and F ⊆ Q is a set of accepting states.
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A configuration of a PDA is a triple t ∈ (Q× Σ∗,Γ∗). We define a step of a PDA by ` such that for
all words w, stacks β, input symbols a and stack symbols X if δ(q, a,X, p, α) holds then (q, aw,Xβ) `
(p, w, αβ). We can either say that a word w is accepted by a PDA if ∃q ∈ F : (q0, w, Z0) `∗ (q, ε, α)
or if ∃q : (q0, w, Z0) `∗ (q, ε, ε), where `∗ is the transitive closure of `. The first definition is termed
acceptance by final state and the second acceptance by empty stack, they are equivalent in the sense that
if a language can be accepted by a PDA with one there exists a PDA that will accept it with the other.
Pushdown automata accept the context-free languages.

A timed word wT is a finite sequence from (Σ×R≥0) such that ∀(ai, ti), (aj , tj) ∈ w : j > i⇒ tj ≥ ti.
A timed language is a (possibly infinite) set of timed words.

Definition 9 (Timed Automata (TA)). A TA is a 5-tuple 〈Σ, Q, q0, δ, F 〉 where Σ is a finite input
alphabet, Q is a finite set of states, q0 is an initial state, δ ⊆ Q × Σ × GΣ × Q is a transition relation

where GΣ : R≥0|Σ| → B is a set of guards, and F is a set of accepting states.

A TA defines a set of guarded words wG ∈ (Σ, GΣ). The set of timed words accepted by a TA is the
set of all wT such that wT |= wG where the judgement |= checks that the times in the timed word satisfy
the guards in the guarded word. This can be defined by translating timed words into clocked words where
each symbol in Σ is given a clock a time represents a predicate on a clock and then judgement |= holds
if the predicates from the clocked word satisfy the predicates defined by the guard.

To allow for parameters on input symbols, guards on transitions and a notion of local state, extended
finite state machines were developed. These machines are very close to computer programs and are
Turing-complete (can simulate a Turing machine).

Definition 10 (Extended Finite State Machine (EFSM)). An EFSM is a 7-tuple 〈Q,Σ,Λ, D,C, U, δ〉
where Q is a set of states, Σ is a finite set of input symbols, Λ is a finite set of output symbols, D is an
n-dimensional linear space of parameter domains D1 × . . .×Dn, C is a set of constraint functions of the
form c : D → B, U is a set of update functions of the form u : D → D and δ : Q×C ×Σ)→ (Q×U ×Λ)
is a transition function.

2.3 Testing

Testing is the process of checking if inputs to a program give expected outputs, for a finite number of
inputs. There are some areas of testing which are of interest to this work, I summarise these here without
going into great detail.

Integration Testing

Integration testing is the process of testing a number of modules or components as a combination. This
either tests that the behaviours of the components are preserved after combination, or it tests some
larger behaviour related to the combination. The area of component-based design relies on a concept of
integrating separate components to achieve some larger behaviour. We might also view integration testing
as testing at the interface between the different components, where we view the communication between
components as conforming to some protocol.

Regression Testing

Regression testing is the process of testing a program against a previous version to make sure that the
changes have not introduced any undesired behaviour. This will usually be achieved by using a large
(growing) test suite to test each version of the program and ensuring that all new versions of the program
satisfy this test suite.
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Automatically Generating Test Suites

Test suites and test cases can be difficult to generate by hand - time consuming and prone to error. There
have been a number of approaches to automatically generate test suites. These include the following:

� Model Based Testing [30, 137] A (formal) model of a system is used to generate a test suite, models
are typically given as finite state machines or UML diagrams and the test suite can be constructed
using a number of techniques such as model checking [50] or constraint solving [35].

� Symbolic execution - The main idea behind symbolic execution is to use symbolic instead of concrete
values. In test generation symbolic execution is used to compute a representation of all the inputs
that execute a certain path in the system. This input constraints must then be solved to create
concrete input data. A number of approaches exist that make use of symbolic execution [165, ?].

� Random testing - This idea is very basic, but has been shown to work, the program is simply
randomly explored (or randomly with heuristics) to generate test cases [112].

� Mutating an existing test suite - Linked to the concept of mutation testing [73] which can measure
the adequacy of a test suite by mutating the test target, one proposed approach to test generation
it to mutate an existing test suite to explore behaviours similar to those captured by the original
test suite.

There are other techniques and if I were to look at how this area could be used in my work I should
look at these in more detail - a good starting point would be [11], which looks at combining test case
generation with runtime verification.

Conformance Testing

Conformance testing [87] involves checking of a program conforms exactly to a specification. This differs
from model-base testing slightly as the goal is slightly different - in conformance testing the focus is
ensuring that the model has been adequately covered in tests so that we have a high confidence that
the program and specification capture the same behaviour, whereas in model-based testing the goal is
to ensure that the program is free of errors. The process is very similar however. There are a number
of approaches to conformance testing which take models and generate test suites with certain coverage
guarantees . These consist of the W-method [25, 164], partial W-method [52], transition tour [116],
distinguishing sequence method [63] and UIO method [138]. I discuss the W-method below.

The Vasilevski/Chow W-Method (description following [167, 17]) This takes an implementa-
tion DFA P and a specification DFA S with the same alphabet Σ and attempts to construct Y ⊆ Σ∗

such that (L(P)∩Y = L(S)∩Y )⇒ L(P) = L(S). Let C be a prefix-closed subset of Σ∗ that visits every
state in P = 〈Q, q0,Σ, δ, F 〉.

∀q ∈ Q\{q0},∃c ∈ C : δ(q0, c) = q

Call C a state cover set - this contains all strings needed to visit every state in P. Let W be a subset of
Σ∗. Statesq1, q2 ∈ Q are W -distinguishable iff (L(P)(q1) ∩W ) 6= (L(P)(q2) ∩W ) where

L(P)(q) = {w ∈ Σ∗ | ∃qf ∈ F : q
w→ qf}

Let W be a set such that any two distinct states of P are W -distinguishable. Call W a characterisation
set. If we know, or can guess, that the model has m states and the implementation has n states then let
k = n−m. Let the test set Y be given by Y = C({ε} ∪ Σ ∪ . . . ∪ Σk+1)W . The state cover set contains
a string to reach any state and the characterisation set can tell any two states apart. In the case where
m = n then the test set compares all states.
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2.4 Instrumentation

To generate dynamic traces a program must be instrumented. There are different levels of instrumentation

� Manual instrumentation at the source code level - this is no longer practical for large programs and
is not generally accepted as a practical form of instrumentation

� Automatic instrumentation at the source code level - this can be achieved through a process called
Aspect Orientated Programming (AOP) [43]. An example of AOP is AspectJ [1], an aspect-
orientated extension to Java. AspectJ weaves advice into a program at user defined point cuts
defined in terms of join points. A join point is a well-defined point in the program and might be
a method or constructor invocation or execution, the handling of an exception, field assignment or
access, etc. A point cut represents a pattern of join points that may match a number of points in
the program, and is used to select these points and collect context at these points. The user can
then define advice, standard Java code, to add before, after or around those points. The advice is
added to the program when it is compiled using the AspectJ weaver, resultant bytecode contains
the advice in-place. For a more in-depth discussion of AspectJ and all its uses see [82].

� Automatic instrumentation at the byte code level - practically this has the same implementation as
instrumentation at the source code level, however the focus is different. At the source level instru-
mentation is defined in terms of source code objects. Whereas at the byte code level instrumentation
is in terms of byte code objects. A source code level instrumentation tool will generally translate
instrumentation details into the byte code level. Instrumentation at this level can either be static
or dynamic - an example of a dynamic byte code instrumentation tool is given in [16]

� Automatic instrumentation at the machine level - specialised hardware (or software) at the ar-
chitectural level can be used to record operations made by the program. This will not generally
be program specific and would usually be used for debugging low-level correctness or performance
issues.

The method that I use throughout this project is AspectJ, as I am mainly dealing with Java (and
Scala) programs. Some runtime monitoring tools automatically create AspectJ aspects containing instru-
mentation and monitoring code.

2.5 Summary

This chapter covered some preliminary material relevant to the rest of the report. I discussed different
forms of program specifications, languages, automata and grammars, first order linear temporal logic,
runtime verification (focussing on the runtime verification tool RuleR), testing and instrumentation.
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Chapter 3

The Specification Inference Problem

This chapter explores the problem of inferring trace specifications in general, although I focus on inferring
these specifications from execution traces. This has mainly been covered by the field of Grammar Inference
but there exist alternative approaches that exist within other fields. I begin by giving an overview of the
area (Section 3.1) including a map of the different approaches, potential formalisations of the problem,
how solutions to the problem may be evaluated and some complexity results. I then describe existing
techniques for Grammar Inference (Section 3.2), Dynamic Specification Mining (Section 3.3) and Static
Specification Mining (Section 3.4). I then describe some applications of specification inference techniques
(Section 3.5). I finish by summarising the key concepts and issues (Section 3.6).

3.1 An Overview of the Area

The problem of deciding whether a program satisfies a specification is one of deduction - from the facts
that the program exhibits the behaviours X and the correct program behaviours are Y we can deduce either
that the program is correct or incorrect. Here we are interested in a problem of induction - from the facts
the program exhibits the behaviours X and the program is correct we wish to induce the specification the
correct program behaviours are Y - we may additionally include the fact that the program exhibits the
behaviours Z and should not. This is often referred to as the problem of Inductive Inference and in the
general case is a problem of generalisation - the resulting specification will necessarily approximate the
actual specification. However, sometimes it is desirable to infer the exact specification and in this case
the facts about the program must contain enough information to exactly construct the specification.

In the case where our problem is one of generalisation there will be a number of possible solutions
and we will wish to have some means of selecting one of these. To do this we can apply the principle of
Occam’s razor, to tend towards the simplest such model. To describe simplicity of such models we could
use Kolmogorov complexity [169, 79, 21, 153, 154], a measure of the computational resources required to
describe an object, or some other concept of minimality such as the number of states in a sate machine.

The question of learnability asked by the field of computational learning theory considers whether there
exists a polynomial algorithm that can learn a suitable model to describe a set of inputs under certain
conditions. In the following I give a map of the area, describing its different components, formalise the
specification inference problem, discuss how solutions can be evaluated and consider the learnability issue.

3.1.1 A Map

Figure 3.1 attempts to capture the different approaches to solving the specification inference problem. In
the following I describe the main dimensions given in the map. The techniques referred to on the map
can be found later in the chapter (Sections 3.2 to 3.3).
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Figure 3.1: A map of specification inference techniques

Grammar Inference or (Dynamic or Static) Specification Mining

Grammar Inference is a machine-learning technique which attempts to construct a model or grammar to
describe some language, from examples of words in (or not in) that language. Work in this area dates back
to the 50s and 60s, where the focus was on learning natural languages, and since then the field has become
very diverse - good overviews of this area can be found in [10, 113, 34, 88]. The term ‘Specification Mining’
has been attributed to Ammons et al. from a paper written in 2001. Some people [166] have applied the
term only to dynamic analysis techniques, although some people [150] have applied the name to static
techniques. I take the broad definition that Specification Mining is a collection of some techniques that
attempt to infer or mine a specification of a program from some artefact of that program. There are
generally two main program artefacts used in Specification Mining - source code and execution traces -
the first being a static artefact and the second a dynamic artefact, we refer to these fields as dynamic
and static specification mining respectively. Other artefacts have been used, for example Livshits and
Zimmermann mine revision histories to find common error patterns [95]. Specification Mining is focussed
on concrete systems whereas Grammar Inference is often applied in other areas, for example language
acquisition. In this way, Grammar Inference techniques tend to be more theoretical, concentrating on the
complexity of their algorithms and evaluating techniques with hypothetical languages and Specification
Mining techniques tend to be more practical, concentrating on their application to real-world problems.
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Given or Requested Data

An approach works with given data if it has access to a finite static amount of data and has no control
over what is included in this data. An approach works with requested data if it can request which data it
should be provided with, this is possibly infinite and is often viewed as being given incrementally. From
a practical viewpoint given data relates to examining a set of log files or arbitrary executions at runtime,
whereas given data relates to either manually or automatically ensuring that certain data is observed.

Approximate or Exact

An approach attempts to infer the exact specification or an approximate specification. It should be
noted that distinction can be made for two different reasons - firstly, the approach may attempt to infer
an approximate specification in an attempt to reduce the tractability of the problem, or secondly, the
approach may only be able to infer an approximate specification as it is not provided with sufficient data
to infer an exact specification. This later situation is the case in specification mining techniques, which
attempt to generalise from some given data rather than infer the original specification.

Passive or Active

An approach is passive if it cannot guide which data is to be provided during the inference process and
is active if it can. There is an overlap with given or requested data here - an active approach necessarily
uses requested data but a passive approach may either work from given data or request all the data it
is to use before the inference process. The distinction between the two forms of passive approach have
both theoretical and pragmatic repercussions - mainly that some passive approaches can only guarantee
exactness if the data has some certain properties.

Summary

The map does not contain every aspect of specification inference, instead it attempts to summarise the
key dimensions. I shall add to and improve this map as my understanding of the area increases.

3.1.2 Formalising the Problem

In this section I discuss different approaches to formalising the problem of inferring a specification. In
the case of inferring specifications from execution traces this is usually based on a sample of the form
S = S+ ∪ S− where S+ contain traces that are correct or positive and S− contains traces which are
incorrect or negative. We may not be able to assume that the positive and negative sample sets are
disjoint - this seems like an obvious requirement but practically may not be the case. We call the case
where a word exists in both the positive and negative sample set noise and. Noise may also refer to
incorrectly labelled samples due to errors in the source of the samples or irrelevant details in the samples.
Unless otherwise stated we assume that there is no noise in the samples.

Grammar Inference

The goal of Grammar Inference is to infer the language a set of words belongs to, possibly with the
knowledge that an additional set of words does not belong to the language. The inferred language will
be represented by some model, such as a grammar or automata - note that it is usually the language
represented by the model, not the original model itself, that is being inferred, as one language can be
represented by many different models. It is generally assumed that the alphabet is known previously or
can be inferred from samples.
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Here I outline a number of different attempts to phrase the grammar inference problem. The original
grammar inference problem constrains the inferred model to one accepting the positive sample and not
accepting the negative sample, a refinement of this demands that the inferred model is minimal in some
sense. We always assume that S+ 6= ∅ but in the case where S− = ∅ a minimal model would be one
that accepts everything and therefore this phrasing is only practically applicable to situations where some
negative data is given.

Definition 11 (Basic Grammar Inference Problem). Given a sample S = S+ ∪ S− over some alphabet
Σ find a model M such that S+ ⊆ L(M) and S− ∩ L(M) = ∅.

Definition 12 (Minimal Grammar Inference Problem). Given a sample S = S+∪S− over some alphabet
Σ find a model M such that S+ ⊆ L(M) and S− ∩L(M) = ∅ and there does not exist M ′ < M such that
S+ ⊆ L(M ′) and S− ∩ L(M ′) = ∅, for some definition of minimality < on models.

Alternatively the problem can be phrased in terms of the original hidden language that the sample
has been generated from. These seems more appropriate, however also impossible in the general case of
an arbitrary sample. Therefore, we introduce the concept of a sample satisfying some property necessary
for inference to be decidable. Later we see that we can characterise this property for regular languages,
however the most general such property would be that S = Σ∗ i.e. is complete. We can also add in a
concept of approximation.

Definition 13 (Hidden Grammar Inference Problem). Given a hidden language L over some known
alphabet Σ and sample S = S+ ∪ S−, such that S+ ⊆ L, S− ∩ L = ∅ and S satisfies some necessary
property P, find a model M such that L(M) = L.

Definition 14 (Approximate Hidden Grammar Inference Problem). Given a hidden language L over
some known alphabet Σ and sample S = S+ ∪ S−, such that S+ ⊆ L, S− ∩ L = ∅ and S satisfies some
necessary property P, find a model M such that L(M)and L disagree on at most α words, for some finite
α.

The majority of work in this area has been restricted to the inference of regular languages - focussing
on Deterministic Finite Automata (DFA) as a representation of these languages. The above phrasings
can be used to describe regular inference by replacing the words model with DFA, however I rephrase the
important problems here.

Definition 15 (Regular Inference Problem). Given a sample S+ and S− over some alphabet Σ find a
DFA A such that ∀s ∈ S+ : δ(q0, s) ∈ F and ∀s ∈ S− : δ(q0, s) /∈ F .

Definition 16 (Regular Inference Problem of minimum DFA). Given a sample S+ and S− over some
alphabet Σ find a DFA A such that ∀s ∈ S+ : δ(q0, s) ∈ F and ∀s ∈ S− : δ(q0, s) /∈ F such that no other
DFA with fewer states than A also does this.

Definition 17 (Regular Inference Problem of DFA n states). Given a sample S+ and S− over some
alphabet Σ find a DFA A with n states such that ∀s ∈ S+ : δ(q0, s) ∈ F and ∀s ∈ S− : δ(q0, s) /∈ F .

Definition 18 (Regular Inference Problem of Hidden DFA from Structurally Complete Sample). Given
a hidden DFA A and a sample S+ and S− over some alphabet Σ such that S+ ⊆ L(A, S− ∩ L(A) = ∅
and S is structurally complete with respect to A, find a DFA A′ such that L(A) = L(A′).

A structurally complete sample is one which covers all transitions and includes a sample accepted
by each final state - this is discussed further in Seciton 3.2.1. Note that only definitions 13, 14 and 18
relate to exact learning. The others represent some form of approximation through the generalisation of
a sample. Approaches that use requested data or are active can be phrased as requesting subsets of the
presentation of the language (where S = Σ∗).
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Dynamic Specification Mining

This problem has been described in different ways in the literature. Ammons et al. were one of the
first to pose this problem, they begin with a ‘unsolvable’ problem (Definition 19) concerning Application
Programming Interfaces (API) and Abstract Data Types (ADT). The reason this problem is unsolvable
is that the training set is unlabelled. They refine this definition by introducing the concept of interaction
scenarios that are subtraces of the original interaction trace mentioning at most k objects. Motivated by
ideas from PAC-learning (see Section 3.1.4) they make a final definition (Definition 20) of specification
mining that infers a probabilistic finite state automata (PFSA)(see Section 2.2.3). Their use of inter-
action scenarios can be seen as a projection of a parametric trace based on parameters, the probably
approximately part of the definition can deal with noise in the input traces.

Definition 19 (Ideal Specification Mining). Let I be the set of all traces of interaction with an API or
ADT, and C ⊆ I be the set of all correct such traces. Given an unlabelled training set T ⊆ I, find an
automaton A that generates exactly those traces in C.

Definition 20 (Specification Mining). Let IS be the set of all interaction scenarios with an API or ADT
that manipulate no more than k data objects. Let M be a target PFSA and PM be the distribution over
IS that M generates. Given a confidence parameter δ > 0 and an approximation parameter ε > 0, find

(in time polynomial in 1/ε, 1/δ, |Q|, |Σ|) with probability at least 1 − δ a PFSA M̂ such that P M̂ is an
ε-good approximation of PM .

Gabel and Su [54] give an alternative definition that also makes use of a projection over the alphabet
(Definition 21). This directly relates to finding an instantiation of a template FSA A with events in a
trace τ . Note that they refer to a specification being modelled by a projected trace, this is usual in this
approach. This means that some intuitive ideas about ‘next’ events are lost - that is inferred models
can only capture interactions between symbols of the projected alphabet. Additionally, the choice of a
projecting (or local) alphabet may not be trivial.

Definition 21 (Generate and Check Specification Mining (SpecMine)). Given a FSA A over an alphabet
Σ1 and execution trace τ ∈ Σ∗2 such that Σ1∩Σ2 = ∅. Does there exist a total injective function ρ : Σ1 → Σ2

such that τ |co-Dom(ρ) |= ρ(A) where ρ(A) is equal to A with δρ(A)(s, ρ(a)) = δA(s, a).

Summary

Here I have presented different formalisations of the specification inference problem. If I were to give a
more informal definition that may be useful to help us think about the problem being solved I would say
that it is the problem of finding a model which describes the program that the programmer intended to
create. This captures the fact that it is important to consider the fact that the samples will contain noise
and that perhaps exact learning is not actually that desirable. Another way of approaching the problem
is to consider the possible applications of the inferred specification and question what properties it should
have - different applications may involve the solving of the problem phrased in different ways.

3.1.3 Evaluating Solutions

To compare and evaluate approaches it is necessary to have some method for measuring how alike two
models are - the hidden model and the inferred model. For finite-state based formalism this is can be done
through trace equivalence. Traditionally in Grammar Inference inferred models are evaluated by checking
how many traces or strings in some test set are accepted by the inferred model. However, Specification
Mining techniques have traditionally borrowed the evaluation techniques of support and confidence from
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data mining. Recently, Walkinshaw et al. [167] have proposed that the dimensions of precision and
recall from the field of information retrieval [163] should be used to evaluate inferred specifications. Their
framework seems the most useful, and therefore I describe it here.

Precision captures a measure of exactness and recall a measure of completeness, they are used to
measure the overlap between what is retrieved and what is relevant. If the hypothesis specification
accepts a trace we say it has been ‘retrieved’ and if the actual specification accepts a trace we say it is
‘relevant’. This intuition is biased towards positive behaviour and will not capture the situation where
the hypothesis and actual specification both correctly reject a trace. Therefore, positive and negative
versions are introduced as Retrieve+, Retrieve−, Relevant+ and Relevant− and updated with respect to
the test set as described in Table 3.1.

Hypothesis Specification Actual Specification Retrieve+ Relevant+ Retrieve− Relevant−

accept accept add add
accept reject add add
reject accept add add
reject reject add add

Table 3.1: How to update Retrieved and Relevant sets

Precision can be given by

precision+ =
|Retrieved+ ∩Relevant+|

|Retrieved+|
precision− =

|Retrieved− ∩Relevant−|
|Retrieved−|

Recall can be given by

recall+ =
|Retrieved+ ∩Relevant+|

|Relevant+|
recall− =

|Retrieved− ∩Relevant−|
|Relevant−|

These can be interpreted in the following way

� High precision+ means that the hypothesis is mostly correct for positive behaviour

� High precision− means that the hypothesis is mostly correct for negative behaviour

� High recall+ means that the hypothesis is mostly complete for positive behaviour

� High recall− means that the hypothesis is mostly complete for negative behaviour

The model that accepts every trace will have total positive recall and the model that rejects ever trace
will have total negative recall. A model which accepts only the training set will have perfect positive
recall and precision on the training set.

Walkinshaw et al. note that if the test set is constructed randomly there may still be aspects of the
DFA that are not explored as they have low observability, meaning that the probability of generating a
string to identify that behaviour by random exploration is very low. If the samples are drawn from the
inferred specification or from the actual specification in the same way as the training data there is also a
danger that the test data will simply represent the training data. They suggest the use of conformance
testing (Section 2.3) as a solution to this problem.

I also propose an approach for evaluating inferred specifications based on the concept that a trace can
be scored based on how close it is to accepting a trace. The two metrics are

� Distance into Trace - A trace is scored based the longest prefix of the trace which is accepted
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� Distance from Trace - A trace is scored on how many symbols most be ignored for it to be accepted

These metrics should be given proportional to the length of the trace they are measured on. We could
also consider a static similarity measures on the inferred models - i.e how far δ and F differ.

Competitions

To encourage new pragmatic techniques for inferring finite state machines there have been number of
competitions which I detail here

� Abbadingo One occurred in 1997 and was the first competition of its kind. It was developed to
encourage the exploration of techniques for inferring large DFA from sparse data. Alphabets are
set to 2 symbols. The results of the competition are described in [84] and the winning algorithm
was called Evidence Drive State Merging (Section 3.2.2). The competition is described at http:

//www-bcl.cs.may.ie/.

� Gowachin started in 1998 and appears to be ongoing but unmaintained. The experimental setup
from Abbadingo One was extended so that competitors could add their own problems. The compe-
tition is described at http://www.irisa.fr/Gowachin/.

� GECCO occurred in 2004 and was focussed on inferring reasonably small DFA (10 to 50 states) from
noisy data ( 10%). The winner [62] was a genetic algorithm which evolved the transition matrix and
used an optimal state labelling technique to infer the acceptance set. The competition is described
at http://cswww.essex.ac.uk/staff/sml/gecco/NoisyDFA.html.

� Omphalos occurred in 2004 and was focussed on inferring context-free grammars. The winning
algorithm does not appear to be available. The competition is described at http://www.irisa.fr/
Omphalos/ and the competition server is still live.

� Stamina occurred in 2010 and focussed on inferring DFA. The two parameters to the competition
were alphabet size and sparsity of training data. The entries were scored using positive and negative
precision and recall as described above. The winner was the DFASAT algorithm, which will be
published at a later date. The competition is described at http://stamina.chefbe.net/.

These competitions have helped to develop some of the best techniques in current use and hopefully
they shall continue to do so.

QUARK

QUARK [97] has been presented as a framework for assessing specification inference tools, but I have not
seen this used outside of the research group in which it was developed. Their approach measures accuracy
in terms of precision and recall, robustness in terms of accuracy in the presence of errors and scalability in
terms of the size of the actual specification. They include an error injection module to measure robustness
and allow either FSA or PFSA to be inferred.

3.1.4 Learnability

The field ofcomputational learning theory [9] studies the feasibility of learning, where a computation is
feasible if it can be carried out in polynomial time. There are three main models for learning [139, 34] -
identification in the limit [59], query learning [8] and PAC learning [162].
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Identification in the limit [59]

Gold was the first to formalise the problem of grammar inference and has produced a number of results.
In his identification in the limit model a learner is presented with each example in turn and hypothesises
a model for L after each example. Identification occurs when, after seeing a significantly large number of
examples, the learner produces the same, correct (with respect to the seen examples), hypothesis for two
consecutive examples. Clark and Lappin [28] outline Gold’s results as

1. The class of finite languages is identifiable in the limit on the basis of positive data only

2. A finite class of recursive languages is identifiable in the limit on the basis of positive data only

3. A super-finite1 class of languages is not identifiable in the limit on the basis of positive evidence
only

4. The class of recursive languages is identifiable in the limit on the basis of negative and positive data

Note that given a complete enumeration of all words in Σ∗ labelled with whether they are in L or not
we can generate a minimal model for L - this is called Identification by enumeration.

We can consider complexity in the length of the input traces. It was shown by Gold that the problem
identifying a minimum DFA from a given finite set of examples is NP-complete [60]. The regular inference
problem has been compared to breaking the RSA cryptosystem [77]. However, by assuming additional
information (the samples given are structurally complete) it is possible to construct a polynomial algorithm
within this learning model that can exactly identify a regular language (see Section 3.2).

Query Learning [8]

To tackle the NP-hardness of the language learnability problem Angluin [8] presented a framework in which
a learner can ask questions of a teacher or oracle. A membership query asks whether a word belongs
to the hidden language and an equivalence query asks whether a hypothesised language is equivalent to
the hidden language. I describe Angluin’s algorithm in Section 3.2.3. It has been shown that the class
of regular languages is polynomially identifiable using equivalence and membership queries, but not only
using equivalence queries.

Probably Approximately Correct (PAC) learning [162].

In this learning model given a set of samples a learner must select a hypothesis generalisation function
form a set of possible functions or concepts such that the hypothesis is probably approximately correct -
that is with high probability the hypothesis will have a low generalisation error, or approximate the actual
distribution of the samples. Importantly it has been shown that regular languages are PAC-learnable.

Complexity Results for Dynamic Specification Mining

Gabel and Su [54] give a polynomial reduction from their definition of the specification mining problem
(Definition 21) to the well known NP-complete HamPath problem [75].

Definition 22 (HamPath). Given a directed graph G = (V,E), does G have a path that visits each vertex
v ∈ V exactly once?

1Containing all finite languages and at least one infinite language
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The reduction goes as follows - Given a graph G construct a NDFA A such that Σ = V , S =
{s0, s

∗} ∪
⋃
v∈V {sv}, q0 = s0, ∀(u, v) ∈ E : δ(su, u) = sv, ∀u ∈ V : δ(s0, ε) = su ∧ δ(su, u) = s∗, F = {s∗}.

Given a trace τ = a0 . . . an over Σ′ such that ∀0 < i 6= j ≤ n : ai 6= aj and |Σ′| = |V | = n, graph G has
a Hamiltonian path if and only if SpecMine(A, τ). The proof in the ⇒ direction assumes that G has a
Hamiltonian path p and constructs a mapping ρ : Σ→ Σ′ as ρ(pi) = ai where pi is the ith vertex in the
path p. Therefore, τ is accepted by A using the path s0, sp1 , . . . , spn as ε.ρ(p1) . . . ρ(pn) = a1 . . . an = τ .
The ⇐ direction assumes SpecMine(A, τ) and therefore the existence of some mapping ρ : Σ→ Σ′ such
that A has a path p that accepts τ of the form s0, sρ−1τ1 , . . . , sρ−1τn . Note that ρ−1 exists as ρ is total
injective. As the path visits every state in the automaton once then ρ−1(τ1), . . . , ρ−1(τn) is a Hamiltonian
path of G.

Summary

Pit [128] gives a thorough overview of the complexity results for Grammar Inference. It has been noted
that although the Grammar Inference problem is intractable in the worst case (without access to an
oracle) it is reasonable in the average case.

3.1.5 Summary

In this section I have given an overview of the problem of inferring specifications. The problem is, in the
general case, NP-hard, however there exist learning models in which polynomial time algorithms exist.
In the next few sections I discuss concrete techniques for inferring different forms of specifications.

3.2 Grammar (or Model) Inference Techniques

In this subsection I review existing techniques for grammar inference, concentrating on regular inference.
I begin by describing the regular inference search space - the DFAs consistent with given a sample. I then
split examine passive and active regular inference techniques separately before considering approaches
for inferring context-free grammars and existing tools in this area. Note that passive techniques operate
within the complexity constraints of the identification in the limit learning model described above and
active techniques operate within the complexity constraints of the query learning model.

3.2.1 The Regular Inference Search Space

The regular languages have received a lot of attention in the literature as they are the simplest language
in the Chomsky hierarchy and therefore may present easier problems and have solutions that could be
generalised to more complex classes of languages. Here I discuss some results, mainly from [41], related
to how the search for a regular language to describe a sample of strings can be organised.

Nerode’s Right Congruence

Nerode’s right congruence, also known as the Myhill - Nerode Theorem describes how the set Σ∗ can be
partitioned in such a way that each partition represents a different state in a state machine. Nerode’s
right congruence ≡L is a congruence on the set of words Σ∗ for some regular language L, which splits
the set Σ∗ into a number of equivalence classes, such that no two words in an equivalence class can be
differentiated by any suffix. A language is regular if there are a finite number of equivalence classes, as
there will then be a finite number of states. Nerode’s right congruence ≡L is given by the following for
u, v ∈ Σ∗

u ≡L v iff ∀w ∈ Σ∗ : uw ∈ L ⇔ vw ∈ L (3.1)
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This has a number of consequences, the main one being that two states accepting the same sets of words
can be merged. Although, in practical examples it is not generally possible to tell if two words cannot be
differentiated by any suffix, as this may require an infinite amount of data.

We can use ≡L to give a canonical minimal DFA accepting L. Let uL represent the equivalence class
of u with respect to ≡L then define A = 〈Q,Σ, δ, q0, F 〉 such that Σ is given, Q = {uL | u ∈ Σ∗}, q0 = εL,
F = {uL | u ∈ L} and for all a ∈ Σ we have δ(uL, a) = uaL.

This gives an alternative way of showing that a language is non-regular besides the usual pumping
lemma for regular languages. The pumping lemma states that if L is regular there exists a constant c
such that for all w ∈ L with |w| ≥ c we can write w = xyz where y 6= ε, |xy| < c and ∀k ≥ 0 : xykz ∈ L.
The pumping lemma gives a necessary condition for regularity, whilst Nerode’s right congruence gives a
necessary and sufficient condition.

Capturing a Regular Language

Here I give a brief overview of different properties of sample sets taken from regular languages. A positive
sample set for a language is a set of samples from that language and a negative sample set for a language
is a set of samples not from that language. A presentation of a language is a complete labelling of all
words in Σ∗ as to whether they are in the language or not, and a text is a set of all words in the language.
Note that, unless the language is finite, a presentation or text for a language will be infinite. I make the
following, more pragmatic, assertions about sample sets.

Definition 23 (Complete, Characteristic and Structurally Complete Samples). A sample S = S+ ∪ S−
for a DFA A is a set of words from Σ∗ such that S+ ∈ L(A) and S− /∈ L(A). A sample is (in increasing
size)

� (structurally) complete (with respect to A) iff S+ covers every transition in A and for every state
in F contains a string accepted by that state

� characteristic iff given L = L(A)

1. ∀w ∈ N(L) : (w ∈ L ⇒ w ∈ S+) ∧ (w /∈ L ⇒ ∃u ∈ Σ∗ : wu ∈ S+)

2. ∀w ∈ Sp(L),∀u ∈ N(L) : Lw 6= Lu ⇒ ∃v ∈ Σ∗ : (wv ∈ S+ ∧ uv ∈ S−) ∨ (uv ∈ S+ ∧ wv ∈ S+)

Where Lw denotes all the suffixes of w in L.

� complete with (with respect to A) if S+ = L(A), this impractical for a non-finite language

Recall the definitions given on page 7. This definition of a (structurally) complete sample has only been
used more recently, traditionally a structurally complete sample set only covered every transition in the
automata. Recall that the kernel of a language N(L) represents the transitions of the canonical automata
accepting L and the short prefixes SP (L) represent its states. Therefore a sample which is characteristic is
also structurally complete. However, a characteristic set is stronger as the second condition ensures that
for every two states that should not be merged there exists a suffix that tells them apart in the sample.
Note that the size of a characteristic set is O(|Q|2|Σ|) as the kernel has at most 1 + |Q||Σ| elements and
there are |Q| short prefixes.

Generally we assume S+ ∩ S− = ∅, however a case where S+ ∩ S− 6= ∅ would indicate noise and it is
interesting to consider how well learning approaches perform in the presence of such noise.
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Derived Automata

We can construct or derive automata from a sample set and then we can derive generalisations of these
automata by merging states. I describe these automata and their properties in this section. Given a
sample set S = S+ ∪ S− we can define the maximal canonical automata which accepts the positive
samples.

Definition 24 (Maximal Canonical Automata (MCA)). Given a positive sample S+, the DFA MCA(S+)
is a maximal canonical automata such that

� Σ is the set of symbols in S+, q0 = ε, F = S+,

� Q = {vi,j | i ≤ |S+| ∧ S+
i = u ∧ j ≤ |u| ∧ vi,j = u1 . . . uj} ∪ {ε},

� δ(ε, a) = {v | v = a = ai,1 ∧ i ≤ M} and δ(vi,j , a) = {vi,j+1 | vi,j+1 = vi,jai,j+1 ∧ a = ai,j+1 ∧ i ≤
M ∧ j ≤ |S+

i | − 1}

Where a state vi,j represents having seen the first j symbols of the ith word in S+ and S+
i gives the ith

string in S+.

Two states may represent the same string but are still separate states, meaning that MCA are usually
non-deterministic. The transitions take a state representing a string u to all states that represent the
string ua. Conceptually a MCA has a non-branching path from the initial state for each string in S+.
Note that L(MCA(S+)) = S+ and MCA(S+) is the automata with the largest number of useful states
with respect to which S+ is structurally complete, where a state is useful if there is a string in the language
of that automata that must pass through that state to be accepted. There is a lot of redundancy in a
MCA - we can remove this redundancy by merging states with identical prefixes to create a prefix tree
acceptor. We can additionally augment this prefix tree acceptor with the information from the negative
sample S+.

Definition 25 (Prefix Tree Acceptor (PTA)). Given a positive sample S+, the DFA PT A(S+) is an
augmented prefix tree acceptor for a sample S+ if and only if for every string in S+ PT A(S+) contains
a path from the initial state to an accepting state, modulo common prefixes.

Definition 26 (Augmented Prefix Tree Acceptor (APTA)). Given a sample S = S+ ∪ S−, the DFA
APT A(S) is an augmented prefix tree acceptor for a sample S if and only if for every string in S+

APT A(S) contains a path from the initial state to an accepting state, and for every string in S−

APT A(S) contains a path from the initial state to a non-accepting state, all modulo common prefixes.

We can capture an intuition about merging states by a partition π which groups states that are to
be merged - a partition π is a set of pairwise disjoint nonempty subsets of a set of states Q. The most
specific partition without any merges is {{q1} . . . {qn}} and the most general partition is {Q}. We call
each element of a partition a block and assume a function B(p, π) that gives all states in the same block
as p in the partition π. Given an automata A and a partition π we can define a quotient automata of A
which represents merging the states of A with respect to π.

Definition 27 (Quotient Automata (QA)). Given a DFA A = 〈Q,Σ, δ, q0, F 〉 and a partition π a quotient
automata is a DFA Aπ = (Qπ,Σ, δπ : Qπ × Σ→ 2Qπ , B(q0, π), Fπ) where

� Qπ = {B(p, π) | p ∈ Q}, Fπ = {B(p, π) | p ∈ F}

� δpi satisfies ∀b, b′ ∈ Qπ,∀a ∈ Σ : b′ = δπ(b, a)⇔ qj = δ(qi, a) where b = B(qi, π) and b′ = B(qj , π)
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We can define a prefix tree acceptor PTA(S+) as the quotient automata MCA(S+)πS+ where πS+ is
defined by B(q, πS+) = B(p, πS+) iff Pr(q) = Pr(q′) where Pr(s) gives the prefixes of state s.

Finally we note that there exists a universal automata that accepts all strings over some alphabet.
This is the most general automata and can be maintained from any automata A by the partition π = {Q}
that places all states in a single block.

Definition 28 (Universal Automata). Let U be the universal automata of that accepts all words in Σ∗

for some Σ. Given an automata A over Σ we can define its universal automata as UA = 〈{q},Σ, δ, q, {q}〉
where ∀q ∈ Q,∀a ∈ Σ : δ(q, a) = q.

The Search Space

We can define a partial ordering between partitions such that πi refines πj if every block of πj is a union
of one or more blocks of πj . Formally, πj � πi iff ∀b ∈ πj∃b0 . . . bk ∈ πi : b = b0 ∪ . . . ∪ bk. Let � denote
the transitive closure of �. � is as a partial order on the set of all partitions for a given automata A -
this set of partitions describes all automata more general than A. If πj � πi then Aπj is more general
than Aπi , which we write Aπj � Aπi . This can be linked to language subsumption, as Aπj � Aπi if
L(Aπj ) ⊆ L(Aπi).

Figure 3.2: Demonstrating the search space - replicated
from [67]

Given an automataA we can construct a lattice
by partially ordering the quotient automata of A
using �, we define this construction as Lat(A). A
is the universal element in Lat(A) and U is the null
element. The depth of an automata Aπ in Lat(A)
can be given by |Q| − |π| - the depth of A is 0 and
the depth of U is |Q| − 1. The lattice is illustrated
in Figure 3.2. This shows how refining partitions
and merging states correspond to generalising the
represented language.

Given a sample S = S+ ∪ S− the search space
of regular inference for a minimal model (in the
sense of Definition 16) is Lat(MCA(S+)) as any
automata not in this lattice will not accept S+.
The goal of regular inference is then to generalise
from MCA(S+) to the automata A used to generate S. Dupont [41] shows many useful properties of this
search space - firstly that A belongs to Lat(MCA(S+)) if S+ is structurally complete with respect to A
- this is one of the most important results from the field of regular inference.

The next result states that the canonical automata accepting L(A) belongs to Lat(PTA(S+)) if S+

is structurally complete with respect to A - hence, most approaches work with the PTA rather than
the MCA as it is more compact. However, Dupont shows that Lat(PTA(S+)) is properly included in
Lat(MCA(S+)) and that there are S+ such that some languages are only represented by non-deterministic
finite automata in Lat(MCA(S+)) and therefore that there exist S+ such that the languages that can be
identified from Lat(PTA(S+)) are properly included in those that can be identified from Lat(MCA(S+)).
Recall that all automata in Lat(PTA(S+)) are deterministic.

The automata we are searching for is the deepest automata in Lat(MCA(S+)) such that it is consistent
with S−. As the lattice is only partially ordered there may be many such automata - Dupont calls this
set of automata the border set. We can define this border set as B(S) = {A | A ∈ Lat(MCA(S+))∧ 6 ∃π :
L(Aπ) ∩ S− = ∅}. A similar definition can be made using PTA. It should be noted that attempting to
identify B(S) by enumeration under the control of S− is not tractable.
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3.2.2 Passive Techniques for Regular Inference

The section describes different methods for passively learning DFA. These are all state-merging techniques
attempting to generalise the automata described by some positive samples. Note that if the set of possible
samples is not structurally complete with respect to the original automata the inference process can only
approximate this automata.

Trakhtenbrot and Barzdin’s algorithm [159] One of the first passive algorithms is due to Trakht-
enbrot and Barzdin [159] who wrote a book titled ‘Finite automata : behaviour and synthesis’, which
I have not obtained. Walkinshaw et al. [166] describe their algorithm as constructing the augmented
prefix tree acceptor for the samples and then merging all states with identical suffix-trees. This requires
a complete sample set to exactly identify the automata, which is impossible for any non-finite language.
Trakhtenbrot and Barzdin show that a complete set up to some given length is sufficient - I have not
been able to find information about how they compute this length, but it has been reported that this is
generally too large to be of practical use [34].

RPNI - Regular Positive Negative Inference algorithm [121, 120, 83] This refinement of
Trakhtenbrot and Barzdin’s algorithm requires the sample sets to be characteristic - recall that this
means that all transitions are covered (structural completeness) and for every two non-equivalent states
there exist strings that can separate them. Dupont [39] describes the RPNI algorithm as conducting an
ordered search of the lattice Lat(PTA(S+)). The algorithm is given in Figure 1 and begins by construct-
ing the prefix tree acceptor for the positive sample set S+ and initialising the partition π to the most
general one. It then attempts to merge each pair of states by constructing the merged partition π′ and
the (determinised) quotient automata Mπ′ . If Mπ′ is consistent with S− it is kept and as the ith state
has been merged with something the loop is exited. The quotient automata is determinised by merging
all states that lead to non-determinism - if two states can be reached from another state using the same
symbol they are merged.

Data: Sample S = S+ ∪ S−
Result: A DFA compatible with S

1 Initialization
2 Mπ = PTA(S+)
3 π = π0 = {{0}, . . . , {|Mπ.Q| − 1}}
4 State Merging
5 for i = 1 to |Mπ.Q| − 1 do
6 for j = 0 to i− 1 do
7 π′ = (π\{B(i, π), B(j, π)}) ∪ {B(i, π) ∪B(j, π)}
8 Mπ′ = deterministic merge(derive(Mπ, π

′))
9 if consistent(Mπ′ , S

−) then
10 Mπ = Mπ′ and π = π′

11 break (out of j loop)

12 return Mπ

Algorithm 1: The RPNI algorithm (reproduced from [123])

If we let N =
∑

u∈S+ |u| and M =
∑

u∈S− |u| then the RPNI algorithm takes at most N − 1 steps
round the i-loop and i− 1 steps round the j-loop and therefore in the order of O(N2) loops round the j-
loop. The time complexity of determinising the automata is O(N) and checking the consistency is O(M).
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Therefore the overall complexity is O((N + M).N2). Dupont presents an incremental version of RPNI,
called RPNI2 [39], which can receive data incrementally to allow a trade off between space complexity
and convergence rate.

The RPNI algorithm works within the learnability model of identification in the limit and the reason
it can infer an exact DFA in polynomial time is that it the sample must be characteristic. Parekh
and Honavar [123] show how it can be used within the PAC-learning model to probably infer some
approximation of the DFA. Their algorithm is shown in Algorithm 2. They begin by showing that the
Kolmogrov complexity of a DFA with N states is in the order of O(logN) and use this to show that there
exists a characteristic set of simple examples such that the length of each string is at most 2N − 1. The
algorithm uses two polynomials p and q where p is defined such that a sample S of size p(N, 1

δ ) contains the
characteristic set of simple examples with probability greater than 1−δ and q(i, 1

ε ,
1
δ ) = 1

ε [2ln(i+1)+ln(1
δ )].

On each loop of the algorithm a number of states is guessed (i is doubled each time) and the set of examples
extended so that it will contain a characteristic set of simple examples with probability 1 − δ. This is
used to run RPNI to generate M , and q is used to construct a test set. If M is consistent with the test
set then it ε-approximates the unknown DFA. Let us consider the probability that the algorithm halts at
some step i and returns a DFA with an error greater than ε.

Pr(M and A are consistent on same α) ≤ 1− ε
Pr(M and A are consistent on all α ∈ T ) ≤ (1− ε)|T |

≤ (1− ε)
1
ε
[2ln(i+1)+ln( 1

δ
)]

≤ e−[2ln(i+1)+ln( 1
δ

)] since 1− x ≤ e−x
≤ δ

(i+1)2

Therefore the probability he algorithm halts at some step i and returns a DFA with an error greater than
ε is less than

∑∞
i=1

δ
(i+1)2

, which is less than δ. Therefore the algorithm returns a DFA with error at most

ε with probability greater than 1− δ.

Data: approximate bound ε, probability bound δ
Result: A DFA M

1 Initialisation
2 i = 1, EX = ∅, p(0, 1/δ) = 0
3 Main
4 repeat
5 Draw p(i, 1/δ)− p(i− 1, 1/δ) examples according to mr

6 Add drawn examples to EX and let S = {u ∈ EX | |u| ≤ 2i = 1}
7 M = RPNI(S)
8 Draw q(i, 1/ε, 1/δ) examples according to mr and call this set T
9 if consistent(M,T) then output M and halt else i = i*2

10 until eternity ;
Algorithm 2: Algorithm A3 taken from [123]

Abbadingo One The Abbadingo One competition [84] (Section 3.1.3) spawned some useful refinements
of RPNI which remain at the forefront of state-merging regular inference algorithm research. The Blue-
Fringe and EDSM algorithms were competitors in the competition and the active QSM algorithm combined
the two approaches after the competition. I first describe the key approaches of the Blue-Fringe and EDSM
algorithms and a simple combination of these approaches is presented in Algorithm 3.

The Blue-Fringe algorithm contains an approach for selecting potential pairs of states to merge. The
intuition is that we can partition the states into two sets - red nodes which are considered mutually
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umergable, a ‘blue fringe’ of states adjacent to red nodes which are candidates for merging and all the
other white nodes. Note that red nodes represent members of the set of short prefixes and blue nodes
represent members of the kernel.

The (Evidence Drive State Merging) EDSM [27] algorithm contains an approach which can be used to
score a particular merge pair. Given two states their score is computed by comparing the state transitions
that happen after each state - importantly, if a transition from one state leads to an accepting state but
leads to a non-accepting state for the other state then this pair is given a negative score.

1 Colour all nodes in the APTA white, mark root node as red
2 while there exists a non-red node do
3 Mark all nodes adjacent to red nodes as blue
4 max = 0; candidate = null;
5 foreach blue node b do
6 foreach red node r adjacent to b that can be merged with b do
7 score = compute compatibility(b, r)
8 if score > max then candidate = r and max = score

9 if candidate = null then mark b as red else merge b with candidate

Algorithm 3: The Blue-Fringe ESM approach (reproduced from[166])

Algeria [20] Carrasco and Oncina use a different means of determining of two states should be merged to
infer stochastic deterministic regular languages in the form of deterministic stochastic DFA. The algorithm
is given in Algorithm 4 - this is very similar to RPNI but note that compatibility is computed very
differently. Two states are compatible if they have similar outgoing transition probabilities within a given
confidence bound. Two states q1 and q2 are said to be different for symbol a if given n1 and n2 incoming
transitions for q1 and q2 respectively and outgoing transitions f1 and f2 outgoing transitions for symbol

a for q1 and q2 respectively, we have | fn −
f ′

n′ | >
√

1
2 log

2
α

(
1√
n

+ 1√
n′

)
(this is the Hoeffding bound [68]).

Two states are then compatible if they are not different on any symbol and all states reached by following
those transitions are compatible.

Data: Sample set S and 1-confidence level α
Result: A stochastic DFA M

1 M = stochastic PTA from S
2 for j = successor(firstnode(M)) to lastnode(M) do
3 for i = firstnode(M) to j do
4 if compatible(i, j, α) then
5 M = merge(A, i, j)
6 M = determinise(A)
7 break

8 return M
Algorithm 4: The Algeria algorithm (reproduced from[20])

Biermann’s Algorithm or ktails [15] . In 1972 Biermann suggested an approach which merges two
states if they have the same k-tails - that is they have identical suffixes of length k. Leucker notes that this
algorithm can be reduced to the problem to a constraint satisfaction problem over the natural numbers
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and as the basic algorithm is reasonably straightforward I present this variant here. Given a positive
sample S = S+ ∪ S− define the partial function O : Σ∗ ⇁ {1, 0, ?} as

O(w) =


1 w ∈ S+

0 w ∈ S−
? otherwise

Let agree : Σ∗ × Σ∗ → B be defined such that agree(u, v) ≡ (O(u) 6= O(v) 6=?). Let Su represent the
state reached by string u, if we let Su be a variable ranging over the number of states then we can define
two sets of constraints

C1(n,O) = {Su 6= Sv | ¬agree(u, v) ∧ u < n ∧ v < n}
C2(n,O) = {Su = Sv ⇒ Sua = Sva | a ∈ Σ, ua, va, a ∈ Dom(O) ∧ u < n ∧ v < n}

C1 test u and u′ on the empty suffix and C2 guarantees right congruence. Define the set of constraints
Cn(O) = C1(n,O)∪C2(n,O) with n ∈ N0. A DFA with n states exists conforming to the set of examples
S iff Cn is solvable over the first n+1 integers. Let D(Cn(O) be the set of variables used in constraints in
Cn(O). The DFA can be built from D(Cn(O) as follows:

� |Q| = n, q0 = Sε

� δ satisfies δ(n, a) = n′ if there is Su, Sua ∈ D(Cn(O) with Su = n, Sua = n′

� F satisfifes ∀Su ∈ D(Cn(O) : O(u) = +⇒ n ∈ F ∧O(u) = − ⇒ n /∈ F where Su = n.

There also exists an efficient encoding of this constraint problem as a SAT problem. The k-tails algorithm
has been extended in a number of ways

� Probabilistic Finite State Automata (PFSA) can be inferred using an algorithm called sk-strings
[135]. This an extension of the ktails algorithm - a canonical DFA is built from the input examples
and equivalent states are merged. States are equivalent (q ≡s p) if they agree on the top s percent
of their most probable k-strings :

k-strings(q) = {u | u ∈ Σ∗ ∧ ((|u| = k ∧ δ(q, u) ⊂ Q) ∨ (|u| < k ∧ δ(q, u) ∩ F 6= ∅))}
choose(q, s, k) = {u |S = k-strings(q) ∧ u ∈ S ∧R(u, S) > |S|∗s

100 }
p ≡s kq iff choose(p, s, k) ∼ choose(q, s, k)

Where R(u, S) gives a rank of the string u in S according to its probability and ∼ can stand for a
number of set relations, the choice of which dictates the strictness of the merging.

� Lee et al. [86] employ a technique called parametric trace slicing to reduce the problem to that of
inferring a normal DFA (their JMiner tool infers a PFSA using sk-strings and then refines this).
The parametric trace slicing approach is discussed further in Chapter ??.

� Extended Finite State Machines (EFSM) can be inferred using the GK-tails algorithm [103, 104],
this work makes use of the axiomatic invariant detection tool Daikon [46](see Section 3.3.2) to
generate predicates. The algorithm extends ktails so that it reasons about predicates on states and
events. Their approach first merges input-equivalent traces - that is traces which are the same up
to consistent renaming of parameters. These traces are then annotated with Daikon so that each
element of the trace is labelled with a set of predicates relating to parameters encountered so far.
They then create a canonical DFA for the set of labelled traces and merge equivalent states. States
are equivalent if they share the same k-futures - where a k-future can be modelled by equivalence,
weak subsumption or strong subsumption of predicates.
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Using Genetic Algorithms There exist a number of approaches to regular inference that employ
genetic algorithms - these are described in detail in Chapter 4, which looks more closely at the use of
genetic algorithms in specification inference. There are generally two approaches - either to evolve a DFA
directly or two evolve a partitioning (or set of state merges).

Summary - Passive techniques for regular inference all construct a DFA from the samples and then
generalise this by merging states. A complete generalisation would merge all states, however this would
be a trivial specification. Therefore, some additional information is required to prevent undesired merges
- this has been given by negative information, a statistical similarity measure and a heuristic measure. If
the sample set is structurally complete with respect to some DFA A then it is possible to exactly infer
A, otherwise any generalisation is an approximation.

3.2.3 Active Techniques for Regular Inference

An active learning approach to Grammar Inference was first taken by Dana Angluin [7], she introduced
the seminal L∗ algorithm which has been studied, extended and applied in many places in the literature.
In this section I begin by discussing the practical implications of learning with an Oracle and then go on
to describe Angluin’s algorithm (L∗) and its extensions. I finish by describing QSM, an active approach
based on the state-merging approach referred to previously.

Learning with an Oracle

The query learning framework assumes an Oracle which can be asked a combination of membership and
equivalence queries. A membership query asks whether a word in Σ∗ is in L and an equivalence query asks
whether a hypothesized DFA is correct - if it is not correct the Oracle returns a counter-example. The
assumption of such an oracle can be problematic practically. Answering membership queries is not difficult
in practice but can be expensive. However, it is often impractical to assume an entity that can answer
equivalence queries, although this problem has been partly addressed by an area called Conformance
Testing(Section 2.3) [25] which can give high confidence that a specification is equivalent to a program.
As membership queries are generally a lot cheaper than equivalence queries so approaches tend to aim to
carry out more membership than equivalence queries. However, Angluin showed that equivalence queries
are necessary to identify a DFA.

Some people have assumed the setting where maybe can be returned by the Oracle. These are called
an inexperienced teacher in [88]) and partially ignorant teachers in [51]. Finally, Parekh and Honavar
[123] discuss what restrictions must be placed on an oracle to prevent potential collusion between the
oracle and learner. This generally consists of a third-party being able to remove or re-order queries and
replies.

Angluin’s Algorithm

I begin by giving an overview of the algorithm before discussing its extensions. Berg et al. [13] give a
good introduction to the algorithm that is more approachable than the original paper.

We begin with a Learner that attempts to build a unique minimal automaton to describe an unknown
language. The algorithm uses a prefix-closed set U ⊆ Σ∗ to identify states, and a suffix-closed set V ⊆ Σ∗

to distinguish states - this is similar to the constraints used in k-tails as both are based on Nerode’s right
congruence. The Learner builds a table T : U → (V → B) with |U | rows and |V | columns. The table is
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said to be closed and consistent as follows

∀u ∈ U, a ∈ Σ,∃u′ ∈ U : T (ua) = T (u′) (closed)

∀u, u′ ∈ U, a ∈ Σ : (T (u) = T (u′))⇒ (T (ua) = T (u′a)) (consistent)

If the table is closed, the set U can be split into U = US ∪ US .Σ where US is a set of short prefixes
differentiating different states. The table begins with U = V = {ε}. A membership query is asked for
each row in the table and then whilst the table is not closed or consistent rows are added to fix this
and the table completed again. Once the table is closed and consistent a hypothesized DFA can then
be constructed from T so that Q is the set of distinct rows (US), q0 is the row T (ε), δ is defined by
δ(T (u), a) = T (ua) and the accepting states are those rows where T (u)(ε) = true. If the Oracle accepts
this hypothesis a unique minimum DFA has been found, otherwise all prefixes of the counterexample are
added to U and the process continued.

This is guaranteed to find a canonical minimal DFA but may make a very large number of queries.
We can put a bound on the maximum number of membership queries that can be asked - the maximum
size of the table. For a DFA of n states and alphabet Σ and where counterexamples are of length at most
m we have that |US | ≤ n+m(n− 1) and |V | = n as US is expanded only when T is not closed and when
a counter-example is received and V is expanded when T is not consistent. The size of the table is then
given by (|US | + |US .Σ|) ∗ |V | = ((n + m(n − 1)) + |Σ|(n + m(n − 1)))(n) = O(|Σ|mn2). Therefore the
algorithm is bounded by a polynomial in n and m.

Berg et al. [13] noted that If for the prefix-closed subclass of regular languages if there exists an entry
in T for ua we do not have to make membership queries for u. The prefix-closed subclass of regular
languages is a useful subclass as it represents automata which model systems that always stay in some
‘good’ state.

Extensions to Angluin’s Algorithm

There exist a number of extensions of L∗ as described below.

Dealing with Inexperienced or Ignorant Teachers An approach by Leucker [88] leads to an exten-
sion called ABL∗ where notions of weak closure and consistency are defined in the presence of maybe. Due
to this weakness a DFA cannot be taken directly from the table and a version ktails is used. Additionally
techniques for dealing with partially ignorant teachers have been explored [51].

Infinite Languages. The ultimately periodic subset of ω-regular languages, equivalent to deterministic
weak Büchi Automaton, can be inferred in polynomial time by an algorithm called Lω [110]. The ω-regular
languages are the infinitary counterpart to regular languages and the ultimately periodic subset are those
languages that contain only ultimately periodic words. An ultimately periodic word is an infinite word
that can be factored into the form uvω. The main problem tackled by this approach is that of identifying
the accepting states, which must be visited infinitely often.

Mealy Machines. Mealy Machines can be inferred by a simple extension to L∗, defined as L∗M in [147].
The L∗M algorithm works by making the observation table map to output strings, the same rules for
consistency and completeness can apply by using equivalence on this set. This work also uses a more
efficient approach to process counter-examples that keeps T consistent by separating an existing prefix
and distinguishing suffix, in an algorithm they name L+

M , experimental results showed this to reduce the
number of equivalence queries by an average factor of 1.32 - this is significant considering the expense of
equivalence queries.
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Timed Automata. Timed Automata described by Deterministic Event-Recording Automaton (DERA)
are infreed in three different extensions to the L∗ algorithm called TL∗sg, TL∗nsg and TL∗s [65]. As it is not
obvious how to generalise Nerode’s right congruence to timed languages (which is necessary to extend the
table) they use an abstraction of timed automata and introduce an assistant to translate queries.

Angluin’s Algorithm Applied to Parameterised Models

I am particularly interested in grammar inference methods for parametric specifications. Shahbaz et al.
[149, 148, 89], Berg et al. [14] and Aarts et al. [2] all extend the table used in the L∗ algorithm to capture
parameters, as well as considering constraints on parameters.

Shahbaz et al. [149, 148, 89] infer Parameterised Finite State Machines, however the description of
their technique in their published work lacks clarity.

Definition 29 (Parameterised Finite State Machine from [149, 148]). A Parameterised Finite State
Machine is a 7-tuple 〈Q, I,O,DI , DO, T, q0〉 where Q is a set of states, q0 is an initial state, I and O
are input and output alphabets, DI and DO are sets of input and output parameter values and T ⊆
(Q× I ×O ×Q× (2DI ⇒ B)× (2DI → DO)) is the transition relation.

Note that transitions are labelled with source and target states, input and output symbols, a predicate
on input parameters and a function taking a set of input parameters to an output parameter. They extend
the table to include this information and introduce concepts of the table being balanced and dispute-free
to replace the original concept of the table being consistent. Their algorithm is difficult to read and it
is difficult to see how concrete values are abstracted consistently - the main point of interest. A lack of
experimental results make it difficult to measure how effective their technique is. However, this approach
is also detailed in a PhD thesis [146], which I have not yet studied in detail. Their approach has been
implemented in the RALT tool mentioned later.

The following description has been added later and should be incorporated into the main description.
This comes from reading the relevant part of [146]. The observation table is extended so that it consists
of (S,R,E, T ) where S,R ⊆ U ∪ I∗ (U is the set of all parameterised strings), E ⊆ I+ and T : (S ∪R)→
(E → Set[D+

I , (O
+, D+

O)]). S is prefix-closed and E is suffix-closed. The table T therefore has cells that
consist of sets of pairs of input-parameter strings and parameterised output strings. Such a set can be split
into distinguishing subsets such that each subset has a different output string. If a row has a number of
distinguishing subsets it is called disputed. A disputed row is treated or resolved if for each distinguishing
subset there is a string t ∈ S∪R such that t uniquely identifies each element of that distinguishing subset
(the string for that row s followed by a parameterised event). Two rows are balanced if they are defined
for the same input parameter values for all e ∈ E (all columns) and the table is balanced if all rows are
balanced. An equivalence relation on rows can be applied to a balanced table to identify and distinguish
states. This all seems odd - there is no abstraction.

Berg et al. [14] allow transitions to be labelled with a parametrised action and a guard where pa-
rameters are restricted to be booleans and the guard is a conjunction of either the positive or negative
occurrence of each of the transitions parameters. The form of parameterised systems they infer are given
as follows.

Definition 30 (Parameterised System from [14]). A Parameterised System is a 4-tuple P = 〈Q,→, q0, F 〉
where Q is a set of states, q0 is an initial state, F is a set of accepting states and →⊆ (Q×Act×G×Q)
is a transition relation where Act is a set of actions of the form a(p1 . . . pn) for pi ∈ B and G is a set of
guards of the form

∧
li where li = pi or ¬pi.

They constrain their parameterised systems to be deterministic and write abstract actions as α(p) and
concrete actions as α(d). They assume the guards of outgoing transitions from each state with the same
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action name form a partition of the parameter space. They make two extensions to Angluin’s algorithm.
Firstly, instead of requiring the table to be complete they label each short prefix u in the table with
a set of representative continuations uα(d), attempting to capture the partition of outgoing transitions
from the state represented by u. Secondly, to construct hypothesis parameterised systems they label each
entry in the table with a guard consistent with that label, which are then refined based on the results of
queries. They use a measure of ‘parameter complexity’ to describe their results - for state q and action
name α this is defined as the total number of different parameters used in guards on transitions from q for
actions α. An artificial benchmark showed that they needed in the order of 1,000,000 membership queries
and 1,000 equivalence queries to infer a parameterised system with 50 states and an average parameter
complexity of 5. A real-world benchmark with 4 states and average parameter complexity of 0.5 required
21 membership queries and 4 equivalence queries. Their approach has been implemented in the LearnLib
tool mentioned later.

Aarts et al. [2] adapt ideas from predicate abstraction to infer Symbolic Mealy Machines. They
define concrete actions to be of the form α(d1, . . . , dn) where α has an arity defined by a tuple of domains
D1 × . . . × Dn giving the concrete values permissible in each place in that action - (d1, . . . , dn) ∈ D1 ×
. . .×Dn. For each action α there is a set of symbolic counterparts of the form α(p1, . . . , pn) where pi is
some abstract parameter. The transitions of a Symbolic Mealy Machine match a symbolic action against
a concrete action and use the bindings and a set of state variables to check a guard. If this guard matches
a set of assignments to state variables are executed and an output action computed. They assume that
symbolic mealy machines are complete and deterministic.

Definition 31 (Symbolic Mealy Machine (SMM) from [2]). A Symbolic Mealy Machine is a 6-tuple
〈I,O, L, l0, V,→〉 where I and O are disjoint finite sets of input and output actions, L is a finite set of
locations. l0 ∈ L is an initial location, V is a finite set of state variables and → is a finite set of symbolic
transitions of the form α(p1, . . . pn)ifg/v1, . . . vn := e1, . . . en;β(eout1 , . . . , eoutn ) where g is a guard (boolean
expression over p1, . . . pn) and ei is an expression.

They give a denotation of a Symbolic Mealy Machine in the form of an infinite state Mealy Machine
〈ΣI ,ΣO, Q, q0, δ, λ〉 where ΣI and ΣO are the sets of all concrete input and output actions from I and O,
Q is the set of all pairs (l, σ) (where σ is a valuation of state variables) and δ and λ are defined such that
for any symbolic transition from l to l′, any valuation σ and data values d such that σ(g[d/v]) is true we
have

δ((l, σ), α(d)) = (l′, σ′) iff ∀1 ≤ i ≤ k : σ′(vi) = σ(ei[d/v]) and ∀v /∈ (v1, . . . vk) : σ′(v) = σ(v)

and λ((l, σ), α(v)) = β(eout1 , . . . , eoutn ). This is a straightforward substitution of concrete values in for
abstract parameters, which means that constraints and state variables can be directly encoded into the
machine.

To apply regular inference they must define an abstraction from the possibly infinite sets of ΣI and
ΣO to small finite sets of abstract input and output symbols. They define an abstraction entity to do
this. In the L∗ algorithm the abstraction entity can be used to synthesize an assistant which translates
abstract queries into concrete queries They note that an abstraction entity must keep track of relevant
history information to ensure that abstractions are consistent.

Definition 32 (Abstraction from [2]). Given I and O disjoint finite sets of input and output actions
an (I,O) − abstraction is a 7-tuple 〈ΣA

I ,Σ
A
O, r0, abstrI , abstrO, δ

R〉 where ΣA
I and ΣA

O are finite sets of
input and output symbols, R is a possibly infinite set of local states, r0 is an initial local state, abstrI :
R × ΣI → ΣA

I maps input symbols to abstract ones and abstrO does the same for output symbols and
δR : R× (ΣI ∪ ΣO)→ R updates the local state.
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They define some properties of abstractions that make the regular inference problem decidable. This
reduces the problem of inferring an infinite-state parametric machine to that of constructing a suitable
abstraction. They describe a method for systematically constructing abstractions which makes a lot of
assumptions about available information and conditions on the inferred machine.

Query-Driven State Merging (QSM) [40]

This is an active approach that extends the state merging approach taken by RPNI extended with the
Blue Fringe and EDSM approaches. The active part of this approach consists of asking the user queries,
who can be modelled as an oracle. The algorithm is given in Figure 5. The different functions used are
as follows

� ChooseStatePairs uses the BlueFringe and EDSM combined approach from above to select a pair
of states to merge. The first state will belong to the mutually umergable ‘red’ states and the second
will be an adjacent state with a high compatibility score (with respect to transitions). If there is
more than one such pair a random one can be selected. If no such pair exists the assignment is
considered to be false.

� Merge constructs the deterministic version of A with q and q′ merged.

� compatible checks if the given automata is compatible with the sample set.

� GenerateQuery generates queries to pose to the user based on the current solution, the two states
to be merged and the resultant quotient automata. Given the current solution A let L be the
language of A, let x ∈ Sp(L)(short prefixes) and y ∈ N(L)(kernel) be the short prefixes of q and q′

respectively. Let vw ∈ L/y be a suffic of q in A. A generated sample is some string xvw ∈ L L(Anew)
such that xv ∈ L. Note that xv is an accepted string and w a continuation to be checked.

� CheckWithOracle submits the generated query to the oracle

This extension attempts to make the set of samples characteristic - the generated samples are taken
from those that would be in a characteristic sample. Therefore, this is a polynomial time algorithm which
can infer an exact automata if we assume we can check queries with an oracle in constant time - it is this
assumption which the query learning framework uses to break the NP-hardness of the grammar inference
problem.

Summary Active approaches have the ability to infer more complete DFA but have practical limitations
- for example the problem of answering equivalence queries. Using a user as an oracle or an assistant is
an interesting approach that may work, but such approaches would need to limit the number of queries
sent to the user to make this approach practical.

3.2.4 Beyond Regular Inference

When going beyond regular languages we only currently concern ourselves with context-free languages.
The first thing to note is that the class of context-free languages can be identified in the limit. As far
as I can tell, there does not exist a polynomial algorithm for identifying a context-free grammar through
the use of queries. To tackle this computational hardness researches explored restrictions on the class
of languages. An example of a subclass of context-free-grammars that has yielded positive results is
the subclass of even linear languages - where each production contains only terminals or has a single
non-terminal with an equal number of non-terminals on either side. This has been tackled by reducing
the problem of inferring an even linear context-free language to that of inferring a regular language
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Data: A sample S = S+ ∪ S−
Result: A DFA consistent with S and the answers to queries

1 A = APTA(S)
2 while (q, q′) = ChooseStatePairs(A) do
3 Anew = Merge(A, q, q′)
4 if compatible(Anew, S) then
5 while Query = GenerateQuery(A,Anew) do
6 if CheckWithOracle(Query) then
7 S+ = S+ ∪Query
8 else
9 S− = S− ∪Query

10 return QSM(S)

11 A = Anew

12 return A,S
Algorithm 5: The QSM algorithm

[108, 157, 80]. Another direction taken by Sakakibara et al. [141, 140] is based on assuming additional
information is given. They note that the problem of inductively learning context-free grammars can be
split into that of determining the grammatical structure or topology of the grammar and identifying the
terminals and non-terminals. Therefore if some structural information is given identifying the topology
the search space of the problem is greatly reduced. Tu and Honavar [160] present an approach that infers
a probabilistic context-free grammar in chomsky normal form by carrying out biclustering on a table
that enumerates all symbol pairs in a set of positive samples. Their approach assumes the sample set
is independent and identically distributed. There also exist approaches using genetic algorithms to infer
representations of context-free grammars directly - see Chapter 4 for further details.

3.2.5 Tools

There exist a number of tools which have attempted to bring collections of grammar inference algorithms
and techniques together.

libalf [18, 161] This is a tool that has been proposed in the last few years and incorporates the
basic L∗ algorithm, k-tails and RPNI, as well as a few new variants. The tool consists of a number
of components allowing for algorithms to share common code and different optimisation filters (active
assistants) to be introduced. The tool is written in C++ (a JNI interface exists for interfacing with Java)
and is publicly available.

RALT [146] The Rich Automata Learning and Testing library implements the L∗ algorithm and some
variants for inferring Mealy machines. This tool is written in Java and does not appear to be publicly
available.

The LearnLib tool. Researchers at the University of Dortmund have constructed a tool for experi-
menting with different regular inference techniques and optimisations - the tool implements a number of
extensions to the L∗ algorithm [132, 131]. There has been a number of papers looking at how this tool
can be used to explore further extensions [133, 130, 4, 155]. Equivalence queries are approximated using
conformance testing techniques. This tool is written in C++ and is publicly available.
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3.2.6 Summary

In this section I have introduced a number of existing grammar inference techniques. The state of the art is
in regular inference - particularly variants of L∗ and the QSM algorithm. There exist learning algorithms
for more expressive languages but this area has not been explored as thoroughly. Of particular interest
to me are those approaches that infer specifications with parameters - notably the GK-tails approach
which extends k-tails and the three extensions of L∗. The most complete method for inferring parametric
specifications appears to be that described by Aarts et al. [2](page 32). This is not a complete account of
the area, but is reasonably comprehensive. In particular, I am missing accounts of earlier approaches from
the pattern recognition community and approaches for context-free grammar inference from the natural
language processing community.

3.3 Dynamic Specification Mining Techniques

Dynamic specification mining attempts to mine a specification from a set of execution traces. This is
generally carried out offline, although there does exist an online approach. In this section I begin by giving
an overview of the different approaches from the literature and then expand on particular techniques for
one of these - generate-and-check.

3.3.1 An Overview of Approaches

The following are different approaches that have been taken to mine specifications from execution traces.

Generate and Check : Pattern Checking

This approach uses a small predefined set of patterns to generate hypothesis specifications and check these
against examples. This is motivated by the idea that most specifications use only a few small patterns -
in 1999 Dwyer et al. carried out a study [42] which identified many commonly used patterns, such as the
alternating pattern (ab)∗. Taking either a known or inferred alphabet an instance of each pattern for each
combination of symbols is generated and checked. For example, the pattern (ab)∗ over alphabet {x, y, z}
generates (xy)∗, (yx)∗, (xz)∗, (zx)∗, (yz)∗, (zy)∗ to be checked. These patterns capture desired rather than
undesired behaviour.

Frequent Itemset Mining.

Lo et al. [99, 98, 100, 101, 96] have carried out extensive work using the data-mining technique of
frequent itemset mining to mine specifications. This approach bears many similarities to the pattern-
checking approach. The group has taken an incremental approach to publishing - over ten publications in
the last five years describe similar approaches and results. Their general approach is to prune the traces
with respect to support before generating patterns they are confident in to check. This basic approach
(two event patterns) has complexity O(n + (a × b)) where n is the cumulative length of all traces, a is
the total number of frequent events and b is the maximum length of a trace.Earlier work only produced
sets of closely occurring events but later work introduces orderings between these events. One interesting
approach [102] uses the inferred temporal patterns to steer the previously described ktails algorithm for
regular inference.

Moderated Regular Extrapolation

Hungar et al. [71] have developed a rather ad-hoc method they call moderated regular extrapolation that
generates a model of a system using both automatic and manual techniques. Experts supply constraints on
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the generated model in the form of LTL trace specifications and independence relations (between events).
Traces are collected and abstracted in some problem-specific way before being compacted into a prefix
acceptor. Information from traces are used to generate a ‘model’, which is not formally defined. Test
suite generation techniques are used to validate and enhance the model, event independence relations are
used to generalise the model (by capturing allowable reorderings) and a model checker is used to check
the model conforms to the LTL specifications. Manual intervention is required if the model becomes
inconsistent. Their approach is applied to a telephony system. The approach is very interesting, but not
particularly rigorous and the manual aspect slightly deterring.

Summary

It is reasonably difficult to categorise approaches as this area is relatively new and solutions have been
developed concurrently in different communities. Additionally, because of the wide spread of solutions
from different areas and the general applicability of the approach I am not confident that I have captured
all of the different approaches existing in the literature.

3.3.2 Generate And Check for Invariants

An early generate and check approach for state specifications, or state invariants, is the Diakon tool
[45, 46, 117]. The approach examines an execution trace which records the value of variables at different
points in the program and postulates a number of invariants which it then checks these for other runs of
the program. The invariants Diakon can infer are

� Invariants over a variable - such as being constant or coming from a small set

� Numerical invariants for single variables - being in a range, being no-zero, being equal to some
constant modulo some other constant

� Numerical invariants for two variables - linear relationships, ordering relationships and functional
equivalence (being equivalent under some function or the function of the two variables satisfying
some invariant)

� Numerical invariants for three variables - linear relationships

� Single sequence invariants - minimum and maximum conditions, (lexicographical) orderings, invari-
ants holding over the whole sequence

� Two sequence invariants - elementwise linear relationship, comparison, subsequence relationships

� Numeric and sequence invariant - membership

From this (non-comprehensive) list it can be seen that the invariants that can be inferred are very
expressive. To infer invariants they use a library of template invariants instantiated with variables observed
at runtime. The set of inferred invariants is then filtered for redundant invariants before being checked.

3.3.3 Generate And Check for Trace Specifications

Here I describe methods for specification mining that utilise the pattern checking technique. I split this
section by discussing the patterns used, how patterns to check are generated, how they are checked and
how the results are processed - including combining patterns, pruning results and defining success.
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Peracotta Javert OCD SAM
[175, 176, 177] [54] [53] [55] [90]

S∗(PP ∗SS∗)∗ (ab+)∗ (ab)∗ ab (ab)∗

(PS)∗ (b+c)∗ (ab∗c)∗ ab+ G(a→ X(aUb))
(PSS∗)∗ (ac)∗ a+b G(a→ Xb)
(PP ∗S)∗ ab? G(a→ XFb)
S∗(PS)∗ a?b

(PP ∗SS∗)∗ a+b∗

S∗(PSS∗)∗ a∗b+

S∗(PP ∗)∗ (ab|ba)
(a+b+)|(b+a+)

Figure 3.3: Example Patterns (columns are unrelated)

Patterns Used

Patterns used in some different approaches have been outlined in Figure 3.3. One of the earliest (2001)
[44] approaches using this technique employed ad-hoc templates in a framework that would be difficult
to extend, for example the template do not dereference null pointer < p >, although they do consider
the two templates a(¬b)∗ and ab. The next (2004) set of approaches using this technique, Perracotta
[175, 176, 177], used small (2 or 3 element) regular expression patterns based on the Response pattern
[42] that says whenever P happens, S must also eventually happen - the alternating pattern given above
is an example of this. Later work [54, 53] combines patterns to create final specifications and the patterns
chosen reflect this, the patterns given in [55] relate to patterns composable from the two patterns in [54].
Li et al[90](2010) focus on mining temporal properties for hardware design and build a binary pattern
language over temporal and timing operators, for example the pattern G(a → X(a U b)). In contrast,
Weimer and Necula [171](2005) only use the alternating pattern (ab)∗. Few approaches consider an events
contextual information, for example parameter or return values, although Yang et al. [177] perform a
‘context-sensitive’ slicing of traces and Gabel and Su [55] relate patterns to single objects.

Generating Patterns.

Once a pattern language has been identified a tool must generate all the patterns it wants to check against
the sample set. The first thing that it requires is an alphabet of symbols. Most approaches considered
here scan the sample traces to collect an alphabet. OCD [55] generates templates on the fly, as does work
by Engler et al. [44]. The number of patterns checked will be a product of the set of templates used and
the size of the alphabet. Let a template tn be a regular expression over n distinct variables. Let Tn be a
set of templates such that all templates in Tn range over n or fewer variables. Let A = |Σ| be the size of
the alphabet. The number of patterns generated is bounded by

(
n
A

)
= n!

A!(n−A)! .

Efficiently Checking Patterns

After generating patterns these must be checked, below I detail some of the approaches that have been
taken to check patterns:

� Peracotta [177] introduce a simple matrix approach for checking binary patterns - for each pattern
and an alphabet of n symbols an n× n matrix is constructed with each cell representing a FSA for
that pattern. Then, for each observed event in the trace and for each pattern being checked the
rows and columns relating to the observed event are iterated over, with the contained FSAs being
updated accordingly.
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� Javert [54, 53] employ a symbolic algorithm using Binary Decision Diagrams (BDD) to represent
the current state of each of the instantiated templates being checked - each of which is encoded
using (|Σ| ∗ dlog2(|Σ′|)e) + dlog2(|Q|)e boolean variables. This set of all automaton configurations
can be represented efficiently as a BDD and the algorithm for updating the BDD on the observation
of an event is then given in terms of BDD operations.

� In OCD Gabel and Su [55] base their checking approach on the assumption that properties occur
within a small finite window. They use a sliding window over each trace to generate and check new
and check previously seen patterns on the fly.

� In SAM Li et al. [90] extends the matrix approach. As their framework allows multiple events to
occur at the same time (this makes sense in their setting of hardware systems) they extend the
approach to ensure that no two FSAs are updated more than once on a single cycle.

Note that all approaches are very sensitive to the size of the alphabet - the matrix approach uses O(An−1l)
time for an alphabet of A symbols, a pattern with n symbols and a trace of length l.

Combining Patterns

Yang et al. [177] proposed a method for chaining inferred alternating patterns using the rule

A→ B B → C

A→ C

Gabel et al. have created two tools Javert [53] and OCD [55] which use more complex inference rules to
combine patterns - furthermore they argue that the chaining rule used by Yang et al. is not statistically
sound. The two inference rules used are

(aL∗1b)∗ (aL∗2b)∗

(a(L1|L2)∗b)∗
(Branching)

(aL1b)
∗ (bL2c)

∗ (ac)∗

(aL1bL2c)
∗ (Sequencing)

More recently (2010) Li et al.’s work [90] with more complex temporal patterns also introduced similar
inference rules over their more complex patterns.

(ab)∗ (bc)∗ (ac)∗

(abc)∗
(Alternating Pattern Chaining)

G(a→ XFb) G(b→ XFc)

G(a→ XFG(b→ XFc))
(Eventual Pattern Chaining)

G(a→ X(aUb)) G(b→ X(bUc))

G(a→ X(aU(bUc)))
(Until Pattern Chaining)

Improving Specifications with Test Generation

To check and improve the mined specifications some approaches use test generation techniques to produce
a set of tests that should pass based on the specification. Dallmeier et al. [31] present the Tautoko tool
which mines specifications and then generates tests which explore undefined transitions by mutating an
existing test suite. Elsewhere, Xie and Notkin [174] have combined a specification miner for algebraic
specifications with a test generation technique.
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Pruning Results

This approach will produce a vast number of specifications, many of which are highly irrelevant and
inaccurate. All of the above approaches implement some sort of ranking based on the support and
confidence of specifications. The support of a specification is the number of times it occurred positively in
the sample set and the confidence of a specification is the number of times it appeared positively over the
number of times it appeared both positively and negatively. Additionally heuristics are given for pruning
results - for example Peracottta [177] uses a reachability heuristic and a name similarity heuristic. OCD
[55] aggressively prunes specifications during the mining process.

Defining Success

Support and confidence can be used to give the accuracy of an approach in terms of a false-positive
rate - a false-positive occurs when the mining algorithm reports an incorrect specification. Along with
accuracy another measure of success is coverage or completeness - the former can be coached in terms
of false-negatives and describes how well the exact behaviour is covered, the latter is a slightly weaker
concept stating that the sample state must be covered by the inferred properties. Obviously achieving
better coverage than completeness involves highly unsound extrapolation.

Summary

The generate-and-check concept is very simple - use a set of templates to generate a set of properties to
check over the sample execution traces, possibly allowing for some noise. The tricky part is ensuring that
the resulting specifications are accurate and relevant as well as making sure that the approach is efficient
enough to scale to real-world problems.

3.4 Static Specification Mining Techniques

Before discussing the static specification mining techniques I briefly compare this approach with the dy-
namic specification mining approach. I then discuss the different static techniques found in the literature.
This section is included for completeness and the reader should not expend too much effort
attempting to understand its content.

The majority of these employ data-mining techniques on information extracted from the source code.
There do exist other techniques [150, 81, 105, 172, 33, 32] but for time and space reasons I do not discuss
these here. The explanations of the approaches are long and reasonably detailed, this is partly due to the
fact that it is difficult to condense these approaches into a general approach in the same way as it is for
dynamic generate and check approaches.

3.4.1 Comparing the Static and Dynamic Approaches

Static specification mining differs from dynamic specification mining in the artefact that it mines. As
artefacts to mine specifications from execution traces and source code each have their advantages and
disadvantages - the source code describes the exact behaviour of the program, but does not include runtime
information or indicate the most common behaviours. Additionally mining from source code may lead to
specifications of implementation decisions not design decisions. For this, and other, reasons mining from
execution traces seems preferable. The main advantage of using execution traces is the availability of
runtime information - it is possible to see which parts of the program are exercised the most and typical
inputs to the program. When wanting to learn what the program is supposed to do this is important as
the source code may contain many code paths that are never exercised, and the frequency of specifications

39



occurring in execution traces can then be used to reason about their relevance. Additionally the source
code may not be available - this ‘black-box’ situation is common in the field of reverse engineering and
often motivates the use of dynamic program analysis.

3.4.2 Data Mining Techniques

Frequent itemset mining [64] is a technique from data-mining which takes a set of itemsets, which is just
a set of arbitrary items, and a support threshold min support and returns a set of patterns that occur
in at least min support itemsets. A mined pattern is closed if it is not subsumed by any other mined
pattern. Sequential pattern mining [111, 6] is also a data-mining approach similar to frequent itemset
mining but is applied to temporally ordered data and finds frequently occurring subsequences.

PR-Miner

Li et al. [91] describe the tool PR-Miner that attempts to find associates among elements by identifying
elements which are frequently used together in source code, with no explicit concept of order. The source
code is parsed into a database by first hashing each program element into a number and then mapping
function definitions to a set of these numbers to be written as a row in the database. A row in the
database is an itemset and the frequent itemset mining algorithm finds the most frequent itemsets, that
is the sets of program elements which are frequently used together. They call these itemsets programming
patterns (although they have no structure) and infer association rules of the form set1 ⇐ set2 from them
by selecting a non-empty subset as the lefthandside and the non-empty remainder as the righthandside. In
this way each programming pattern gives 2n−2 association rules. The confidence of each association rules
is calculated as #set1

#(set1 and set2) where #set gives the number of times that set appears in the database.
They can then rank their violating rules in terms of confidence and support. They attempt to prune
false positives caused by rules spanning functions by an intra-procedural analysis. I note a number of
limitations to this technique - firstly, rules can only occur within the scope of a single function, secondly,
local variables are hashed to their data type meaning local variables of the same type are considered the
same, and finally, that their technique does not capture the ordering between program elements. Their
evaluation showed a large false-positive rate - 25, 75 and 85 percent for the three reported evaluations.

Jadet

Wasylkowski et al. [170] describe the tool Jadet that creates per-object usage models describing the
‘normal’ orderings of calls on that object. Their approach works on a set of Java classes and they
create usage models for all objects that are created using new, appear as method parameters, are re-
turned from methods or are used as exceptions. They begin by constructing a method-model for each
method, similar to a call graph, where states are locations in the code and transitions are instructions.
A special end state is connected to all states after a return instruction with an ε-transition and ex-
ceptions are handled in a more complicated way, introducing additional states. To create a set of
object-usage-models from a method model for each object they project out all transitions using that
object. To deal with aliasing they use a data-flow analysis and introduce a special case for objects
that are cast to a particular type. For each method they construct a set of control flow relations of
the form R(Obj) = {(m,n) | n can be called after m} by examining each objects object-usage-model.
The union of all sets of control flow relations for objects for a method is taken as an itemset, i.e.
R(M) = {(m,n) | (m,n) ∈ R(O) and O used in M}. Frequent itemset mining is then applied to the
set of all R(M) for all methods M in the given Java classes. They filter out redundant patterns from
the mined patterns and use the resulting patterns to detect and rank anomalies in the code. It should
be noted that the patterns here are different from those used by Li et al. [91] as here a pattern is a set
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of ordered pairs. Their experiments seem promising, although false-positive rates are still an issue. They
usefully note a number of limitations to their approach which include the fact that they do not support
the whole Java language (for example multithreading), they abstract away from structural information
in the code and do not capture negative information in the form of things that cannot happen.

Kagdi et al.

Kagdi et al. [74] compare a sequential pattern mining approach to a frequent itemset mining approach.
Their itemset mining approach is similar to that of PR-Miner described above. To carry out sequential
pattern mining they have to construct a temporally ordered dataset - this is difficult as sometimes the
ordering between calls is undefined and compilers order them differently. Their approach is not described
in much detail but it is indicated that it follows a similar line to that of PR-Miner. It is noted that the
search space of frequent itemset mining is 2n for n call-usages but for sequential pattern mining is at most
2mk for m partially ordered call-usages with an average of k calls. They note that the later approach took
four times longer (242 minutes) to run. Their experimental results show that sequential pattern mining
produces more patterns but fewer variants and violations then frequent itemset mining and they argue
this means that it is less likely to produce false-negatives.

Ramanathan et al.

Ramanathan et al. [136] introduce a technique called predicate mining that identifies the preconditions
that must hold whenever a procedure is called. They infer both data-flow predicates that capture values
held by variables at callpoints and control-flow predicates that capture orderings between procedure calls.
A flow-analysis is used to build these predicates by associating predicates with statements, a predicate
specification language is presented and a set of inference rules given which relate the results of flow
analysis to the allowed predicates. One approach would be to define the predicates for a procedure are
the intersection of all predicates at all call points to that procedure however this is often over-conservative.
Instead they utilise frequent itemset mining is to infer data-flow predicates, where an itemset represents
the predicates at a call point, and sequential pattern mining is used to infer control-flow predicates.
Some work is done take account of structural equivalence of predicates by examining type and positional
parameter information. Their evaluation infers many preconditions for procedures, although many of
these consist of few (< 2) predicates. They note that they could improve their approach by utilising
theorem proving to infer more involved preconditions.

Acharya et al.

Acharya et al. [5] describe an approach that takes as input some source files and descriptions of the APIs
of interest. Their approach consists of four parts

1. They adapt a model checker to generate interprocedural context-flow-sensitive static traces related
to the APIs of interest. They employ push-down model checking [47] by modelling the program as a
push-down automata and for each exit point of the program constructing a trigger FSA that accepts
all strings beginning at the entry to the program and ending at that exit point. For each trigger
FSA they use a model checker to compute the set of paths through the program from which they
can project calls to the APIs of interest, this is an over approximation due to data-flow insensitivity.

2. They extract usage scenarios from these static traces by identifying calls from the different APIs
and extracting a partial order of API calls for each API and a partial order between APIs.
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3. They mine frequent closed partial orders from these usage scenarios. A frequent closed partial order
if it is frequent and closed in the itemset mining sense. They use an existing tool [126] to do this,
which employs a data-mining technique to a database of usage scenarios.

4. They extract specifications that are universally true for a set of programs by mining patterns from
one half of the programs and checking them on the other. This seeks to prune false-positives.

Their evaluation seems promising, however there appears to be a reasonably amount of manual work
required to make this approach work. Given the size of the programs being mined - a total of 200k lines
across 72 programs it is reasonably impressive that their use of model-checking to produce the traces
worked, however I wonder if this will scale well for larger programs.

Summary

There have been many attempts at using data-mining techniques to infer specifications from source code.
Here I have described the most recent approaches in the literature. The unifying theme is to develop a
technique for extracting some data from the source code and then applying the data-mining techniques
to this data. This approach can be split into three parts - extracting data, mining patterns and pruning
patterns. The majority of approaches could make use of techniques used in other approaches for the last
two parts.

3.5 Applications

In this section I describe some applications of specification mining in the literature as well as some possible
applications I have considered myself. I began my search by examining the background section in the
PhD thesis of Shahbaz [146].

3.5.1 Program Comprehension

The majority of approaches can be thought of as approaches to aid program understanding. By inferring a
specification of normal program behaviour a programmer can better understand how to use a third-party
piece of code or check to see if their understanding of what the code does is correct. Here I describe
a few instances of where specification inference techniques have specifically been used to aid program
understanding.

Inferring UML diagrams

Makinen and Systa [109] present the Minimally Adequate Synthesizer (MAS) interactive algorithm which
synthesizes UML statechart diagrams from sequence diagrams. Traces are constructed for each object in
the system and consist of pairs (s, r) where r is a message received by the object and s is the message
previously sent by the object (or null if no message has been sent since the last message was received).
The language of the state chart can then be inferred from the set of such traces constructed from the
sequence diagrams - note that this is prefix-closed. Angluin’s algorithm (L∗) is applied to the sample set
where the user is used as an oracle and certain optimisations reduce the number of queries asked. Note
that this approach does not infer a statechart from an execution trace or code but from a different form
of specification.
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Legacy Systems

Hungar et al. [71] present an approach for learning a specification of a legacy system to support testing.
Angluin’s algorithm (L∗) is used with a testing framework used to answer membership queries (they do
not cover equivalence queries). They key difficulty in the approach was that L∗ produces propositional
strings as membership queries and these need to be translated into test cases involve non-propositional
symbols. They reverse the abstraction introduced by L∗ heuristically using a number of previously
developed techniques. They note that inferred models could be used for regression testing and test case
analysis, but do not implement these techniques. During evaluation the number of membership queries
was polynomial in the number of states (78 states led to 132,300 membership queries) but an optimisation
based on the prefix-closedness of the language bounded this to quadratic.

Inferring a Specification for a Biometric Passport

Aarts et al. [3] the extension of L∗ described in Section 3.2.3 (and coded in the LearnLib tool) for inferring
Symbolic Mealy Machines to construct a description of the protocol used in a biometric passport. They
had to construct an abstraction mechanism by hand to allow them to use their technique. Inference took
less than 60 minutes and created a model with 5 locations and 19 transitions. They compared the inferred
model to a hand-coded model and the inferred model was found to be more general than but consistent
with the hand-coded model as this model was not complete.

Understanding Change

With the complexity of large systems and the inevitable coupling of program components, one problem in
the area of software development is understanding how an update to a system has changed its functionality.
Once a program has entered the maintenance phase this problem can be compounded by decreasing
documentation and losing those involved in the original project. Currently regression testing is used
to check that updates to a system have not introduced a new bug. But one possible application of
specification inference would be to track changes to the programs inferred specification.

3.5.2 Testing

The next main use of specifications is in the area of ensuring program correctness through testing. Here
specifications are often informal, however a number of approaches have shown how testing techniques can
be improved when a formal specification is available.

Integration Testing

Shahbaz et al. [149, 148] infer parameterised models using an extension of L∗ (the first L∗ extension
for dealing with models with parameters). Given a set of components with known interfaces (consisting
of input and output symbols with parameter signatures) and a communication architecture between
these components. They use this to construct a composed system such that two components can be
pairwise connected if they have corresponding input and output symbols in their interfaces. Any non-
connected interfaces are considered external interfaces to the composed system. For each component
they manual construct a mapping from interfaces and parameter domains to the associated parts of the
parameterised model. A model for each component can then be inferred in separation (using unit testing
and conformance testing techniques to answer queries). These models are then composed in the same
manner as the composed system and used to generate integration tests.
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Model Based Testing meets Black Box Testing

Raffelt et al. [133] use the LearnLib tool to carry out black-box testing of a web-based bug tracking
system using tests generated from an inferred Mealy Machine. In the inferred model they note that it
is only possible to reach a useful subgraph by taking a login transition. More interestingly, Peled et al.
[127] present a formal treatment of how black-box testing can be carried out using L∗.

Bug Location

It should be noted that as a specification has been derived from the program itself it should be easier to
locate the bug by creating a link between the points in the program that led to the failing part of the
specification being created. This can be seen more obviously in the static specification mining techniques
described above but one could imagine a similar approach applied to dynamic specification mining where
the source is available.

3.5.3 Verification

The more rigorous approach to ensuring program correctness is formal verification, here formal specifica-
tions are required to carry out techniques such as model checking and runtime verification.

Automating Assume-Guarantee Reasoning

Puasuareanu et al. [129] use Angluin’s algorithm to compute assumptions to carry out assume-guarantee
reasoning which takes a divide-and-conquer approach to verifying large systems. A component in a large
system is verified within the context of a number of assumptions. Assumptions are given as deterministic
labelled transition systems (a finite state machine where all states are accepting) and a notion of weakest
assumptions are introduced. The L∗ algorithm is used to infer assumptions using the LTSA model checker
as an oracle. Different setups are used for different assume guarantee rules, here I describe the setup for
the asymmetric rule

〈A〉M1〈P 〉 〈true〉M2〈A〉
〈true〉M1||M2〈P 〉

Where M1 and M2 are components, P is the property being checked, A is an assumption, || is parallel
composition and 〈A〉M〈P 〉 is true if component M guarantees P assuming A. Membership queries are
given by checking 〈t〉M1〈P 〉 for query trace t. Equivalence queries are given by first checking 〈A〉M1〈P 〉,
returning a counter example if it is false, and then secondly checking 〈true〉M2〈A〉, if this is true then
a weakest assumption has been found, otherwise the counterexample is checked to see if either A is not
strong enough or no assumption exists.

3.5.4 Security

A recent approach to online security that aims to detect abnormal behaviour has yielded some inter-
esting approaches that make use of formal specifications. Additionally, in the same way that inferring
a specification can help you verify a program is correct it is shown that inferring a specification for a
communication protocol can help show that the protocol is secure.

Security in Communication Protocols

Shu et al. [152] describe how specification inference techniques can be used to test if security protocols
obey an important security property - message confidentiality under the general Dolev-Yao attacker model
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[36]. The structure of protocols is learnt as a Symbolic-Parameterised Extended Finite State Machine
(SP-EFSM) of the form

Definition 33 (Symbolic-Parameterised Extended Finite State Machine (SP-EFSM)). An SP-EFSM is
a 7-tuple 〈Q, q0, A,Σ,Λ,Γ, δ〉 where Q is a set of states, q0 is the initial state, A = 〈K,N〉 is a set of
atoms or parameter values where K is a finite set of symbolic private/public key pairs and N is a finite
set of nonces, Σ and Λ are finite sets of input and output symbols respectively with typed single parameter
signatures taken from (Int,Key,Nonce), Γ is a finite set of typed state variables with initial values, and
δ is a set of transitions of the form t = (s, s′, i, o, p, a) with start and end states s and s′, input and output
symbols i and o, a predicate p on state variables and input parameters and an action a on state variables
and input/output parameters.

As this machine has finite domains for its parameters it can be translated into an equivalent finite
state machine - this construction is referred to as the reachability graph of the SP-EFSM. In their setup
they do not assume that the learner knows the alphabet beforehand, instead they add an additional query
to the oracle which can return a set of input symbols not contained in some given query. They adapt
the L∗ algorithm to learn SP-EFSM reachability graphs by allowing a row to record output strings - a
reachability graph is just a Mealy Machine. They can then check the inferred model against the general
Dolev-Yao attacker model.

Shu et al. [151] also suggest an approach for combining protocol inference with fuzz testing to detect
security (and reliability) problems in communication protocols. Fuzz testing [119] is a technique that
mutates the test data to attempt to uncover undesired behaviour. Shu et al. infer protocols for two MSN
instant messaging protocols and generate a fuzzed test suite from this, they use this to find a number of
non-trivial bugs in the protocols. The inferred state machine has 50 states and 70 transitions and they
refer to both Angluin’s algorithm and Bierman’s algorithm but it is unclear which they use to achieve
their results, however, they note that Angluin’s algorithm is very costly to run to completion but can be
used to give an approximate model.

Intrusion Detection

Based on an approach by Forrest et al. [69] that identifies anomalous sequences of system calls to detect
intrusions a number of attempts have been made to infer specifications for intrusion detection.

Sekar et al. [145] develop their own approach for inferring finite state automata to describe normal
behaviour. They tag traces with the program point from which each system call is made (given by the
program counter), these are used as states in the inferred FSA. This works for statically linked programs
but not for dynamically linked programs. Additionally, if system calls are made by library functions the
structure of the program is lost. Therefore, they employ a technique called system call tracing to keep
track of where in the program system calls originated from. Gosh et al. [58] describe three approaches to
learning normal program behaviour that learn three different models - Elman recurrent neural networks,
string transducers and finite state machines. Their learning algorithms are heuristically based and draw
loosely from speech recognition techniques. They found that the neural network performed the best as
they took the least time to train and gave fewer false alarms. Goa et al. [57] extract an execution
graph during a training period and continue to update this during monitoring. The execution graph
captures function calls and returns and is built by encoding observed traces. Ingham et al. [72] learn
DFA representations of the HTTP protocol to protect web applications. They first introduce a scheme for
tokenizing HTTP request to produce a trace alphabet and then describe their own induction algorithm,
which they call the Burge DFA induction algorithm. The approach is to statically initialise the DFA
with a state for each token in the trace and then use the traces to build transitions between token states
reflecting the order of tokens in the trace.
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Malware Detection

Christodorescu et al. [26] use a dynamic specification mining technique to infer specifications from a
known malicious program and a set of benign programs to identify the parts of the specification that
identify it as being malicious. They infer what they refer to as dependence graphs from execution traces
- which at a high level capture typestate properties but they restrict the form they are interested in.
A graph is created with system calls as nodes and vertices indicated that two system calls used the
same object. They compute contrast subgraphs (an approach taken from data-mining) of the dependence
graph taken from the malicious code using the graphs taken from the benign code and a number of
other heuristics. Their approach created a lot of false positives but was able to identify programs as
malicious. Sathyanarayan et al. [143] use a static analysis to extract critical API calls from known
malicious programs to construct signatures for entire classes of malware. The signature for a malicious
program is modelled by the frequency of certain API calls, although not their ordering. Beaucamps
et al. [12](presented at RV10) extract trace abstractions from execution traces generated by malicious
programs by rewriting given subtraces into abstract symbols representing their functionality. A behaviour
pattern is used to detect behaviours and is a regular language. A string rewriting system is generated
from a set of behaviour patterns to rewrite the concrete trace into some abstract trace to be compared
against a malware signature. This approach does not construct behaviour patterns (a form of specification
inference) but would benefit from an approach that did.

3.5.5 Controlling Programs

A specification of what a program is supposed to do can potentially be used to ensure that the program
operates correctly.

Runtime Enforcement

A runtime enforcer [48, 92] sits between a program and its environment and ensures that the programs
observable behaviour conforms to some specification. To understand where this might be useful consider
two programs that control a robotic arm - the first has been thoroughly tested but is inefficient, whereas
the second is very fast but relatively untested. One could mine the behaviour of the first and use the
second, forcing it to only exhibit the safe behaviour. Specification inference might be required as describing
exactly the behaviours required might be difficult. This has not appeared in the literature.

Multi-Mode Program Steering

Program steering is the process of controlling a programs behaviours to better achieve a goal. Ernst and
Lin [93, 94] showed how a multi-mode program could be steered using inferred state specifications (using
the Diakon tool). I discuss this further in Chapter ??.

3.5.6 Music Recognition

Alcazar et al. [29] use grammar inference techniques to identify music styles. The idea is that their
technique can be used to implement or improve content based retrieval in multimedia databases. They
develop an encoding for music, which captures the pitch and duration of notes, and use this as the
alphabet. They use a grammar inference tool which implements approaches from the natural language
community which I have not yet covered- Error Correcting Grammatical Inference (ECGI) [142].

46



3.5.7 Summary

There have been many useful and interesting applications of grammar inference techniques. Apart from the
work on detecting malicious programs by Christodorescu et al. [26], there have not been any applications
of specification mining outside of program testing - and this has been reasonably qualitative so far, without
any large scale tests or case studies. Additionally, the application of grammar inference techniques to the
area of inferring program specifications has only become a hot topic in recent years.

3.6 Summary

In this chapter I have discussed the specification inference problem and a number of specification inference
techniques. I have also extended my motivation for this domain by presenting existing and potential
applications of specification inference techniques. I note that there exist (at least) five techniques for
inferring parametric specifications, which are:

1. GK-tails uses the Diakon invariant specification mining tool to augmented a trace with predicates.
The k-tails approach is then adapted to work over these augmented traces.

2. JMiner uses parametric trace slicing to abstract away parameters and then employs a standard
regular inference tool to build a parametric specification. However, the approach makes the large
assumption that events can only have one specification of formal parameters. Additionally there
specifications do not capture conditions or local state.

3. Work by Shahbaz et al. [149, 148, 89] extends L∗ to infer an expressive form of machine but the
description of their technique is unclear.

4. Work by Berg et al. [14] extends L∗ to infer a limited form of parameterised machines which only
allow boolean parameters and guards over those parameters.

5. Work by Aarts et al. [2] uses predicate abstraction to reduce the problem of inferring parameterised
machines to that of inferring Mealy machines. However, an abstraction technique must be given by
the user unless a number of assumptions are made.

In the remainder of this section I describe some key points to take away from this chapter.

Known and Unknown Alphabets

It is usually assumed that the alphabet is known beforehand - in Grammar Inference this is given and in
Dynamic Specification Mining it is inferred from the trace. In a passive approach, where all samples are
given up front, it is only possible to build a model using symbols in those samples. However, in an active
approach it is conceivable that the alphabet is discovered by querying the oracle. It should be noted that
in some cases, such as inferring specifications for libraries or API’s, the alphabet will definitely be known
beforehand.

Imperfect Traces

If we assume that samples are correctly labelled then it is possible that we may miss some desired
behaviour as bugs may exist in the code such that an execution trace labelled correct may still exhibit
incorrect behaviour. Unless a small number of violations are allowed important specifications may not be
inferred - these important specifications can be thought of as being statistically significant.
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Noise

An execution trace may contain coincidental or uninteresting relations between events, this noise will
create many uninteresting specifications. We want to avoid this as inferred specifications may be presented
to the user. One example of noise would be where one method always calls another method, these method
calls will alternate but this relation is uninteresting. It is possible to use a heuristically guided examination
of the source code to identify noisy specifications.

Collecting Training Sets.

When using a passive learning approach we need to generate a representative set of execution traces, to
do so it is necessary to have a representative set of inputs to the program that exercises the program
adequately. Thankfully, these often already exist in the form of test suites. However, note that test suites
often focus on positive behaviour only.

Concurrent Programs.

When attempting to infer specifications for a concurrent programs it is possible to either consider the
global trace or per-thread traces. If we consider the global trace then specifications relating to thread-
private objects may not be inferred, however if we only consider per-thread traces then intra-thread
specifications may not be inferred. Generally it is best to consider both the global trace and per-thread
traces, however this is more expensive.

Negative versus Positive Specifications.

We can specify program correctness in terms of behaviours that are allowed or in terms of those that are
not - it is obvious that we can exactly divide behaviours in this way. However, expressing a specification
that represents this divide may be difficult. Different uses of a specification will require it to be expressed
either positively or negatively, so ideally one would be able to switch between the two. If the class of
specification languages is closed under negation then the negation of a specification is guaranteed to be
in that class of languages. This discussion of negative and positive specifications becomes more relevant
when one is approximating a specification as it effects the choice between over-approximation and under-
approximation.
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Chapter 4

Genetic Algorithms and Specification
Mining

In this s I briefly outline what genetic algorithms are (Section 4.1) and then discuss different approaches
taken in the literature (Section 4.2) for inferring specifications using genetic algorithms.

4.1 Genetic Algorithms

A genetic algorithm [61] carries out a parallel search for an optimal solution to a problem. Genetic
algorithms are an evolutionary strategy inspired by human evolution and take many of their terms and
ideas from this area. A population of potential solutions (or individuals) is maintained and incrementally
updated by applying genetic operators to individuals selected by a selection mechanism. Selection is based
on the fitness of an individual, calculated by a fitness function.

Fitness Functions

A fitness function (or objective function) takes an individual and returns a value (usually between 0 and
1) which indicates how good a solution to the current problem it is. The genetic algorithm is searching
for a maximal solution and if an individual has n varying elements the search space can be viewed as an
n-dimensional plane given by the fitness function. Along the fitness axis this plane will have a number
of maxima - and possibly a unique greatest maxima. The goal is to find this unique greatest maxima or
the highest point on this plane possible. However, a big problem in genetic algorithms is getting stuck
in local maxima. Techniques such as random jumps and multiple separate populations can be used to
maintain individual diversity and thus avoid getting stuck in a local maxima.

Genetic Operators

Genetic operators are used to move around the search space - they take a subsection of the population
and move it within this search space, hopefully towards a maxima. Generally genetic operators fall into
two categories:

1. Mutation - takes a single individual and makes a small change to it

2. Crossover - takes two individuals and combines some information from each to make a new individual

The standard crossover technique is to generate two new individuals by taking the first half of the first
and second half of the second as one new individual and the second half of the first and first half of the
second as another individual - where it is assumed we can halve our individuals.
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Selection Mechanism

On each generation of the genetic algorithm some part of the populated is selected for some genetic
change. There are a number of popular selection mechanisms, some of each can be combined.

1. Elitism - Selects a top percentage of the fittest individuals

2. Roulette - Performs a random selection with repetitions, the probability of an individual being
selected is given by the ratio between its fitness and the average fitness.

3. Tournament

Out of those selected some will be mutated and some subject to crossover - these rates will either be given
by a quota or a probability.

Representing Individuals

How individuals are represented is very important. It will effect how expensive genetic operations are and,
very importantly, how expensive it is to measure fitness. Following genetic terminology the representation
of an individual is often called a chromosome and is the individual’s genotype, whereas the interpretation
of this coding is the individuals phenotype. It is often useful to code individuals as a fixed length bit
string - this makes mutations and crossovers very easy. Finding a compact and efficient representation
for an individual can be very difficult.

Summary

Here I given a very brief overview of genetic algorithms. Many of the papers in the next section give
more detailed introductions and explain terms in more depth. The field of genetic algorithms and genetic
programming is a well-established

4.2 Previous Attempts

The earliest attempt at grammar inference using genetic algorithms was by Fogel et al. [49] in 1966, who
attempted to evolve DFAs for regular languages. Thing have moved on quite a bit since then. Here I
outline some of the more recent approaches to evolving models for regular and context-free languages, as
well as other more expressive variants.

4.2.1 For Regular Languages

The majority of uses of genetic algorithms have been to infer regular languages - it should be noted that
other reasonably efficient techniques exist to solve this problem although these depend on the samples
satisfying certain properties. In an early work (1982) Tomita [158] suggested a set of regular languages
to use for evaluation, these are given in 4.1 and are used extensively in the literature to evaluate genetic
algorithm approaches to regular inference.

Evolving a Partitioning

Approaches that attempt to evolve a partitioning of states are motivated by the regular inference search
space as described in Section 3.2.1. A prefix tree acceptor is constructed from the sample sets and a
genetic algorithm searches for an optimal partitioning of states.
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Description RE # states in FSA

L1 All a’s a∗ 1
L2 a and b repeated (ab)∗ 2
L3 Not having odd number of b’s then odd number of a’s 4
L4 No more than 2 consecutive a’s 3
L5 Even number of a’s and even number of b’s 4
L6 Number of a’s and b’s congruent modulo 3 3
L7 a∗b∗a∗b∗ 4
L8 a∗b 2
L9 (a∗.c∗)b 4
L10 (aa)∗(bbb)∗ 5
L11 Even number of a’s and odd number of b’s 4
L12 a(aa)∗b 3
L13 Even number of a’s 2
L14 (aa)∗ba∗ 3
L15 (bc∗b.ac∗a 4

Table 4.1: Tomita Regular Languages

Dupont presents the GIG method [38]. Partitions are represented by a left-to-right canonical group-
number encoding - a group number encoding records the group for each state and the left-to-right canonical
encoding orders groups by their minimal rank. The partition {{1, 3, 5}, {2}, {4}} is given a group number
encoding of (2, 1, 2, 3, 2) which has a left-to-right canonical group-number encoding of (1, 2, 1, 3, 1) - this
makes all equivalent partitions equivalent by renaming. A structural mutation is used which randomly
reassigns a state to a block - this can be the same, a different or a new block. A structural crossover is
used which merges two blocks from two different partitions - {{1, 3, 5}, {2}, {4}} and {{1, 2}, {3, 4}, {5}}
may produce {{1, 3}, {2}, {4, 5}} and {{1, 2}, {3}, {4, 5}} by merging the third block from each partition.
The GIG method worked well on the Tomita languages and reasonably compared to the RPNI algorithm.
The experimental setup randomly generates enough samples for the probability of the sample size to be
characteristic, when this is just enough RPNI beats GIG but when they multiply this by three GIG bits
RPNI - showing that more samples increases the accuracy of the approach. An incremental version of the
evolution approach is used, this begins with a smaller set of the positive samples and finds an optimal
solution in this search space before incrementally expanding the positive set. Dupont allows his algorithm
to run for 2000 steps and uses a population size of 100, a crossover rate of 0.2 and mutation rate of 0.01.
The population is 50% randomly generated and 50% drawn from the set of partitions presenting a single
merge from the partition given by the PTA.

Pawar and Nagaraja [125] build on Dupont’s approach, although very incrementally. They use four
different forms of structural mutations, with the first two relating to Dupont’s one

1. Randomly select a state and place it in a different block

2. Randomly select a state and place it in a new block

3. Randomly select a block and randomly choose a new block for each state in that block

4. Replace the entire partition with a randomly generated partition

They give further experimental results which showed that the third mutation operator improves helps
minimise the number of partitions.
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Hingston [67] also attempts to evolve a partitioning. This approach differs in that it uses the concept
of Minimum Message Length [168] to measure fitness - this builds on previous work using the idea of
minimising entropy [56, 124, 134, 156]. In fact Hingston seeks find an FSA F which, for data set D,
minimises the quantity

DescriptionLength(F ) +DescriptionLength(D | F )

Hingston represents partitions by a set of pairs of states to be merged - or a boolean mask over the set of
all state pairs. His approach works with a positive sample S+ only. Given the prefix tree acceptor PTA
of the positive sample the fitness of an FSA F is given by

exp

(
−ln(2)

(
F.MML

PTA.MML

)2
)

A mutation either sets a bit in the boolean mask to zero or one. The standard one-point crossover is
used (taking the first half of the first and second half of the second). The approach taken is comparable
to other approaches, but not significantly better. They advantage of this approach is that it does not
require any negative data.

Evolving an Automata

Lucas and Reynolds [107, 106] evolve the transition function for a DFA. They note that to construct a
DFA they must generate the number of states, transition function and state label vector - they use a state
label vector (or output function Γ : State → Class) to be more general than a simple acceptance class,
but only consider two classes so this is equivalent. They note that they can either fix the number of states
using prior knowledge or repeat the process with an increasing number of states. The transition function
is represented by a |Σ| × |Q| matrix making the search space |Q||Σ||Q|, however they only consider binary
alphabets so their search space is |Q|2|Q|. To generate a state label vector they develop a technique called
Smart State Labelling based on a proposed transition function and a training set. This takes an array
h[s][c] which gives for state s and class c the number of times in the training set for class c a transition
function ends in state s and lets the class of state s be the class with the maximum number of entries.
Their fitness function computes the proportion of the sample set which is correctly classified. They do
not use a crossover operator but compare three different mutation operators which are

1. Standard - Changes one entry in the transition matrix randomly

2. Sampled - For each transition t a count is kept of the correct c(t) and incorrectly i(t) classified words

it is involved in processing. The probability of mutating a transition is given by p(t) = i(t)
c(t)+i(t)

where p(t) = 0 if i(t) = 0. This additionally means that there is a zero probability of mutating an
unreachable transition.

3. Quick-Samples - Instead of calculating c(t) and i(t), which involves iterating over the sample set
again, each state is labelled with the strings it should and should not accept (as a final state) during
fitness evaluation. This can be used to carry out state smart labelling. The number of errors at a
state is given by the size of its minority set and a state is chosen with a likeliness proportionate to its
number of errors. One of the erroneous strings from the chosen state is selected and the transition
to mutate is chosen at random from the transitions that string passes through. This punishes a
transition for being involved in an incorrect classification and does not reward it for being involved
in a correct classification.
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Their experimental setup generates random DFA of size n between 8 and 32 and depth (2logn) − 2 (in
the same way as the Abbadingo One competition). They manage to correctly identify a DFA with 32
states using 10,620 steps (with sampled mutation). They compare their approach to EDSM, which they
beat most of the time - especially on large DFA with sparse data. Additionally they carry out some tests
were they artificially add noise to the training samples and in this case their approach vastly outperforms
EDSM.

Niparnan and Chongstitvatana [118] evolve finite state machines in the form of Mealy Machines. They
evolve the transition function and infer the output function from the training set. They first note that
measuring the fitness of an inferred output function by comparing output strings leads to inaccuracies
when there are only small differences. The transition matrix is evolved as above and once this has been
evolved the output function is inferred from the training set. A |Q| × |Σ| × |Γ| matrix OC is maintained
(Σ input alphabet and Γ output alphabet) such that OC[q][a][b] gives the number of times the machine
transited from state q using input symbol a producing output symbol b - note that the machine is assumed
to be deterministic so a destination state is not required. They then give the output function by

γ(q, a) =

{
anything ∀x ∈ Γ : OC[q][a][x] = 0

b OC[q][a][b] > 0 ∧ ∀x ∈ Γ : x 6= b⇒ OC[q][a][x] < OC[q][a][b]

Their fitness function for δ is then given by

|Q|∑
i=1

|Σ|∑
j=1

max({OC[i, j, x] | x ∈ Γ})

Therefore a transition with no conflict in OC will be rewarded by how frequently that transition is used
and a transition with some conflict will ‘lose out’ on the conflicting outputs and therefore be punished. In
experiments they allowed their algorithm to run for 10,000 steps. They managed to infer Mealy machines
with an input alphabet of 1 bit (2 symbols), an output alphabet of 3 bits (8 symbols) and 10 states
consistently and up to 20 states in some cases.

Finally Bongard and Lipson [19] have developed an active approach which they describe as coevolu-
tionary. The idea is to evolve some possible models and then evolve some membership queries which cause
maximal disagreement among these models. The membership queries are used to augment the available
information and the process repeats. For models they use two subpopulations to maintain diversity in
their models and the following fitness function for i training sentences labelled by mi where ti is the
inferred labelling.

1−
∑i

j=1 |tj −mj |
i

Standard mutation and crossover operations were used. For the membership queries they use the following
fitness function for k candidate models where mj(s) is the classification of s by the jth model.

f(s) = 1− 2|0.5−
∑k

j=1mj(s)

k
|

On unbalanced DFAs their approach beat the EDSM algorithm on small DFA and performed as well as
it for large DFA. Their approach also outperforms the approach suggested by Lucas and Reynolds (see
above).

4.2.2 For Context-Free Languages

As there have been fewer successes in constructive approaches to context-free grammar inference, there
have been a number of approaches attempting to utilise genetic algorithms to evolve representations of
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context-free languages. People have either attempted to evolve a pushdown automata or a grammar
directly.

Evolving a Pushdown Automata

Lankhorst [85] represents PDAs by a list of variable length transitions. Mutation randomly changes a
part of a randomly selected transition to a value in the range of that position. The standard crossover
operator is used. He uses a complicated fitness function based on

1. The number of correctly accepted or rejected sentences

2. The relative length of the prefix which is correctly accepted or rejected

3. The number of symbols left on the stack (acceptance is by empty stack)

A number of reasonably complicated context-free languages are inferred within 1000 generations.
Naidoo and Pillay [114] encoded PDAs directly as a transition graphs. Mutation is by replacing a

randomly selected subgraph and crossover is by swapping randomly selected subgraphs. Using a popu-
lation size of 2000 and a maximum number of generations of 50 all the languages in the following table
were successfully inferred.

Language Description

L1 anbn for n > 0
L2 ancbn for n > 0
L3 all odd length palindromes on {a, b}
L4 ssr ∈ {a, b}∗ where sr is the reverse of s
L5 scsr ∈ {a, b}∗ where sr is the reverse of s
L6 s ∈ {a, b}∗ where number of a’s equal to the number of b’s
L7 anb2n for n ≥ 0
L8 aa∗ba∗ (regular)
L9 anb2n for n > 0
L10 All strings with balanced brackets over {(, )}

However, the description of the experimental setup does not indicate how the test or training data
was generated - specifically whether this was random or had to meet certain criteria. They did place a
restriction on the maximum number of nodes as 5 and the maximum number of transitions per node as
between 4 and 6 (depending on the language!).

Evolving a Grammar

In 1993 Wyard [173] suggested an approach which evolves context-free grammars represented as lists of
production rules. Mutation randomly changes a symbol and crossover can occur at any point on the two
lists of production rules such that it does not break a production. Wyard noted that getting stuck in local
maxima was a big problem. For the correctly bracketed language only two out of five attempts converged
at a correct solution (in 16 and 3 generations respectively).

More recently Pandey [122] (coming from a natural language processing background) has introduced
a library for inferring context-free grammars using genetic algorithms. Choubey and Kharat [24, 23]
have also recently tackled this problem and have achieved reasonable results, but the description of their
methods are unreadable.
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4.2.3 Other

There have also been some interesting approaches to evolving other forms of language models.

Stochastic regular grammar - Schwehm and Ost [144] present a genetic programming technique for
evolving a stochastic regular grammar. A stochastic regular grammar is encoded as a bitstring. The
objective function (fitness function) is then given by a weighted combination of the complexity of the
hypothesis grammar and a χ2-measure of how well the grammar fits the sample.

Stochastic Context-Free Grammars - Keller and Lutz [78] describe an approach for evolving stochas-
tic context-free grammars (SCFG) using the minimum description length (MDL) principle as a fitness
function. A SCFG is a variant of a context-free grammar with each production associated with a proba-
bility. The MDL principle is transferred into Bayesian terms so that it is phrased as maximising P (G|C)
where G represents a candidate grammar and C represents the sample set of traces (or Corpus in this
work). An initial grammar is constructed and evolved using standard mutator and crossover operators.

Turing Machines - Naidoo and Pillay [115] present a genetic programming approach to inferring
Turing machines represented directly as transition graphs. Fitness is given by the number of correctly
accepted and rejected strings. Mutation is by random subgraph replacement and crossover by random
subgraph switching. Their approach appears to work well, but their description of the evaluation does
not include all the necessary details - for example how training and test sets were generated.

4.2.4 Summary

There have been a number of successful attempts to infer models for unknown languages using genetic
algorithms. I note the following

� None of these approaches have been explored within the context of inferring trace specifications for
programs

� Genetic algorithms work particularly well for more expressive formalisms (as the search space is a
lot larger)

� I have not found any approaches attempting to infer parametric languages/specifications with free
variables
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Chapter 5

Conclusion

This report has attempted to summarise the field of specification inference. There will be omissions - if
you read this and can think of any, and are feeling kind, then please contact me. The same applies to
mistakes. If nothing else, I hope I have gathered together an interesting set of references.

Challenges

At some point I hope to use this space to give a concise overview of what I see as the outstanding challenges
in the field.
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[29] P.P. Cruz-Alcázar, E. Vidal-Ruiz, and J.C. Pérez-Cortés. Musical style identification using gram-
matical inference: The encoding problems. In Alberto Sanfeliu and José Ruiz-Shulcloper, editors,
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