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Abstract

A number of synthesis applications are made possible by automated tools for synthesis. Recent
work has shown that SMT solvers, instead of just acting as subroutines for automated software syn-
thesis tasks, can be instrumented to perform synthesis themselves. This paper focuses on some of
the current challenges for developing fast and useful procedures in SMT solvers for the benefit of
synthesis applications.

1 Introduction
A particularly challenging problem for modern automated reasoners is the task of synthesis. Abstractly,
a synthesis problem asks whether there exists a structure for which some property holds universally.
Examples of structures to synthesize include correct-by-construction program snippets, invariants for
establishing program safety, and policy plans for controllers. The synthesis problem is particularly
difficult for automated reasoners like SMT solvers, which excel at deductive reasoning, but have limited
ability to invent new constructs, an ability inherently critical for synthesis. As a result, many current
tools use enumerative brute-force techniques for exploring the space of possible solutions.

Modern synthesis tools, e.g. [26, 3], commonly act a separate exterior layer which periodically
makes quantifier-free satisfiability calls to an underlying SMT solver. As a consequence, synthesis
tools are not privy to the low-level inferences made by the SMT solvers, nor do SMT solvers actively
participate in high-level decisions made by synthesis tools. Conversely, SMT solvers have largely been
developed without specific consideration towards advancing the state-of-the-art in synthesis, and often
lack a coherent vision of the constraints they are solving.

Recent theoretical and empirical results indicate that procedures for quantified formulas over certain
background theories in SMT solvers have reached a level of maturity that makes them viable in real
world applications. The use of such procedures is limited in current verification and synthesis tools.
The development of general-purpose SMT solvers for synthesis that leverage these procedures has the
potential to meet the needs of a large audience and have a broad impact on software applications.

We consider the synthesis problem in the context of some background theory T . We say a synthesis
conjecture is a formula of the form ∃f ∀~xP [f, ~x] where the second-order variable f represents the
function to be synthesized and P is a first-order formula encoding properties that f must satisfy for all
values of ~x. We consider a conjecture of this form in the remainder of the paper, and assume f has sort
σ1 × . . .× σn → σ.

In principle, to find a solution for f in a synthesis conjecture, an SMT solver supporting the theory T
can consider the satisfiability of the open formula ∀~xP [f, ~x] by treating f as an uninterpreted function
symbol. This is challenging because it requires the solver to construct internally (a finite representation
of) an interpretation of f that is guaranteed to satisfy P [f, ~x] for every value of ~x [15, 25].

More traditional SMT solver designs for handling universally quantified formulas have focused on
instantiation-based methods to show unsatisfiability [13]. While these techniques are incomplete in
general, they have been shown to be quite effective in practice. For this reason, we advocate approaches
to synthesis geared toward establishing the unsatisfiability of the negation of the synthesis conjecture:

∀f ∃~x¬P [f, ~x] (1)



The immediate challenge is how to deal with the second-order universal quantification of f , which
current SMT solvers have little or no direct support for. In previous work [23], we presented two
methods for tackling this problem that build on existing capabilities of SMT solvers:

1. If all occurrences of f in P [f, ~x] are of the form f(~x), then conjecture (1) is equivalent to a
first-order formula of the form ∃~x ∀y Q[~x, y], where y is a first-order variable of sort σ. Such a
formula can be solved by first-order quantifier instantiation techniques specialized for theory T .

2. More generally, conjecture (1) is equivalent to ∀d∃~x¬P [λ eval(d, ~x), ~x], where d of a datatype
sort δ that encodes the term space of solutions for f , and eval is a function that acts as an evaluator
for terms in T . Such a conjecture can be solved via the syntax-guided synthesis paradigm [1] by
extending an SMT solver that supports T and inductive datatypes [21].1

The advantage of the first method is that is highly efficient, while the advantage of the second method is
that it covers a wider class of synthesis conjectures and generally produces more concise solutions. We
present the current challenges in the former of these methods in this paper.

2 First-Order Quantifier Instantiation for Single Invocation Prop-
erties

Previous work [23] has shown that SMT solvers with for support quantifier instantiation already have
many of the functionalities required for synthesis. In particular, [23] describes a method to efficiently
solve a common class of synthesis conjectures whose properties are single-invocation. The conjecture
P [f, ~x] is is single-invocation if it is equivalent to a quantifier-free formula of the form Q[~x, f(~x)]
where f does not occur in Q[x, y]. Single invocation properties are of interest to software synthesis
applications, where properties of a function-to-synthesize are often stated as a relation between the
return value of that function and its inputs. Synthesis conjectures whose properties are single-invocation
can be reduced to a first-order satisfiability problem by noting that a second-order conjecture of the form
∃f ∀~xQ[~x, f(~x)] is logically equivalent to the first-order formula:

∀~x ∃y Q[~x, y] (2)

For example, the feasibility of the synthesis conjecture ∃f ∀x f(x) > 0 stating that the return value of
f : Int → Int is always positive can be equivalently stated as the first-order conjecture ∀x∃y y > 0,
where y is a first-order variable of sort Int. Assuming that the background theory of (2) admits quantifier
elimination, i.e. there exists a decision procedure for establishing its satisfiability, the feasibility of the
synthesis problem can thus be decided by such a procedure. In the spirit of recent approaches for lazy
quantifier elimination [18], we consider an abstract instantiation-based procedure, shown in Figure 1,
for establishing the satisfiability of a first-order quantified formula ∃~x, ∀~y Q[~x, ~y] in theory T .

The procedure introduces a set of constants ~k and ~e of the same type as ~x and ~y, and maintains an
evolving set Γ of ground instances of Q. It terminates when either Γ is unsatisfiable, in which case the
input is unsatisfiable, or when Γ∪{¬Q[~k,~e]} is T -unsatisfiable. In the latter case, Γ is satisfiable and the
entailment Γ |= ∀~y Q[~k, ~y] holds, which together imply that the input is satisfiable. Both satisfiability
checks in this loop are accomplished by an SMT solver with support for quantifier-free reasoning. If
neither of these conditions hold, the procedure selects a tuple of terms ~t returned by sub-procedure ST ,
which is based on the current model I for Γ and ¬Q[~k,~e]. It subsequently adds the instance {Q[~k,~t]}
to Γ and the procedure repeats.

1 For more details, see Section 4 of [23].



Given input ∃~x ∀~y Q[~x, ~y].

Let Γ := ∅, and ~k and ~e be tuples of fresh constants of the same type as ~x and ~y.

Repeat

If Γ is T -unsatisfiable, then return “unsat”.

If Γ′ = Γ ∪ {¬Q[~k,~e]} is T -unsatisfiable, then return “sat”.

Otherwise,

Let I be a model of T and Γ′ and let ~t = ST (I,Γ′).

Γ := Γ ∪ {Q[~k,~t]}.

Figure 1: An abstract procedure for determining the T -satisfiability of ∃~x ∀~y Q[~x, ~y], parameterized by
a selection function ST .

We refer to I as a candidate model, and ST as the selection function of the instantiation procedure.2

The efficiency of the procedure relies on having a good selection function, namely one that leads to a
satisfiable or unsatisfiable response using a small number of instances. The termination of the procedure
is guaranteed if its corresponding selection function is finite, in that it only returns tuples of terms taken
from a finite set, and monotonic, in that it returns a unique tuple of terms on each successive instance
it is invoked. It can be shown that a selection function for quantified formulas over linear arithmetic
can be devised that meets these criteria [24], and provides an efficient approach for simulating classic
approaches for quantifier elimination, e.g. [12, 17].

We may obtain solutions for f in the conjecture ∃f ∀~xQ[~x, f(~x)] by using this procedure to obtain
a proof of unsatisfiability on the negated form of (2):

∃~x ∀y ¬Q[~x, y] (3)

Say the procedure finds that {¬Q[~k, t1], . . . ,¬Q[~k, tn]} is T -unsatisfiable. Then the function:

λ~x. ite(Q[~x, t1], t1, ite(Q[~x, t2], t2, · · · ite(Q[~x, tn−1], tn−1, tn) · · · )) (4)

is a solution for f in the synthesis conjecture ∃f ∀~xQ[~x, f(~x)]. To see the intuition, the function (4)
returns t1 when our specification holds for t1. It returns t2 when it holds for t2, and so on. The
specification holds for tn since the procedure has discovered that ¬Q[~x, t1] ∧ . . . ∧ ¬Q[~x, tn−1] entails
Q[~x, tn].

The above technique provides an efficient end-to-end method for solving the synthesis problem in
the restricted case when the property in question is single-invocation. It is often orders of magnitude
faster than enumerative syntax-guided techniques, as reported in [23] and corroborated by the 2015
edition of the syntax-guided synthesis competition [2], where its implementation in the SMT solver
CVC4 won both the general and conditional linear arithmetic tracks.

2.1 Challenge: Quantifier Instantiation for New Theories
A number of instantiation-based approaches in the style of Figure 1 have been developed for the theory
of linear arithmetic [6, 14, 24]. While the behavior for procedures for quantified linear arithmetic is

2 For details on the formal requirements of a selection function, see [24].



fairly well understood, quantifier instantiation for other theories, notably for bit-vectors, remains a chal-
lenge. Current methods for quantified bit-vectors construct streams of instantiations based on candidate
models [27], and use aggressive rewriting techniques to increase the likelihood that the problem can be
solved as a consequence of preprocessing. The limitation of current procedures is that they are often
unable to construct useful symbolic instantiations required for deriving short refutations. Consider a
synthesis conjecture whose first-order formulation is:

∃x ∀y bvshl(y,#x0001) 6≈ bvand(x,#xFFFE) (5)

where x and y are bit-vectors of length 32. The body of this formula says that shifting y left by one bit
is not equal to the taking the bit-wise conjunction of x with #xFFFE, which is equivalent to setting the
least significant bit of x to 0. This formula can be proven unsatisfiable with a single instantiation y 7→
bvshr(x,#x0001), in other words the result of shifting x right by one bit. However, most current SMT
solvers are unable to find this instantiation, and will instead enumerate a stream of value instantiations
of the form y 7→ #x0000, y 7→ #x0001, and so on.

To address this challenge, one can develop techniques for algebraic reasoning in the context of
quantifier instantiation, or use enumerative techniques for synthesizing useful quantifier instantiations.
Recent work by Preiner et al [19] uses a syntax-guided approach for constructing instantiations for
quantified bit-vector formulas. An approach is used for constructing Skolem functions for QBF formulas
by Rabe et al [20] that is also similar in spirit.

A unique challenge to solving quantified bit-vectors is the wide array of logical subdomains in its
signature. This signature includes bit-precise versions of arithmetic operators, making the insights from
a procedure for quantified linear arithmetic applicable. A number of operators in bit-vectors, such as
those for bit shifting above, are (fully or partially) invertible, making an algebraic procedure for finding
symbolic instantiations like the one above example feasible.

Beyond bit-vectors, a number of SMT solvers have been extended with theories outside the standard
canon of traditional theories, such as unbounded strings and regular expressions in SMT [16], finite
sets [4], and floating points [10]. In parlance of Figure 1, devising selection functions for each of these
theories remains an open challenge.

2.2 Challenge: More General Properties
The methods mentioned in this section so far are limited to single invocation properties. As means
of handling more general properties, it is worth investigating methods that decompose synthesis con-
jectures into parts that are single invocation, and parts that are not. Consider the invariant synthesis
problem for transition systems, which can be expressed as a synthesis problem where f is a predicate
of sort σ1 × . . .× σn → Bool, of the following form:

∃f.∀~x~y. (pre(~x)⇒ f(~x)) ∧ ((T(~x, ~y) ∧ f(~x))⇒ f(~y)) ∧ (f(~x)⇒ post(~x))

where pre is a formula denoting the initial states of the system, T denotes the system’s transition relation,
post denotes a property to be proven invariant for the system. In this setting, f is an auxiliary inductive
invariant used to prove post. We may decompose this property into two parts, the single invocation
(non-inductive) part (pre(~x) ⇒ f(~x) ∧ f(~x) ⇒ post(~x)), and the non-single invocation (inductive)
part (T (~x, ~y) ∧ f(~x) ⇒ f(~y)). The procedure from Figure 1 can be trivially be applied to the former
part, resulting in the partial solution λ~x.post(~x) (alternatively λ~x.pre(~x)), which can in turn be seen as
a candidate invariant for the system. If this candidate does not satisfy the overall specification, then it
can then be strengthened (alternatively, weakened) based on a counterexample to inductive part of the
specification. This approach is already exploited by modern model-checkers based on property-directed
reachability [9], a successful algorithm for verifying the safety of transition systems. It is yet to be



determined if a similar approach can be applied more generally in the context of function synthesis, that
is, when the return type of f is a sort different from Bool.

2.3 Challenge: Concise Solutions

As noted in the results of [2], the procedure in this section often returns solutions for synthesis conjec-
tures very quickly but often returns solutions that are very large, often much larger than necessary. This
shortcoming is prohibitive for synthesis applications that require optimal or nearly optimal solutions,
such as software synthesis. To address this challenge, one can analyze the proof of unsatisfiability of (3)
to find more concise solutions. The general idea is the following. Say the proof of unsatisfiability of this
formula shows ¬Q[~k, t1], . . . ,¬Q[~k, tn] entail ⊥. Moreover, say we find that another set of formulas
¬R1[~k, t1], . . . ,¬Rn[~k, tn] also entail ⊥ where for each i = 1, . . . , n, ¬Q[~k, ti] entails ¬Ri[~k, ti], and
Ri is smaller or otherwise better by some measure than Q. Then, by this construction:

λ~x. ite(R1[~x, t1], t1, ite(· · · ite(Rn−1[~x, tn−1], tn−1, tn) · · · )) (6)

is also a solution for f in the synthesis conjecture ∃f ∀~xQ[~x, f(~x)]. A promising line of research is to
develop methods for constructingR1, . . . , Rn. We conjecture that analyzing the proof of unsatisfiability
of (3) emitted by an SMT solver can be directly leveraged for this task.

3 Conclusion and Future Work

We have presenting several current challenges for developing fast SMT procedures for synthesis. These
procedures have the potential to benefit a number of formal applications, including model checkers that
use invariant synthesis for verifying safety properties of safety-critical systems [11]. We also foresee the
opportunity for SMT solvers to play a prominent role in higher-order theorem provers and model finders
as well. Examples of such tools include Nunchaku, a new counterexample generator for higher-logic that
follows a line of recent work [8, 22]. Other recent systems that natively support higher-order logic [5, 7]
often heavily rely on automated theorem provers and SMT solvers for first-order quantifier formulas.
We conjecture that synthesis algorithms can be leveraged in these tools for reasoning about arbitrary
higher-order formulas, in particular by instantiating second-order quantified formulas with solutions to
synthesis problems.
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